Marschner B. Mineral nutrition in higher plants. 2nd ed. London: Academic Press; 1995.
Google Scholar
Haichar FEZ, Marol C, Berge O, Rangel-Castro JI, Prosser JI, Balesdent J, et al. Plant host habitat and root exudates shape soil bacterial community structure. ISME J. 2008;2:1221–30.
CAS
PubMed
Google Scholar
Dennis PG, Miller AJ, Hirsch PR. Are root exudates more important than other sources of rhizodeposits in structuring rhizosphere bacterial communities? FEMS Microbiol Ecol. 2010;72:313–27.
CAS
PubMed
Google Scholar
Steeghs M, Bais HP, De Gouw J, Goldan P, Kuster W, Northway M, et al. Proton-transfer-reaction mass spectrometry as a new tool for real time analysis of root-secreted volatile organic compounds in Arabidopsis 1. Plant Physiol. 2004;135:47–58.
CAS
PubMed
PubMed Central
Google Scholar
Galbally IE, Kirstine W. The production of methanol by flowering plants and the global cycle of methanol. J Atmos Chem. 2002;43:195–229.
CAS
Google Scholar
Oikawa PY, Giebel BM, Sternberg LDSLO, Li L, Timko MP, Swart PK, et al. Leaf and root pectin methylesterase activity and 13C/12C stable isotopic ratio measurements of methanol emissions give insight into methanol production in Lycopersicon esculentum. New Phytol. 2011;191:1031–40.
CAS
PubMed
Google Scholar
Kolb S. Aerobic methanol-oxidizing bacteria in soil. FEMS Microbiol Lett. 2009;300:1–10.
CAS
PubMed
Google Scholar
Mcdonald IR, Murrell JC. The methanol dehydrogenase structural gene mxaF and its use as a functional gene probe for methanotrophs and methylotrophs. Appl Environ Microbiol. 1997;63:3218–24.
CAS
PubMed
PubMed Central
Google Scholar
Neufeld JD, Chen Y, Dumont MG, Murrell JC. Marine methylotrophs revealed by stable-isotope probing, multiple displacement amplification and metagenomics. Environ Microbiol. 2008;10:1526–35.
CAS
PubMed
Google Scholar
Radajewski S, Ineson P, Parekh NR, Murrell JC. Stable-isotope probing as a tool in microbial ecology. Nature. 2000;403:646–9.
CAS
PubMed
Google Scholar
Madhaiyan M, Poonguzhali S, Lee J-S, Lee KC, Sundaram S. Flavobacterium glycines sp. nov., a facultative methylotroph isolated from the rhizosphere of soybean. Int J Syst Evol Microbiol. 2010;60:2187–92.
CAS
PubMed
Google Scholar
Lundberg DS, Lebeis SL, Paredes SH, Yourstone S, Gehring J, Malfatti S, et al. Defining the core Arabidopsis thaliana root microbiome. Nature. 2012;488:86–90.
CAS
PubMed
PubMed Central
Google Scholar
Turner TR, Ramakrishnan K, Walshaw J, Heavens D, Alston M, Swarbreck D, et al. Comparative metatranscriptomics reveals kingdom level changes in the rhizosphere microbiome of plants. ISME J. 2013;7:2248–58.
CAS
PubMed
PubMed Central
Google Scholar
Knief C, Delmotte N, Chaffron S, Stark M, Innerebner G, Wassmann R, et al. Metaproteogenomic analysis of microbial communities in the phyllosphere and rhizosphere of rice. ISME J. 2012;6:1378–90.
CAS
PubMed
Google Scholar
Tsurumaru H. Metagenomic analysis of the bacterial community associated with the taproot of sugar beet. Microbes Environ. 2015;30:63–9.
PubMed
PubMed Central
Google Scholar
Butterfield CN, Li Z, Andeer PF, Spaulding S, Thomas BC, Singh A, et al. Proteogenomic analyses indicate bacterial methylotrophy and archaeal heterotrophy are prevalent below the grass root zone. PeerJ. 2016:1–28.
Li Z, Yao Q, Guo X, Crits-Christoph A, Mayes MA, Hervey WJ IV, et al. Genome-resolved proteomic stable isotope probing of soil microbial communities using 13CO2 and 13C-methanol. Front Microbiol. 2019;10:2706.
PubMed
PubMed Central
Google Scholar
Stacheter A, Noll M, Lee CK, Selzer M, Glowik B, Ebertsch L, et al. Methanol oxidation by temperate soils and environmental determinants of associated methylotrophs. ISME J. 2013;7:1051–64.
CAS
PubMed
Google Scholar
Kuzyakov Y, Domanski G. Carbon input by plants into the soil. Rev J Plant Nutr Soil Sci. 2000;163:421–31.
CAS
Google Scholar
Morris CJ, Biville F, Turlin E, Lee E, Ellermann K, Fan WH, et al. Isolation, phenotypic characterization, and complementation analysis of mutants of Methylobacterium extorquens AM1 unable to synthesize pyrroloquinoline quinone and sequences of pqqD, pqqG, and pqqC. J Bacteriol. 1994;176:1746–55.
CAS
PubMed
PubMed Central
Google Scholar
Anthony C, Williams P. The structure and mechanism of methanol dehydrogenase. Biochim Biophys Acta. 1647;2003:18–23.
Google Scholar
Zhang M. Promoters and transcripts for genes involved in methanol oxidation in Methylobacterium extorquens AM1. Microbiology. 2003;149:1033–40.
CAS
PubMed
Google Scholar
Keltjens JT, Pol A, Reimann J. PQQ-dependent methanol dehydrogenases: rare-earth elements make a difference. Appl Microbiol Biotechnol. 2014;98:6163–83.
CAS
PubMed
Google Scholar
Chistoserdova L. Modularity of methylotrophy, revisited. Environ Microbiol. 2011;13:2603–22.
CAS
PubMed
Google Scholar
Kalyuzhnaya MG, Hristova KR, Lidstrom ME, Chistoserdova L. Characterization of a novel methanol dehydrogenase in representatives of Burkholderiales: implications for environmental detection of methylotrophy and evidence for convergent evolution. J Bacteriol. 2008;190:3817–23.
CAS
PubMed
PubMed Central
Google Scholar
Morawe M, Hoeke H, Wissenbach DK, Lentendu G, Wubet T, Kröber E, et al. Acidotolerant bacteria and fungi as a sink of methanol-derived carbon in a deciduous forest soil. Front Microbiol. 2017;8:1–18.
Google Scholar
Horz H-P, Tchawa Y, Liesack W. Detection of methanotroph diversity on roots of submerged rice plants by molecular retrieval of pmoA, mmoX, mxaF, and 16S rRNA and ribosomal DNA, including pmoA-based terminal restriction fragment length polymorphism profiling. Appl Environ Microbiol. 2001;67:67–72.
Google Scholar
Taubert M, Grob C, Howat AM, Burns OJ, Dixon JL, Chen Y, et al. XoxF encoding an alternative methanol dehydrogenase is widespread in coastal marine environments. Environ Microbiol. 2015;17:3937–48.
CAS
PubMed
Google Scholar
Griffiths RI, Manefield M, Ostle N, McNamara N, O’Donnell AG, Bailey MJ, et al. 13CO2 pulse labelling of plants in tandem with stable isotope probing: methodological considerations for examining microbial function in the rhizosphere. J Microbiol Methods. 2004;58:119–29.
CAS
PubMed
Google Scholar
Iguchi H, Yurimoto H, Sakai Y. Interactions of methylotrophs with plants and other heterotrophic bacteria. Microorganisms. 2015;3:137–51.
CAS
PubMed
PubMed Central
Google Scholar
Kalyuzhnaya MG, De Marco P, Bowerman S, Pacheco CC, Lara JC, Lidstrom ME, et al. Methyloversatilis universalis gen. nov., sp. nov., a novel taxon within the Betaproteobacteria represented by three methylotrophic isolates. Int J Syst Evol Microbiol. 2006;56:2517–22.
CAS
PubMed
Google Scholar
Ciencias D, Universitaria C. Culturable facultative methylotrophic bacteria from the cactus Neobuxbaumia macrocephala possess the locus xoxF and consume methanol in the presence of Ce3+ and Ca2+. Microbes Environ. 2017;32:244–51.
Google Scholar
Quayle JR, Pfennig N. Utilization of methanol by Rhodospirillaceae. Arch Microbiol. 1975;102:193–8.
CAS
PubMed
Google Scholar
Moore RL. The biology of Hyphomicrobium and other prosthecate, budding bacteria. Annu Rev Microbiol. 1981:567–94.
Sennett SH, Pomponi SA, Willenz P, Mccarthy PJ. Identification of the bacterial symbiont Entotheonella sp. in the mesohyl of the marine sponge Discodermia sp. ISME J. 2008;4206:335–9.
Google Scholar
Wilson MC, Mori T, Rückert C, Uria AR, Helf MJ, Takada K, et al. An environmental bacterial taxon with a large and distinct metabolic repertoire. Nature. 2014;506:58–62.
CAS
PubMed
Google Scholar
Dziewit L, Czarnecki J, Prochwicz E, Wibberg D, Schulter A, Puhler A, et al. Genome-guided insight into the methylotrophy of Paracoccus aminophilus JCM 7686. Front Microbiol. 2015;6:1–13.
Google Scholar
Fitriyanto NA, Fushimi M, Matsunaga M, Pertiwiningrum A, Iwama T, Kawai K. Molecular structure and gene analysis of Ce3+-induced methanol dehydrogenase of Bradyrhizobium sp. MAFF211645. J Biosci Bioeng. 2011;111:613–7.
CAS
PubMed
Google Scholar
Huang J, Yu Z, Chistoserdova L. Lanthanide-dependent methanol dehydrogenases of XoxF4 and XoxF5 clades are differentially distributed among methylotrophic bacteria and they reveal different biochemical properties. Front Microbiol. 2018;9:1–13.
Google Scholar
Sutherland IW. Polysaccharides produced by Cystobactev, Archangium, Sorangium and Stigmatella species. J Gen Appl Microbiol. 1978:1–5.
Cho JC, Vergin KL, Morris RM, Giovannoni SJ. Lentisphaera araneosa gen. nov., sp. nov, a transparent exopolymer producing marine bacterium, and the description of a novel bacterial phylum, Lentisphaerae. Environ Microbiol. 2004;6:611–21.
CAS
PubMed
Google Scholar
Chin KJ, Liesack W, Janssen PH. Opitutus terrae gen. nov., sp. nov., to accommodate novel strains of the division “Verrucomicrobia” isolated from rice paddy soil. Int J Syst Evol Microbiol. 2001;51:1965–8.
CAS
PubMed
Google Scholar
Segata N, Waldron L, Ballarini A, Narasimhan V, Jousson O, Huttenhower C. Metagenomic microbial community profiling using unique clade- specific marker genes. Nat Methods. 2012:1–7.
Bowers RM, Kyrpides NC, Stepanauskas R, Harmon-smith M, Doud D, Jarett J, et al. Minimum information about a single amplified genome (MISAG) and a metagenome-assembled genome (MIMAG) of bacteria and archaea. Nat Biotechnol. 2017;35:725–31.
CAS
PubMed
PubMed Central
Google Scholar
Marx CJ, Chistoserdova L, Lidstrom ME. Formaldehyde-detoxifying role of the tetrahydromethanopterin-linked pathway in Methylobacterium extorquens AM1. J Bacteriol. 2003;185:7160–8.
CAS
PubMed
PubMed Central
Google Scholar
Chen Y, McAleer KL, Colin MJ. Monomethylamine as a nitrogen source for a nonmethylotrophic bacterium, Agrobacterium tumefaciens. Appl Environ Microbiol. 2010;76:4102–4.
CAS
PubMed
PubMed Central
Google Scholar
Chistoserdova L, Crowther GJ, Vorholt JA, Skovran E, Portais J, Lidstrom ME. Identification of a fourth formate dehydrogenase in Methylobacterium extorquens AM1 and confirmation of the essential role of formate oxidation in methylotrophy. J Bacteriol 2007;189:9076–90781.
Chistoserdova L, Laukel M, Portais J, Vorholt JA, Lidstrom ME. Multiple formate dehydrogenase enzymes in the facultative methylotroph Methylobacterium extorquens AM1 are dispensable for growth on methanol. J Bacteriol. 2004;186:22–8.
CAS
PubMed
PubMed Central
Google Scholar
Laukel M, Chistoserdova L, Lidstrom ME, Vorholt JA. The tungsten-containing formate dehydrogenase from Methylobacterium extorquens AM1: purification and properties. Eur J Biochem. 2003;333:325–33.
Google Scholar
Macey MC, Pratscher J, Crombie A, Murrell JC. Draft genome sequences of obligate methylotrophs Methylovorus sp. strain MM2 and Methylobacillus sp. strain MM3, isolated from grassland soil. Microbiol Resour Announc. 2018;7:1–2.
Google Scholar
Feng S, Tan CH, Constancias F, Kohli GS, Cohen Y, Rice SA. Predation by Bdellovibrio bacteriovorus significantly reduces viability and alters the microbial community composition of activated sludge flocs and granules. FEMS Microbiol Ecol. 2017. p. 1–12.
Boden R, Thomas E, Savani P, Kelly DP, Wood AP. Novel methylotrophic bacteria isolated from the River Thames (London, UK). Environ Microbiol. 2008;10:3225–36.
PubMed
Google Scholar
Harms N, van Spanning RJM. C1 metabolism in Paracoccus denitrificans: genetics of Paracoccus denitrificans. J Bioenerg Biomembr. 1991;23:187–210.
CAS
PubMed
Google Scholar
Anesti V, McDonald IR, Ramaswamy M, Wade WG, Kelly DP, Wood AP. Isolation and molecular detection of methylotrophic bacteria occurring in the human mouth. Environ Microbiol. 2005;7:1227–38.
CAS
PubMed
Google Scholar
Drigo B, Pijl AS, Duyts H, Kielak AM, Gamper HA, Houtekamer MJ. Shifting carbon flow from roots into associated microbial communities in response to elevated atmospheric CO2. Proc Natl Acad Sci. 2010;107:10938–42.
CAS
PubMed
PubMed Central
Google Scholar
Noar JD, Buckley DH. Ideonella azotifigens sp. nov., an aerobic diazotroph of the Betaproteobacteria isolated from grass rhizosphere soil, and emended description of the genus Ideonella. Int J Syst Evol Microbiol. 2009;59:1941–6.
PubMed
Google Scholar
Schmalenberger A, Hodge S, Bryant A, Hawkesford M, Singh B, Kertesz M. The role of Variovorax and other Comamonadaceae in sulfur transformations by microbial wheat fertilization regimes. FEMS Microbiol Ecol. 2007. p. 1–38.
Agafonova NV, Doronina NV, Kaparullina EN, Fedorov DN, Gafarov AB, Sazonova OI, et al. A novel Delftia plant symbiont capable of autotrophic methylotrophy. Microbiology. 2017;86:96–105.
CAS
Google Scholar
Kalyuzhnaya MG, Lapidus A, Ivanova N, Copeland AC, McHardy AC, Szeto E, et al. High-resolution metagenomics targets specific functional types in complex microbial communities. Nat Biotechnol. 2008;26:1029–34.
CAS
PubMed
Google Scholar
Durán P, Thiergart T, Garrido-Oter R, Agler M, Kemen E, Schulze-Lefert P, et al. Microbial interkingdom interactions in roots promote Arabidopsis survival. Cell. 2018:175, 973–983.e14.
Satola B, Wübbeler JH, Steinbüchel A. Metabolic characteristics of the species Variovorax paradoxus. Appl Microbiol Biotechnol. 2013;97:541–60.
CAS
PubMed
Google Scholar
Videira SS, De Araujo JLS, Da Silva RL, Baldani VLD, Baldani JI. Occurrence and diversity of nitrogen-fixing Sphingomonas bacteria associated with rice plants grown in Brazil. FEMS Microbiol Lett. 2009;293:11–9.
CAS
PubMed
Google Scholar
Gremion F, Chatzinotas A, Harms H. Comparative 16S rDNA and 16S rRNA sequence analysis indicates that Actinobacteria might be a dominant part of the metabolically active bacteria in heavy metal-contaminated bulk and rhizosphere soil. Environ Microbiol. 2003;5:896–907.
CAS
PubMed
Google Scholar
Ai C, Liang G, Sun J, Wang X, He P, Zhou W, et al. Reduced dependence of rhizosphere microbiome on plant-derived carbon in 32-year long-term inorganic and organic fertilized soils. Soil Biol Biochem . Elsevier Ltd; 2015;80:70–78.
Hernández M, Dumont MG, Yuan Q, Conrad R. Different bacterial populations associated with the roots and rhizosphere of rice incorporate plant-derived carbon. Appl Environ Microbiol. 2015;81:2244–53.
PubMed
PubMed Central
Google Scholar
Delmotte N, Knief C, Chaffron S, Innerebner G, Roschitzki B, Schlapbach R, et al. Community proteogenomics reveals insights into the physiology of phyllosphere bacteria. Proc Natl Acad Sci. 2009;106:16428–33.
CAS
PubMed
PubMed Central
Google Scholar
Knief C, Frances L, Cantet F, Vorholt JA. Cultivation-independent characterization of Methylobacterium populations in the plant phyllosphere by automated ribosomal intergenic spacer analysis. Appl Environ Microbiol. 2008;74:2218–28.
CAS
PubMed
PubMed Central
Google Scholar
Remus-emsermann MNP, Lücker S, Müller DB, Potthoff E, Daims H, Vorholt JA. Spatial distribution analyses of natural phyllosphere-colonizing bacteria on Arabidopsis thaliana revealed by fluorescence in situ hybridization. Environ Microbiol. 2014;16:2329–40.
CAS
PubMed
Google Scholar
Abanda-Nkpwatt D, Müsch M, Tschiersch J, Boettner M, Schwab W. Molecular interaction between Methylobacterium extorquens and seedlings: growth promotion, methanol consumption, and localization of the methanol emission site. J Exp Bot. 2006;57:4025–32.
CAS
PubMed
Google Scholar
Mora M, Perras A, Alekhova TA, Wink L, Krause R, Aleksandrova A, et al. Resilient microorganisms in dust samples of the International Space Station — survival of the adaptation specialists. Microbiome. 2016. p. 1–21.
Chaparro JM, Badri D V, Vivanco JM. Rhizosphere microbiome assemblage is affected by plant development. ISME J. 2013;8(4):1–14.
Griffiths RI, Whiteley AS, Donnell AGO, Bailey MJ. Rapid method for coextraction of DNA and RNA from natural environments for analysis of ribosomal DNA- and rRNA-based microbial community composition. Appl Environ Microbiol. 2000;66:5488–91.
CAS
PubMed
PubMed Central
Google Scholar
Dunfield PF, Khmelenina VN, Suzina NE, Trotsenko YA, Dedysh SN. Methylocella silvestris sp. nov., a novel methanotroph isolated from an acidic forest cambisol. Int J Syst Evol Microbiol. 2003;53:1231–9.
CAS
PubMed
Google Scholar
Neufeld JD, Vohra J, Dumont MG, Lueders T, Manefield M, Friedrich MW, et al. DNA stable-isotope probing. Nat Protoc. 2007;2:860–6.
CAS
PubMed
Google Scholar
Kumar S, Stecher G, Tamura K. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for bigger datasets. Mol Biol Evol. 2016;33:1870–4.
CAS
PubMed
PubMed Central
Google Scholar
Dowd SE, Callaway TR, Wolcott RD, Sun Y, McKeehan T, Hagevoort RG, et al. Evaluation of the bacterial diversity in the feces of cattle using 16S rDNA bacterial tag-encoded FLX amplicon pyrosequencing (bTEFAP). BMC Microbiol. 2008;8:1–8.
Google Scholar
Dowd SE, Sun Y, Wolcott RD, Domingo A, Carroll JA. Bacterial tag-encoded FLX amplicon pyrosequencing (bTEFAP) for microbiome studies: bacterial diversity in the Ileum of newly weaned salmonella-infected pigs. Foodborne Pathog Dis. 2008;5:459–72.
CAS
PubMed
Google Scholar
Edgar RC. Search and clustering orders of magnitude faster than BLAST. Bioinformatics. 2010;26:2460–1.
CAS
PubMed
Google Scholar
Eren AM, Zozaya M, Taylor CM, Dowd SE, Martin DH, Ferris MJ. Exploring the diversity of Gardnerella vaginalis in the genitourinary tract microbiota of monogamous couples through subtle nucleotide variation. PLoS One. 2011;6.
Swanson KS, Dowd SE, Suchodolski JS, Middelbos IS, Vester BM, Barry KA, et al. Phylogenetic and gene-centric metagenomics of the canine intestinal microbiome reveals similarities with humans and mice. ISME J. 2011;5:639–49.
CAS
PubMed
Google Scholar
Capone KA, Dowd SE, Stamatas GN, Nikolovski J. Diversity of the human skin microbiome early in life. J Invest Dermatol. 2011;131:2026–32.
CAS
PubMed
PubMed Central
Google Scholar
DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, Keller K, et al. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol. 2006;72:5069–72.
CAS
PubMed
PubMed Central
Google Scholar
Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et al. Correspondence QIIME allows analysis of high- throughput community sequencing data intensity normalization improves color calling in SOLiD sequencing. Nat Methods. 2010;7:335–6.
CAS
PubMed
PubMed Central
Google Scholar
Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, et al. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Nucleic Acids Res. 2009;75:7537–41.
CAS
Google Scholar
Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics. 2011;27:2194–200.
CAS
PubMed
PubMed Central
Google Scholar
Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–20.
CAS
PubMed
PubMed Central
Google Scholar
Gurevich A, Saveliev V, Vyahhi N, Tesler G. QUAST: quality assessment tool for genome assemblies. Bioinformatics. 2013;29:1072–5.
CAS
PubMed
PubMed Central
Google Scholar
Li D, Liu C, Luo R, Sadakane K, Lam T. Sequence analysis MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics. 2015;31:1674–6.
CAS
PubMed
Google Scholar
da Rocha UN, van Overbeek L, van Elsas JD. Exploration of hitherto-uncultured bacteria from the rhizosphere. FEMS Microbiol Ecol. 2009;69:313–28.
PubMed
Google Scholar
Kang DD, Froula J, Egan R, Wang Z. MetaBAT, an efficient tool for accurately reconstructing single genomes from complex microbial communities. PeerJ. 2015;3:e1165.
PubMed
PubMed Central
Google Scholar
Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 2015;25:1043–55.
CAS
PubMed
PubMed Central
Google Scholar
Hall AT. BioEdit: an important software for molecular biology. GERF Bull Biosci. 2011;2:60–1.
Google Scholar