Braniste V, Al-Asmakh M, Kowal C, Anuar F, Abbaspour A, Tóth M, et al. The gut microbiota influences blood-brain barrier permeability in mice. Sci Transl Med. 2014;6:263ra158.
Article
PubMed
PubMed Central
Google Scholar
Hoyles L, Snelling T, Umlai U-K, Nicholson JK, Carding SR, Glen RC, et al. Microbiome–host systems interactions: protective effects of propionate upon the blood–brain barrier. Microbiome. 2018;6(1):55. https://doi.org/10.1186/s40168-018-0439-y.
Article
PubMed
PubMed Central
Google Scholar
Tang WHW, Hazen SL. Microbiome, trimethylamine N-oxide, and cardiometabolic disease. Transl Res. 2017;179:108–15. https://doi.org/10.1016/j.trsl.2016.07.007.
Article
CAS
PubMed
Google Scholar
Dinicolantonio JJ, McCarty M, Okeefe J. Association of moderately elevated trimethylamine N-oxide with cardiovascular risk: is TMAO serving as a marker for hepatic insulin resistance. Open Heart. 2019;6(1):–e000890. https://doi.org/10.1136/openhrt-2018-000890.
Hoyles L, Jimenez-Pranteda ML, Chilloux J, Brial F, Myridakis A, Aranias T, et al. Metabolic retroconversion of trimethylamine N-oxide and the gut microbiota. Microbiome. 2018;6(1):73. https://doi.org/10.1186/s40168-018-0461-0.
Article
PubMed
PubMed Central
Google Scholar
Zeisel SH, Wishnok JS, Blusztajn JK. Formation of methylamines from ingested choline and lecithin. J Pharmacol Exp Ther. 1983;225:320–4.
CAS
PubMed
Google Scholar
Kühn T, Rohrmann S, Sookthai D, Johnson T, Katzke V, Kaaks R, et al. Intra-individual variation of plasma trimethylamine-N-oxide (TMAO), betaine and choline over 1 year. Clin Chem Lab Med. 2017;55(2):261–8. https://doi.org/10.1515/cclm-2016-0374.
Article
CAS
PubMed
Google Scholar
Duranton F, Cohen G, De Smet R, Rodriguez M, Jankowski J, Vanholder R, et al. Normal and pathologic concentrations of uremic toxins. J Am Soc Nephrol. 2012;23(7):1258–70. https://doi.org/10.1681/ASN.2011121175.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bain M, Faull R, Fornasini G, Milne R, Evans A. Accumulation of trimethylamine and trimethylamine-N-oxide in end-stage renal disease patients undergoing haemodialysis. Nephrol Dial Transplant. 2006;21(5):1300–4. https://doi.org/10.1093/ndt/gfk056.
Article
CAS
PubMed
Google Scholar
Tang WHW, Wang Z, Levison BS, Koeth RA, Britt EB, Fu X, et al. Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk. N Engl J Med. 2013;368(17):1575–84. https://doi.org/10.1056/NEJMoa1109400.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tang WHW, Wang Z, Fan Y, Levison B, Hazen JE, Donahue LM, et al. Prognostic value of elevated levels of intestinal microbe-generated metabolite trimethylamine-N-oxide in patients with heart failure: refining the gut hypothesis. J Am Coll Cardiol. 2014;64(18):1908–14. https://doi.org/10.1016/j.jacc.2014.02.617.
Article
CAS
PubMed
Google Scholar
Wang Z, Roberts AB, Buffa JA, Levison BS, Zhu W, Org E, et al. Non-lethal inhibition of gut microbial trimethylamine production for the treatment of atherosclerosis. Cell. 2015;163(7):1585–95. https://doi.org/10.1016/j.cell.2015.11.055.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhu W, Gregory JC, Org E, Buffa JA, Gupta N, Wang Z, et al. Gut microbial metabolite TMAO enhances platelet hyperreactivity and thrombosis risk. Cell. 2016;165(1):111–24. https://doi.org/10.1016/j.cell.2016.02.011.
Article
CAS
PubMed
PubMed Central
Google Scholar
Aldana-Hernández P, Leonard K-A, Zhao Y-Y, Curtis JM, Field CJ, Jacobs RL. Dietary choline or trimethylamine N-oxide supplementation does not influence atherosclerosis development in Ldlr−/− and Apoe−/− Male Mice. J Nutr. 2019. https://doi.org/10.1093/jn/nxz214.
Miller CA, Corbin KD, da Costa K-A, Zhang S, Zhao X, Galanko JA, et al. Effect of egg ingestion on trimethylamine-N-oxide production in humans: a randomized, controlled, dose-response study. Am J Clin Nutr. 2014;100(3):778–86. https://doi.org/10.3945/ajcn.114.087692.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jia J, Dou P, Gao M, Kong X, Li C, Liu Z, et al. Assessment of causal direction between gut microbiota-dependent metabolites and cardiometabolic health: a bi-directional Mendelian randomisation analysis. Diabetes. 2019;68(9):1747–55. https://doi.org/10.2337/db19-0153.
Article
CAS
PubMed
Google Scholar
Winther SA, Ollgaard JC, Tofte N, Tarnow L, Wang Z, Ahluwalia TS, et al. Utility of Plasma concentration of trimethylamine N-oxide in predicting cardiovascular and renal complications in individuals with type 1 diabetes. Diabetes Care. 2019;42(8):1512–20. https://doi.org/10.2337/dc19-0048.
Article
CAS
PubMed
PubMed Central
Google Scholar
Huc T, Drapala A, Gawrys M, Konop M, Bielinska K, Zaorska E, et al. Chronic, low-dose TMAO treatment reduces diastolic dysfunction and heart fibrosis in hypertensive rats. Am J Physiol. 2018;315(6):H1805–20. https://doi.org/10.1152/ajpheart.00536.2018.
Article
CAS
Google Scholar
Collins HL, Drazul-Schrader D, Sulpizio AC, Koster PD, Williamson Y, Adelman SJ, et al. L-Carnitine intake and high trimethylamine N-oxide plasma levels correlate with low aortic lesions in ApoE−/− transgenic mice expressing CETP. Atherosclerosis. 2016;244:29–37. https://doi.org/10.1016/j.atherosclerosis.2015.10.108.
Article
CAS
PubMed
Google Scholar
Zhao Z-H, Xin F-Z, Zhou D, Xue Y-Q, Liu X-L, Yang R-X, et al. Trimethylamine N-oxide attenuates high-fat high-cholesterol diet-induced steatohepatitis by reducing hepatic cholesterol overload in rats. World J Gastroenterol. 2019;25(20):2450–62. https://doi.org/10.3748/wjg.v25.i20.2450.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dumas M-E, Rothwell AR, Hoyles L, Aranias T, Chilloux J, Calderari S, et al. Microbial-host co-metabolites are prodromal markers predicting phenotypic heterogeneity in behavior, obesity, and impaired glucose tolerance. Cell Rep. 2017;20(1):136–48. https://doi.org/10.1016/j.celrep.2017.06.039.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jaworska K, Bielinska K, Gawrys-Kopczynska M, Ufnal M. TMA (trimethylamine), but not its oxide TMAO (trimethylamine-oxide), exerts haemodynamic effects: implications for interpretation of cardiovascular actions of gut microbiome. Cardiovasc Res. 2019;115(14):1948–9. https://doi.org/10.1093/cvr/cvz231.
Article
CAS
PubMed
Google Scholar
Huo X, Li J, Cao Y-F, Li S-N, Shao P, Leng J, et al. Trimethylamine N-oxide metabolites in early pregnancy and risk of gestational diabetes: a nested case-control study. J Clin Endocrinol Metab. 2019;104(11):5529–39. https://doi.org/10.1210/jc.2019-00710.
Article
PubMed
PubMed Central
Google Scholar
Poly C, Massaro JM, Seshadri S, Wolf PA, Cho E, Krall E, et al. The relation of dietary choline to cognitive performance and white-matter hyperintensity in the Framingham Offspring Cohort. Am J Clin Nutr. 2011;94(6):1584–91. https://doi.org/10.3945/ajcn.110.008938.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nurk E, Refsum H, Bjelland I, Drevon CA, Tell GS, Ueland PM, et al. Plasma free choline, betaine and cognitive performance: the Hordaland Health Study. Br J Nutr. 2013;109(3):511–9. https://doi.org/10.1017/S0007114512001249.
Article
CAS
PubMed
Google Scholar
Leathwood PD, Heck E, Mauron J. Phosphatidyl choline and avoidance performance in 17 month-old SEC/1ReJ mice. Life Sci. 1982;30(13):1065–71. https://doi.org/10.1016/0024-3205(82)90526-4.
Article
CAS
PubMed
Google Scholar
Bartus RT, Dean RL, Goas JA, Lippa AS. Age-related changes in passive avoidance retention: modulation with dietary choline. Science. 1980;209(4453):301–3. https://doi.org/10.1126/science.7384805.
Article
CAS
PubMed
Google Scholar
Vogt NM, Romano KA, Darst BF, Engelman CD, Johnson SC, Carlsson CM, et al. The gut microbiota-derived metabolite trimethylamine N-oxide is elevated in Alzheimer’s disease. Alzheimers Res Ther. 2018;10(1):124. https://doi.org/10.1186/s13195-018-0451-2.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gao Q, Wang Y, Wang X, Fu S, Zhang X, Wang RT, et al. Decreased levels of circulating trimethylamine N-oxide alleviate cognitive and pathological deterioration in transgenic mice: a potential therapeutic approach for Alzheimer’s disease. Aging. 2019;11(19):8642–63. https://doi.org/10.18632/aging.102352.
Article
CAS
PubMed
PubMed Central
Google Scholar
Weksler BB, Subileau EA, Perrière N, Charneau P, Holloway K, Leveque M, et al. Blood-brain barrier-specific properties of a human adult brain endothelial cell line. FASEB J. 2005;19(13):1872–4. https://doi.org/10.1096/fj.04-3458fje.
Article
CAS
PubMed
Google Scholar
Maggioli E, McArthur S, Mauro C, Kieswich J, Kusters DHM, Reutelingsperger CPM, et al. Estrogen protects the blood-brain barrier from inflammation-induced disruption and increased lymphocyte trafficking. Brain Behav Immun. 2015;51:212–22. https://doi.org/10.1016/j.bbi.2015.08.020.
Article
CAS
PubMed
Google Scholar
Abbott NJ, Hughes CC, Revest PA, Greenwood J. Development and characterisation of a rat brain capillary endothelial culture: towards an in vitro blood-brain barrier. J Cell Sci. 1992;103(Pt 1):23–37.
Article
CAS
PubMed
Google Scholar
Coisne C, Dehouck L, Faveeuw C, Delplace Y, Miller F, Landry C, et al. Mouse syngenic in vitro blood-brain barrier model: a new tool to examine inflammatory events in cerebral endothelium. Lab Investig J Tech Methods Pathol. 2005;85(6):734–46. https://doi.org/10.1038/labinvest.3700281.
Article
CAS
Google Scholar
Pais de Barros J-P, Gautier T, Sali W, Adrie C, Choubley H, Charron E, et al. Quantitative lipopolysaccharide analysis using HPLC/MS/MS and its combination with the limulus amebocyte lysate assay. J Lipid Res. 2015, 56:1363–9.
Gautier L, Cope L, Bolstad BM, Irizarry RA. affy--analysis of Affymetrix GeneChip data at the probe level. Bioinforma. 2004;20(3):307–15. https://doi.org/10.1093/bioinformatics/btg405.
Article
CAS
Google Scholar
Chen EY, Tan CM, Kou Y, Duan Q, Wang Z, Meirelles GV, et al. Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool. BMC Bioinformatics. 2013;14(1):128. https://doi.org/10.1186/1471-2105-14-128.
Article
PubMed
PubMed Central
Google Scholar
Kuleshov MV, Jones MR, Rouillard AD, Fernandez NF, Duan Q, Wang Z, et al. Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res. 2016;44(W1):W90–7. https://doi.org/10.1093/nar/gkw377.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tarca AL, Draghici S, Khatri P, Hassan SS, Mittal P, Kim J-S, et al. A novel signaling pathway impact analysis. Bioinforma. 2009;25(1):75–82. https://doi.org/10.1093/bioinformatics/btn577.
Article
CAS
Google Scholar
Hoyles L, Fernández-Real J-M, Federici M, Serino M, Abbott J, Charpentier J, et al. Molecular phenomics and metagenomics of hepatic steatosis in non-diabetic obese women. Nat Med. 2018;24(7):1070–80. https://doi.org/10.1038/s41591-018-0061-3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang JD, Wiemann S. KEGGgraph: a graph approach to KEGG PATHWAY in R and bioconductor. Bioinforma. 2009;25(11):1470–1. https://doi.org/10.1093/bioinformatics/btp167.
Article
CAS
Google Scholar
McArthur S, Cristante E, Paterno M, Christian H, Roncaroli F, Gillies GEE, et al. Annexin A1: a central player in the anti-inflammatory and neuroprotective role of microglia. J Immunol. 2010;185(10):6317–28. https://doi.org/10.4049/jimmunol.1001095.
Article
CAS
PubMed
Google Scholar
Wishart DS, Feunang YD, Marcu A, Guo AC, Liang K, Vázquez-Fresno R, et al. HMDB 4.0: the human metabolome database for 2018. Nucleic Acids Res. 2018;46(D1):D608–17. https://doi.org/10.1093/nar/gkx1089.
Article
CAS
PubMed
Google Scholar
Marottoli FM, Katsumata Y, Koster KP, Thomas R, Fardo DW, Tai LM. Peripheral inflammation, apolipoprotein E4, and amyloid-β Interact to induce cognitive and cerebrovascular dysfunction. ASN Neuro. 2017;9:1759091417719201.
Article
PubMed
PubMed Central
Google Scholar
Kim D, Langmead B, Salzberg SL. HISAT: a fast spliced aligner with low memory requirements. Nat Methods. 2015;12(4):357–60. https://doi.org/10.1038/nmeth.3317.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liao Y, Smyth GK, Shi W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinforma. 2014;30(7):923–30. https://doi.org/10.1093/bioinformatics/btt656.
Article
CAS
Google Scholar
Hölter SM, Einicke J, Sperling B, Zimprich A, Garrett L, Fuchs H, et al. Tests for Anxiety-Related Behavior in Mice. Curr Protoc Mouse Biol. 2015;5(4):291–309. https://doi.org/10.1002/9780470942390.mo150010.
Article
PubMed
Google Scholar
Davis KE, Eacott MJ, Easton A, Gigg J. Episodic-like memory is sensitive to both Alzheimer’s-like pathological accumulation and normal ageing processes in mice. Behav Brain Res. 2013;254:73–82. https://doi.org/10.1016/j.bbr.2013.03.009.
Article
PubMed
Google Scholar
Leger M, Quiedeville A, Bouet V, Haelewyn B, Boulouard M, Schumann-Bard P, et al. Object recognition test in mice. Nat Protoc. 2013;8(12):2531–7. https://doi.org/10.1038/nprot.2013.155.
Article
CAS
PubMed
Google Scholar
Denninger JK, Smith BM, Kirby ED. Novel object recognition and object location behavioral testing in mice on a budget. J Vis Exp. 2018;(141). https://doi.org/10.3791/58593.
Thomas R, Morris AWJ, Tai LM. Epidermal growth factor prevents APOE4-induced cognitive and cerebrovascular deficits in female mice. Heliyon. 2017;3(6):e00319. https://doi.org/10.1016/j.heliyon.2017.e00319.
Article
PubMed
PubMed Central
Google Scholar
Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43(7):e47. https://doi.org/10.1093/nar/gkv007.
Article
CAS
PubMed
PubMed Central
Google Scholar
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15(12):550. https://doi.org/10.1186/s13059-014-0550-8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lochhead JJ, Yang J, Ronaldson PT, Davis TP. Structure, function, and regulation of the blood-brain barrier tight junction in central nervous system disorders. Front Physiol. 2020;11:914. https://doi.org/10.3389/fphys.2020.00914.
Article
PubMed
PubMed Central
Google Scholar
Cristante E, McArthur S, Mauro C, Maggioli E, Romero IAIA, Wylezinska-Arridge M, et al. Identification of an essential endogenous regulator of blood-brain barrier integrity, and its pathological and therapeutic implications. Proc Natl Acad Sci U S A. 110:832–41.
McArthur S, Yazid S, Christian H, Sirha R, Flower R, Buckingham J, et al. Annexin A1 regulates hormone exocytosis through a mechanism involving actin reorganization. FASEB J. 2009;23(11):4000–10. https://doi.org/10.1096/fj.09-131391.
Article
CAS
PubMed
Google Scholar
Bena S, Brancaleone V, Wang JM, Perretti M, Flower RJ. Annexin A1 interaction with the FPR2/ALX receptor: identification of distinct domains and downstream associated signaling. J Biol Chem. 2012;287(29):24690–7. https://doi.org/10.1074/jbc.M112.377101.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cho CE, Taesuwan S, Malysheva OV, Bender E, Tulchinsky NF, Yan J, et al. Trimethylamine-N-oxide (TMAO) response to animal source foods varies among healthy young men and is influenced by their gut microbiota composition: A randomized controlled trial. Mol Nutr Food Res. 2017;61(1):1600324. https://doi.org/10.1002/mnfr.201600324.
Article
CAS
Google Scholar
Trigiani LJ, Bourourou M, Lacalle-Aurioles M, Lecrux C, Hynes A, Spring S, et al. A functional cerebral endothelium is necessary to protect against cognitive decline. J Cereb Blood Flow Metab. 2021. https://doi.org/10.1177/0271678X211045438.
Cohen SJ, Stackman RW. Assessing rodent hippocampal involvement in the novel object recognition task. A review. Behav Brain Res. 2015;285:105–17. https://doi.org/10.1016/j.bbr.2014.08.002.
Article
PubMed
Google Scholar
Wilson DIG, Langston RF, Schlesiger MI, Wagner M, Watanabe S, Ainge JA. Lateral entorhinal cortex is critical for novel object-context recognition. Hippocampus. 2013;23(5):352–66. https://doi.org/10.1002/hipo.22095.
Article
PubMed
PubMed Central
Google Scholar
Merino JG, Latour LL, Tso A, Lee KY, Kang DW, Davis LA, et al. Blood-brain barrier disruption after cardiac surgery. Am J Neuroradiol. 2013;34(3):518–23. https://doi.org/10.3174/ajnr.A3251.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hu N, Guo D, Wang H, Xie K, Wang C, Li Y, et al. Involvement of the blood-brain barrier opening in cognitive decline in aged rats following orthopedic surgery and high concentration of sevoflurane inhalation. Brain Res. 2014;1551:13–24. https://doi.org/10.1016/j.brainres.2014.01.015.
Article
CAS
PubMed
Google Scholar
Abrahamov D, Levran O, Naparstek S, Refaeli Y, Kaptson S, Abu Salah M, et al. Blood-brain barrier disruption after cardiopulmonary bypass: diagnosis and correlation to cognition. Ann Thorac Surg. 2017;104(1):161–9. https://doi.org/10.1016/j.athoracsur.2016.10.043.
Article
PubMed
Google Scholar
Yang S, Gu C, Mandeville ET, Dong Y, Esposito E, Zhang Y, et al. Anesthesia and surgery impair blood-brain barrier and cognitive function in mice. Front Immunol. 2017;8:902. https://doi.org/10.3389/fimmu.2017.00902.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zenaro E, Piacentino G, Constantin G. The blood-brain barrier in Alzheimer’s disease. Neurobiol Dis. 2016;107:41–56. https://doi.org/10.1016/j.nbd.2016.07.007.
Article
CAS
PubMed
Google Scholar
Brunt VE, LaRocca TJ, Bazzoni AE, Sapinsley ZJ, Miyamoto-Ditmon J, Gioscia-Ryan RA, et al. The gut microbiome-derived metabolite trimethylamine N-oxide modulates neuroinflammation and cognitive function with aging. GeroScience. 2021;43(1):377–94. https://doi.org/10.1007/s11357-020-00257-2.
Article
CAS
PubMed
Google Scholar
Su H, Fan S, Zhang L, Qi H. TMAO aggregates neurological damage following ischemic stroke by promoting reactive astrocytosis and glial scar formation via the Smurf2/ALK5 axis. Front Cell Neurosci. 2021;15:569424. https://doi.org/10.3389/fncel.2021.569424.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhao L, Zhang C, Cao G, Dong X, Li D, Jiang L. Higher circulating trimethylamine N-oxide sensitizes sevoflurane-induced cognitive dysfunction in aged rats probably by downregulating hippocampal methionine sulfoxide reductase A. Neurochem Res. 2019;44(11):2506–16. https://doi.org/10.1007/s11064-019-02868-4.
Article
CAS
PubMed
Google Scholar
Meng F, Li N, Li D, Song B, Li L. The presence of elevated circulating trimethylamine N-oxide exaggerates postoperative cognitive dysfunction in aged rats. Behav Brain Res. 2019;368:–111902. https://doi.org/10.1016/j.bbr.2019.111902.
Frías-Anaya E, Gromnicova R, Kraev I, Rogachevsky V, Male DK, Crea F, et al. Age-related ultrastructural neurovascular changes in the female mouse cortex and hippocampus. Neurobiol Aging. 2021;101:273–84. https://doi.org/10.1016/j.neurobiolaging.2020.12.008.
Article
CAS
PubMed
Google Scholar
Schaffenrath J, Huang S-F, Wyss T, Delorenzi M, Keller A. Characterization of the blood-brain barrier in genetically diverse laboratory mouse strains. Fluids Barriers CNS. 2021;18(1):34. https://doi.org/10.1186/s12987-021-00269-w.
Article
CAS
PubMed
PubMed Central
Google Scholar
He W, Luo Y, Liu J-P, Sun N, Guo D, Cui L-L, et al. Trimethylamine N-oxide, a gut microbiota-dependent metabolite, is associated with frailty in older adults with cardiovascular disease. Clin Interv Aging. 2020;15:1809–20. https://doi.org/10.2147/CIA.S270887.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhu C, Li G, Lv Z, Li J, Wang X, Kang J, et al. Association of plasma trimethylamine-N-oxide levels with post-stroke cognitive impairment: a 1-year longitudinal study. Neurol Sci. 2020;41(1):57–63. https://doi.org/10.1007/s10072-019-04040-w.
Article
PubMed
Google Scholar
Sanguinetti E, Collado MC, Marrachelli VG, Monleon D, Selma-Royo M, Pardo-Tendero MM, et al. Microbiome-metabolome signatures in mice genetically prone to develop dementia, fed a normal or fatty diet. Sci Rep. 2018;8(1):4907. https://doi.org/10.1038/s41598-018-23261-1.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu J, Zhang T, Wang Y, Si C, Wang X, Wang R-T, et al. Baicalin ameliorates neuropathology in repeated cerebral ischemia-reperfusion injury model mice by remodeling the gut microbiota. Aging. 2020;12(4):3791–806. https://doi.org/10.18632/aging.102846.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang Q-J, Shen Y-E, Wang X, Fu S, Zhang X, Zhang Y-N, et al. Concomitant memantine and Lactobacillus plantarum treatment attenuates cognitive impairments in APP/PS1 mice. Aging. 2020;12(1):628–49. https://doi.org/10.18632/aging.102645.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sawicka AK, Renzi G, Olek RA. The bright and the dark sides of L-carnitine supplementation: a systematic review. J Int Soc Sports Nutr. 2020;17(1):49. https://doi.org/10.1186/s12970-020-00377-2.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chung SJ, Rim JH, Ji D, Lee S, Yoo HS, Jung JH, et al. Gut microbiota-derived metabolite trimethylamine N-oxide as a biomarker in early Parkinson’s disease. Nutr. 2020;83:111090. https://doi.org/10.1016/j.nut.2020.111090.
Article
CAS
Google Scholar
Zhuang Z, Gao M, Yang R, Liu Z, Cao W, Huang T. Causal relationships between gut metabolites and Alzheimer’s disease: a bidirectional Mendelian randomization study. Neurobiol Aging. 2020.
Li D, Ke Y, Zhan R, Liu C, Zhao M, Zeng A, et al. Trimethylamine-N-oxide promotes brain aging and cognitive impairment in mice. Aging Cell. 2018;17(4):e12768. https://doi.org/10.1111/acel.12768.
Article
CAS
PubMed
PubMed Central
Google Scholar
Papandreou C, Moré M, Bellamine A. Trimethylamine N-oxide in relation to cardiometabolic health-cause or effect? Nutrients. 2020;12(5). https://doi.org/10.3390/nu12051330.
Zeisel SH. Dietary choline: biochemistry, physiology, and pharmacology. Annu Rev Nutr. 1981;1(1):95–121. https://doi.org/10.1146/annurev.nu.01.070181.000523.
Article
CAS
PubMed
Google Scholar
Lundstrom RC, Racicot LD. Gas chromatographic determination of dimethylamine and trimethylamine in seafoods. J Assoc Off Anal Chem. 1983;66:1158–63.
CAS
PubMed
Google Scholar
Zeng L-F, Cao Y, Liang W-X, Bao W-H, Pan J-K, Wang Q, et al. An exploration of the role of a fish-oriented diet in cognitive decline: a systematic review of the literature. Oncotarget. 2017;8(24):39877–95. https://doi.org/10.18632/oncotarget.16347.
Article
PubMed
PubMed Central
Google Scholar
Keenan TD, Agrón E, Mares JA, Clemons TE, van Asten F, Swaroop A, et al. Adherence to a Mediterranean diet and cognitive function in the Age-Related Eye Disease Studies 1 & 2. Alzheimers Dement. 2020;16(6):831–42. https://doi.org/10.1002/alz.12077.
Article
PubMed
PubMed Central
Google Scholar
Zhao W, Tang H, Yang X, Luo X, Wang X, Shao C, et al. Fish consumption and stroke risk: a meta-analysis of prospective cohort studies. J Stroke Cerebrovasc Dis. 2019;28(3):604–11. https://doi.org/10.1016/j.jstrokecerebrovasdis.2018.10.036.
Article
PubMed
Google Scholar
Zhang Y, Chen J, Qiu J, Li Y, Wang J, Jiao J. Intakes of fish and polyunsaturated fatty acids and mild-to-severe cognitive impairment risks: a dose-response meta-analysis of 21 cohort studies. Am J Clin Nutr. 2016;103(2):330–40. https://doi.org/10.3945/ajcn.115.124081.
Article
CAS
PubMed
Google Scholar
Cooper RE, Tye C, Kuntsi J, Vassos E, Asherson P. Omega-3 polyunsaturated fatty acid supplementation and cognition: a systematic review and meta-analysis. J Psychopharmacol. 2015;29(7):753–63. https://doi.org/10.1177/0269881115587958.
Article
CAS
PubMed
Google Scholar
Abdelhamid AS, Brown TJ, Brainard JS, Biswas P, Thorpe GC, Moore HJ, et al. Omega-3 fatty acids for the primary and secondary prevention of cardiovascular disease. Cochrane Database Syst Rev. 2018;11:CD003177. https://doi.org/10.1002/14651858.CD003177.pub3.
Article
PubMed
Google Scholar
Wall R, Ross RP, Fitzgerald GF, Stanton C. Fatty acids from fish: the anti-inflammatory potential of long-chain omega-3 fatty acids. Nutr Rev. 2010;68(5):280–9. https://doi.org/10.1111/j.1753-4887.2010.00287.x.
Article
PubMed
Google Scholar
Singh AK, Jiang Y. How does peripheral lipopolysaccharide induce gene expression in the brain of rats? Toxicology. 2004;201(1-3):197–207. https://doi.org/10.1016/j.tox.2004.04.015.
Article
CAS
PubMed
Google Scholar
Banks WA, Erickson MA. The blood-brain barrier and immune function and dysfunction. Neurobiol Dis. 2010;37(1):26–32. https://doi.org/10.1016/j.nbd.2009.07.031.
Article
CAS
PubMed
Google Scholar
Gobbetti T, Cooray SN. Annexin A1 and resolution of inflammation: tissue repairing properties and signalling signature. Biol Chem. 2016;397(10):981–93. https://doi.org/10.1515/hsz-2016-0200.
Article
CAS
PubMed
Google Scholar
Nicholson JK, Holmes E, Kinross J, Burcelin R, Gibson G, Jia W, et al. Host-gut microbiota metabolic interactions. Science. 2012;336(6086):1262–7. https://doi.org/10.1126/science.1223813.
Article
CAS
PubMed
Google Scholar
Needham BD, Kaddurah-Daouk R, Mazmanian SK. Gut microbial molecules in behavioural and neurodegenerative conditions. Nat Rev Neurosci. 2020;21(12):717–31. https://doi.org/10.1038/s41583-020-00381-0.
Article
CAS
PubMed
Google Scholar