Shan Y, Lee M, Chang EB. The gut microbiome and inflammatory bowel diseases. Annu Rev Med. 2022;73:455–68. https://doi.org/10.1146/annurev-med-042320-021020.
Article
CAS
PubMed
Google Scholar
Cai J, Sun L, Gonzalez FJ. Gut microbiota-derived bile acids in intestinal immunity, inflammation, and tumorigenesis. Cell Host Microbe. 2022;30(3):289–300. https://doi.org/10.1016/j.chom.2022.02.004.
Article
CAS
PubMed
Google Scholar
Lopez LR, Bleich RM, Arthur JC. Microbiota effects on carcinogenesis: initiation, promotion, and progression. Annu Rev Med. 2021;72:243–61. https://doi.org/10.1146/annurev-med-080719-091604.
Article
CAS
PubMed
Google Scholar
Clay SL, Fonseca-Pereira D, Garrett WS. Colorectal cancer: the facts in the case of the microbiota. J Clin Invest. 2022;132(4). https://doi.org/10.1172/JCI155101.
Spiga L, Winter SE. Using enteric pathogens to probe the gut microbiota. Trends Microbiol. 2019;27(3):243–53. https://doi.org/10.1016/j.tim.2018.11.007.
Article
CAS
PubMed
Google Scholar
Ossowicki A, Raaijmakers JM, Garbeva P. Disentangling soil microbiome functions by perturbation. Environ Microbiol Rep. 2021;13(5):582–90. https://doi.org/10.1111/1758-2229.12989.
Article
PubMed
PubMed Central
Google Scholar
Kotlowski R, Bernstein CN, Sepehri S, Krause DO. High prevalence of Escherichia coli belonging to the B2+D phylogenetic group in inflammatory bowel disease. Gut. 2007;56(5):669–75. https://doi.org/10.1136/gut.2006.099796.
Article
CAS
PubMed
Google Scholar
Frank DN, St Amand AL, Feldman RA, Boedeker EC, Harpaz N, Pace NR. Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc Natl Acad Sci U S A. 2007;104(34):13780–5. https://doi.org/10.1073/pnas.0706625104.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lupp C, Robertson ML, Wickham ME, Sekirov I, Champion OL, Gaynor EC, et al. Host-mediated inflammation disrupts the intestinal microbiota and promotes the overgrowth of Enterobacteriaceae. Cell Host Microbe. 2007;2(2):119–29. https://doi.org/10.1016/j.chom.2007.06.010.
Article
CAS
PubMed
Google Scholar
Haberman Y, Tickle TL, Dexheimer PJ, Kim MO, Tang D, Karns R, et al. Pediatric Crohn disease patients exhibit specific ileal transcriptome and microbiome signature. J Clin Invest. 2014;124(8):3617–33. https://doi.org/10.1172/JCI75436.
Article
CAS
PubMed
PubMed Central
Google Scholar
Garrett WS, Gallini CA, Yatsunenko T, Michaud M, DuBois A, Delaney ML, et al. Enterobacteriaceae act in concert with the gut microbiota to induce spontaneous and maternally transmitted colitis. Cell Host Microbe. 2010;8(3):292–300. https://doi.org/10.1016/j.chom.2010.08.004.
Article
CAS
PubMed
PubMed Central
Google Scholar
Garrett WS, Lord GM, Punit S, Lugo-Villarino G, Mazmanian SK, Ito S, et al. Communicable ulcerative colitis induced by T-bet deficiency in the innate immune system. Cell. 2007;131(1):33–45. https://doi.org/10.1016/j.cell.2007.08.017.
Article
CAS
PubMed
PubMed Central
Google Scholar
Paik D, Yao L, Zhang Y, Bae S, D’Agostino GD, Zhang M, et al. Human gut bacteria produce TauEta17-modulating bile acid metabolites. Nature. 2022;603(7903):907–12. https://doi.org/10.1038/s41586-022-04480-z.
Article
CAS
PubMed
PubMed Central
Google Scholar
Arthur JC, Perez-Chanona E, Muhlbauer M, Tomkovich S, Uronis JM, Fan TJ, et al. Intestinal inflammation targets cancer-inducing activity of the microbiota. Science. 2012;338(6103):120–3. https://doi.org/10.1126/science.1224820.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhu W, Winter MG, Byndloss MX, Spiga L, Duerkop BA, Hughes ER, et al. Precision editing of the gut microbiota ameliorates colitis. Nature. 2018;553(7687):208–11. https://doi.org/10.1038/nature25172.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhu W, Miyata N, Winter MG, Arenales A, Hughes ER, Spiga L, et al. Editing of the gut microbiota reduces carcinogenesis in mouse models of colitis-associated colorectal cancer. J Exp Med. 2019;216(10):2378–93. https://doi.org/10.1084/jem.20181939.
Article
CAS
PubMed
PubMed Central
Google Scholar
van der Lelie D, Oka A, Taghavi S, Umeno J, Fan TJ, Merrell KE, et al. Rationally designed bacterial consortia to treat chronic immune-mediated colitis and restore intestinal homeostasis. Nat Commun. 2021;12(1):3105. https://doi.org/10.1038/s41467-021-23460-x.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fischbach MA. Microbiome: focus on causation and mechanism. Cell. 2018;174(4):785–90. https://doi.org/10.1016/j.cell.2018.07.038.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mills JP, Rao K, Young VB. Probiotics for prevention of Clostridium difficile infection. Curr Opin Gastroenterol. 2018;34(1):3–10. https://doi.org/10.1097/MOG.0000000000000410.
Article
CAS
PubMed
PubMed Central
Google Scholar
Glowacki RWP, Martens EC. If you eat it, or secrete it, they will grow: the expanding list of nutrients utilized by human gut bacteria. J Bacteriol. 2020. https://doi.org/10.1128/JB.00481-20.
Wolter M, Grant ET, Boudaud M, Steimle A, Pereira GV, Martens EC, et al. Leveraging diet to engineer the gut microbiome. Nat Rev Gastroenterol Hepatol. 2021;18(12):885–902. https://doi.org/10.1038/s41575-021-00512-7.
Article
CAS
PubMed
Google Scholar
Franzosa EA, Sirota-Madi A, Avila-Pacheco J, Fornelos N, Haiser HJ, Reinker S, et al. Gut microbiome structure and metabolic activity in inflammatory bowel disease. Nat Microbiol. 2019;4(2):293–305. https://doi.org/10.1038/s41564-018-0306-4.
Article
CAS
PubMed
Google Scholar
Winter SE, Winter MG, Xavier MN, Thiennimitr P, Poon V, Keestra AM, et al. Host-derived nitrate boosts growth of E. coli in the inflamed gut. Science. 2013;339(6120):708–11. https://doi.org/10.1126/science.1232467.
Article
CAS
PubMed
PubMed Central
Google Scholar
Byndloss MX, Olsan EE, Rivera-Chavez F, Tiffany CR, Cevallos SA, Lokken KL, et al. Microbiota-activated PPAR-gamma signaling inhibits dysbiotic Enterobacteriaceae expansion. Science. 2017;357(6351):570–5. https://doi.org/10.1126/science.aam9949.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fornelos N, Franzosa EA, Bishai J, Annand JW, Oka A, Lloyd-Price J, et al. Growth effects of N-acylethanolamines on gut bacteria reflect altered bacterial abundances in inflammatory bowel disease. Nat Microbiol. 2020;5(3):486–97. https://doi.org/10.1038/s41564-019-0655-7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Brochier-Armanet C, Madern D. Phylogenetics and biochemistry elucidate the evolutionary link between l-malate and l-lactate dehydrogenases and disclose an intermediate group of sequences with mix functional properties. Biochimie. 2021;191:140–53. https://doi.org/10.1016/j.biochi.2021.08.004.
Article
CAS
PubMed
Google Scholar
Adeva-Andany M, Lopez-Ojen M, Funcasta-Calderon R, Ameneiros-Rodriguez E, Donapetry-Garcia C, Vila-Altesor M, et al. Comprehensive review on lactate metabolism in human health. Mitochondrion. 2014;17:76–100. https://doi.org/10.1016/j.mito.2014.05.007.
Article
CAS
PubMed
Google Scholar
Garvie EI. Bacterial lactate dehydrogenases. Microbiol Rev. 1980;44(1):106–39. https://doi.org/10.1128/mr.44.1.106-139.1980.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jiang T, Gao C, Ma C, Xu P. Microbial lactate utilization: enzymes, pathogenesis, and regulation. Trends Microbiol. 2014;22(10):589–99. https://doi.org/10.1016/j.tim.2014.05.008.
Article
CAS
PubMed
Google Scholar
Feng Y, Xiong Y, Qiao T, Li X, Jia L, Han Y. Lactate dehydrogenase A: a key player in carcinogenesis and potential target in cancer therapy. Cancer Med. 2018;7(12):6124–36. https://doi.org/10.1002/cam4.1820.
Article
PubMed
PubMed Central
Google Scholar
Ferguson GP, Totemeyer S, MacLean MJ, Booth IR. Methylglyoxal production in bacteria: suicide or survival? Arch Microbiol. 1998;170(4):209–18. https://doi.org/10.1007/s002030050635.
Article
CAS
PubMed
Google Scholar
Maeda-Yorita K, Aki K, Sagai H, Misaki H, Massey V. L-lactate oxidase and L-lactate monooxygenase: mechanistic variations on a common structural theme. Biochimie. 1995;77(7-8):631–42. https://doi.org/10.1016/0300-9084(96)88178-8.
Article
CAS
PubMed
Google Scholar
Hulyi MF, Silonova NV. Possibility of enzymatic lactate disintegration followed by formate production. Ukr Biokhim Zh (1999). 2007;79(3):93–6.
CAS
PubMed
Google Scholar
Hughes ER, Winter MG, Duerkop BA, Spiga L, Furtado de Carvalho T, Zhu W, et al. Microbial respiration and formate oxidation as metabolic signatures of inflammation-associated dysbiosis. Cell Host Microbe. 2017;21(2):208–19. https://doi.org/10.1016/j.chom.2017.01.005.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pal D, Venkova-Canova T, Srivastava P, Chattoraj DK. Multipartite regulation of rctB, the replication initiator gene of Vibrio cholerae chromosome II. J Bacteriol. 2005;187(21):7167–75. https://doi.org/10.1128/JB.187.21.7167-7175.2005.
Article
CAS
PubMed
PubMed Central
Google Scholar
Simon R, Priefer U, Puhler A. A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in gram negative bacteria. Nat Biotechnol. 1983;1:784–91.
Article
CAS
Google Scholar
Lasaro M, Liu Z, Bishar R, Kelly K, Chattopadhyay S, Paul S, et al. Escherichia coli isolate for studying colonization of the mouse intestine and its application to two-component signaling knockouts. J Bacteriol. 2014;196(9):1723–32. https://doi.org/10.1128/JB.01296-13.
Article
CAS
PubMed
PubMed Central
Google Scholar
Grozdanov L, Raasch C, Schulze J, Sonnenborn U, Gottschalk G, Hacker J, et al. Analysis of the genome structure of the nonpathogenic probiotic Escherichia coli strain Nissle 1917. J Bacteriol. 2004;186(16):5432–41. https://doi.org/10.1128/JB.186.16.5432-5441.2004.
Article
CAS
PubMed
PubMed Central
Google Scholar
Stojiljkovic I, Baumler AJ, Heffron F. Ethanolamine utilization in Salmonella typhimurium: nucleotide sequence, protein expression, and mutational analysis of the cchA cchB eutE eutJ eutG eutH gene cluster. J Bacteriol. 1995;177(5):1357–66. https://doi.org/10.1128/jb.177.5.1357-1366.1995.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kingsley RA, Humphries AD, Weening EH, De Zoete MR, Winter S, Papaconstantinopoulou A, et al. Molecular and phenotypic analysis of the CS54 island of Salmonella enterica serotype typhimurium: identification of intestinal colonization and persistence determinants. Infect Immun. 2003;71(2):629–40. https://doi.org/10.1128/IAI.71.2.629-640.2003.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gillis CC, Hughes ER, Spiga L, Winter MG, Zhu W, Furtado de Carvalho T, et al. Dysbiosis-associated change in host metabolism generates lactate to support salmonella growth. Cell Host Microbe. 2018;23(1):54–64.e6. https://doi.org/10.1016/j.chom.2017.11.006.
Article
CAS
PubMed
Google Scholar
Wang RF, Kushner SR. Construction of versatile low-copy-number vectors for cloning, sequencing and gene expression in Escherichia coli. Gene. 1991;100:195–9.
Article
CAS
PubMed
Google Scholar
Godinez I, Haneda T, Raffatellu M, George MD, Paixao TA, Rolan HG, et al. T cells help to amplify inflammatory responses induced by Salmonella enterica serotype Typhimurium in the intestinal mucosa. Infect Immun. 2008;76(5):2008–17. https://doi.org/10.1128/IAI.01691-07.
Article
CAS
PubMed
PubMed Central
Google Scholar
Overbergh L, Giulietti A, Valckx D, Decallonne R, Bouillon R, Mathieu C. The use of real-time reverse transcriptase PCR for the quantification of cytokine gene expression. J Biomol Tech. 2003;14(1):33–43.
CAS
PubMed
PubMed Central
Google Scholar
Hughes ER, Winter MG, Alves da Silva L, Muramatsu MK, Jimenez AG, Gillis CC, et al. Reshaping of bacterial molecular hydrogen metabolism contributes to the outgrowth of commensal E. coli during gut inflammation. Elife. 2021;10. https://doi.org/10.7554/eLife.58609.
Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9(4):357–9. https://doi.org/10.1038/nmeth.1923.
Article
CAS
PubMed
PubMed Central
Google Scholar
Suzek BE, Wang Y, Huang H, McGarvey PB, Wu CH, UniProt C. UniRef clusters: a comprehensive and scalable alternative for improving sequence similarity searches. Bioinformatics. 2015;31(6):926–32. https://doi.org/10.1093/bioinformatics/btu739.
Article
CAS
PubMed
Google Scholar
Kim J, Kim MS, Koh AY, Xie Y, Zhan X. FMAP: Functional Mapping and Analysis Pipeline for metagenomics and metatranscriptomics studies. BMC Bioinformatics. 2016;17(1):420. https://doi.org/10.1186/s12859-016-1278-0.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dong JM, Taylor JS, Latour DJ, Iuchi S, Lin EC. Three overlapping lct genes involved in L-lactate utilization by Escherichia coli. J Bacteriol. 1993;175(20):6671–8. https://doi.org/10.1128/jb.175.20.6671-6678.1993.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nunez MF, Kwon O, Wilson TH, Aguilar J, Baldoma L, Lin EC. Transport of L-Lactate, D-Lactate, and glycolate by the LldP and GlcA membrane carriers of Escherichia coli. Biochem Biophys Res Commun. 2002;290(2):824–9. https://doi.org/10.1006/bbrc.2001.6255.
Article
CAS
PubMed
Google Scholar
Lozupone CA, Stombaugh JI, Gordon JI, Jansson JK, Knight R. Diversity, stability and resilience of the human gut microbiota. Nature. 2012;489(7415):220–30. https://doi.org/10.1038/nature11550.
Article
CAS
PubMed
PubMed Central
Google Scholar
Stephenson M. On lactic dehydrogenase: a cell-free enzyme preparation obtained from bacteria. Biochem J. 1928;22(2):605–14. https://doi.org/10.1042/bj0220605.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fraser D, Tolbert B. The utilization of the three singly-C14-marked lactic acids by Escherichia coli. J Bacteriol. 1951;62(2):195–7. https://doi.org/10.1128/jb.62.2.195-197.1951.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hong JS, Kaback HR. Mutants of Salmonella typhimurium and Escherichia coli pleiotropically defective in active transport. Proc Natl Acad Sci U S A. 1972;69(11):3336–40. https://doi.org/10.1073/pnas.69.11.3336.
Article
CAS
PubMed
PubMed Central
Google Scholar
Young IG, Jaworowski A, Poulis M. Cloning of the gene for the respiratory D-lactate dehydrogenase of Escherichia coli. Biochemistry. 1982;21(9):2092–5. https://doi.org/10.1021/bi00538a017.
Article
CAS
PubMed
Google Scholar
Riley M, Abe T, Arnaud MB, Berlyn MK, Blattner FR, Chaudhuri RR, et al. Escherichia coli K-12: a cooperatively developed annotation snapshot--2005. Nucleic Acids Res. 2006;34(1):1–9. https://doi.org/10.1093/nar/gkj405.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chai Y, Kolter R, Losick R. A widely conserved gene cluster required for lactate utilization in Bacillus subtilis and its involvement in biofilm formation. J Bacteriol. 2009;191(8):2423–30. https://doi.org/10.1128/JB.01464-08.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pinchuk GE, Rodionov DA, Yang C, Li X, Osterman AL, Dervyn E, et al. Genomic reconstruction of Shewanella oneidensis MR-1 metabolism reveals a previously uncharacterized machinery for lactate utilization. Proc Natl Acad Sci U S A. 2009;106(8):2874–9. https://doi.org/10.1073/pnas.0806798106.
Article
PubMed
PubMed Central
Google Scholar
Berg DJ, Zhang J, Weinstock JV, Ismail HF, Earle KA, Alila H, et al. Rapid development of colitis in NSAID-treated IL-10-deficient mice. Gastroenterology. 2002;123(5):1527–42. https://doi.org/10.1053/gast.2002.1231527.
Article
CAS
PubMed
Google Scholar
Schwartz DJ, Langdon AE, Dantas G. Understanding the impact of antibiotic perturbation on the human microbiome. Genome Med. 2020;12(1):82. https://doi.org/10.1186/s13073-020-00782-x.
Article
PubMed
PubMed Central
Google Scholar
Hans W, Scholmerich J, Gross V, Falk W. The role of the resident intestinal flora in acute and chronic dextran sulfate sodium-induced colitis in mice. Eur J Gastroenterol Hepatol. 2000;12(3):267–73. https://doi.org/10.1097/00042737-200012030-00002.
Article
CAS
PubMed
Google Scholar
Kozak CA, Gao JL, Murphy PM. Mapping of the mouse macrophage inflammatory protein-1 alpha receptor gene Scya3r and two related mouse beta chemokine receptor-like genes to chromosome 9. Genomics. 1995;29(1):294–6. https://doi.org/10.1006/geno.1995.1250.
Article
CAS
PubMed
Google Scholar
Kurihara T, Warr G, Loy J, Bravo R. Defects in macrophage recruitment and host defense in mice lacking the CCR2 chemokine receptor. J Exp Med. 1997;186(10):1757–62. https://doi.org/10.1084/jem.186.10.1757.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kuziel WA, Morgan SJ, Dawson TC, Griffin S, Smithies O, Ley K, et al. Severe reduction in leukocyte adhesion and monocyte extravasation in mice deficient in CC chemokine receptor 2. Proc Natl Acad Sci U S A. 1997;94(22):12053–8. https://doi.org/10.1073/pnas.94.22.12053.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tannahill GM, Curtis AM, Adamik J, Palsson-McDermott EM, McGettrick AF, Goel G, et al. Succinate is an inflammatory signal that induces IL-1beta through HIF-1alpha. Nature. 2013;496(7444):238–42. https://doi.org/10.1038/nature11986.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jha AK, Huang SC, Sergushichev A, Lampropoulou V, Ivanova Y, Loginicheva E, et al. Network integration of parallel metabolic and transcriptional data reveals metabolic modules that regulate macrophage polarization. Immunity. 2015;42(3):419–30. https://doi.org/10.1016/j.immuni.2015.02.005.
Article
CAS
PubMed
Google Scholar
Vats D, Mukundan L, Odegaard JI, Zhang L, Smith KL, Morel CR, et al. Oxidative metabolism and PGC-1beta attenuate macrophage-mediated inflammation. Cell Metab. 2006;4(1):13–24. https://doi.org/10.1016/j.cmet.2006.05.011.
Article
CAS
PubMed
PubMed Central
Google Scholar
Roediger WE. Utilization of nutrients by isolated epithelial cells of the rat colon. Gastroenterology. 1982;83(2):424–9.
Article
CAS
PubMed
Google Scholar
Donohoe DR, Wali A, Brylawski BP, Bultman SJ. Microbial regulation of glucose metabolism and cell-cycle progression in mammalian colonocytes. PLoS One. 2012;7(9):e46589. https://doi.org/10.1371/journal.pone.0046589.
Article
CAS
PubMed
PubMed Central
Google Scholar
Su AI, Cooke MP, Ching KA, Hakak Y, Walker JR, Wiltshire T, et al. Large-scale analysis of the human and mouse transcriptomes. Proc Natl Acad Sci U S A. 2002;99(7):4465–70. https://doi.org/10.1073/pnas.012025199.
Article
CAS
PubMed
PubMed Central
Google Scholar
Barthel M, Hapfelmeier S, Quintanilla-Martinez L, Kremer M, Rohde M, Hogardt M, et al. Pretreatment of mice with streptomycin provides a Salmonella enterica serovar Typhimurium colitis model that allows analysis of both pathogen and host. Infect Immun. 2003;71(5):2839–58. https://doi.org/10.1128/IAI.71.5.2839-2858.2003.
Article
CAS
PubMed
PubMed Central
Google Scholar
Day DW, Mandal BK, Morson BC. The rectal biopsy appearances in Salmonella colitis. Histopathology. 1978;2(2):117–31. https://doi.org/10.1111/j.1365-2559.1978.tb01700.x.
Article
CAS
PubMed
Google Scholar
McGovern VJ, Slavutin LJ. Pathology of Salmonella colitis. Am J Surg Pathol. 1979;3(6):483–90. https://doi.org/10.1097/00000478-197912000-00001.
Article
CAS
PubMed
Google Scholar
Hapfelmeier S, Stecher B, Barthel M, Kremer M, Muller AJ, Heikenwalder M, et al. The Salmonella pathogenicity island (SPI)-2 and SPI-1 type III secretion systems allow Salmonella serovar typhimurium to trigger colitis via MyD88-dependent and MyD88-independent mechanisms. J Immunol. 2005;174(3):1675–85. https://doi.org/10.4049/jimmunol.174.3.1675.
Article
CAS
PubMed
Google Scholar
Cash HL, Whitham CV, Behrendt CL, Hooper LV. Symbiotic bacteria direct expression of an intestinal bactericidal lectin. Science. 2006;313(5790):1126–30. https://doi.org/10.1126/science.1127119.
Article
CAS
PubMed
PubMed Central
Google Scholar
Vaishnava S, Yamamoto M, Severson KM, Ruhn KA, Yu X, Koren O, et al. The antibacterial lectin RegIIIgamma promotes the spatial segregation of microbiota and host in the intestine. Science. 2011;334(6053):255–8. https://doi.org/10.1126/science.1209791.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kelly CJ, Zheng L, Campbell EL, Saeedi B, Scholz CC, Bayless AJ, et al. Crosstalk between microbiota-derived short-chain fatty acids and intestinal epithelial HIF augments tissue barrier function. Cell Host Microbe. 2015;17(5):662–71. https://doi.org/10.1016/j.chom.2015.03.005.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chanin RB, Winter MG, Spiga L, Hughes ER, Zhu W, Taylor SJ, et al. Epithelial-derived reactive oxygen species enable AppBCX-mediated aerobic respiration of Escherichia coli during intestinal inflammation. Cell Host Microbe. 2020;28(6):780–8.e5. https://doi.org/10.1016/j.chom.2020.09.005.
Article
CAS
PubMed
PubMed Central
Google Scholar
Miller BM, Liou MJ, Zhang LF, Nguyen H, Litvak Y, Schorr EM, et al. Anaerobic respiration of NOX1-derived hydrogen peroxide licenses bacterial growth at the colonic surface. Cell Host Microbe. 2020;28(6):789–97.e5. https://doi.org/10.1016/j.chom.2020.10.009.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cui XG, Han ZT, He SH, Wu XD, Chen TR, Shao CH, et al. HIF1/2alpha mediates hypoxia-induced LDHA expression in human pancreatic cancer cells. Oncotarget. 2017;8(15):24840–52. https://doi.org/10.18632/oncotarget.15266.
Article
PubMed
PubMed Central
Google Scholar
Wu Q, Liang X, Wang K, Lin J, Wang X, Wang P, et al. Intestinal hypoxia-inducible factor 2alpha regulates lactate levels to shape the gut microbiome and alter thermogenesis. Cell Metab. 2021;33(10):1988–2003.e7. https://doi.org/10.1016/j.cmet.2021.07.007.
Article
CAS
PubMed
Google Scholar
Curi R, Levada-Pires AC, Silva EBD, Poma SO, Zambonatto RF, Domenech P, et al. The critical role of cell metabolism for essential neutrophil functions. Cell Physiol Biochem. 2020;54(4):629–47. https://doi.org/10.33594/000000245.
Article
CAS
PubMed
Google Scholar
Loftus RM, Finlay DK. Immunometabolism: cellular metabolism turns immune regulator. J Biol Chem. 2016;291(1):1–10. https://doi.org/10.1074/jbc.R115.693903.
Article
CAS
PubMed
Google Scholar
Scheiman J, Luber JM, Chavkin TA, MacDonald T, Tung A, Pham LD, et al. Meta-omics analysis of elite athletes identifies a performance-enhancing microbe that functions via lactate metabolism. Nat Med. 2019;25(7):1104–9. https://doi.org/10.1038/s41591-019-0485-4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jansson J, Willing B, Lucio M, Fekete A, Dicksved J, Halfvarson J, et al. Metabolomics reveals metabolic biomarkers of Crohn’s disease. PLoS One. 2009;4(7):e6386. https://doi.org/10.1371/journal.pone.0006386.
Article
CAS
PubMed
PubMed Central
Google Scholar
Huda-Faujan N, Abdulamir AS, Fatimah AB, Anas OM, Shuhaimi M, Yazid AM, et al. The impact of the level of the intestinal short chain fatty acids in inflammatory bowel disease patients versus healthy subjects. Open Biochem J. 2010;4:53–8. https://doi.org/10.2174/1874091X01004010053.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bjerrum JT, Wang Y, Hao F, Coskun M, Ludwig C, Gunther U, et al. Metabonomics of human fecal extracts characterize ulcerative colitis, Crohn’s disease and healthy individuals. Metabolomics. 2015;11:122–33. https://doi.org/10.1007/s11306-014-0677-3.
Article
CAS
PubMed
Google Scholar
Hove H, Holtug K, Jeppesen PB, Mortensen PB. Butyrate absorption and lactate secretion in ulcerative colitis. Dis Colon Rectum. 1995;38(5):519–25. https://doi.org/10.1007/BF02148853.
Article
CAS
PubMed
Google Scholar
Montgomery RD, Frazer AC, Hood C, Goodhart JM, Holland MR, Schneider R. Studies of intestinal fermentation in ulcerative colitis. Gut. 1968;9(5):521–6. https://doi.org/10.1136/gut.9.5.521.
Article
CAS
PubMed
PubMed Central
Google Scholar
Vernia P, Caprilli R, Latella G, Barbetti F, Magliocca FM, Cittadini M. Fecal lactate and ulcerative colitis. Gastroenterology. 1988;95(6):1564–8. https://doi.org/10.1016/s0016-5085(88)80078-7.
Article
CAS
PubMed
Google Scholar
Vernia P, Gnaedinger A, Hauck W, Breuer RI. Organic anions and the diarrhea of inflammatory bowel disease. Dig Dis Sci. 1988;33(11):1353–8. https://doi.org/10.1007/BF01536987.
Article
CAS
PubMed
Google Scholar
Kaczmarczyk O, Dabek-Drobny A, Wozniakiewicz M, Pasko P, Dobrowolska-Iwanek J, Wozniakiewicz A, et al. Fecal levels of lactic, succinic and short-chain fatty acids in patients with ulcerative colitis and Crohn disease: a pilot study. J Clin Med. 2021;10(20). https://doi.org/10.3390/jcm10204701.
Hove H, Mortensen PB. Influence of intestinal inflammation (IBD) and small and large bowel length on fecal short-chain fatty acids and lactate. Dig Dis Sci. 1995;40(6):1372–80. https://doi.org/10.1007/BF02065554.
Article
CAS
PubMed
Google Scholar