Turner TR, James EK, Poole PS. The plant microbiome. Genome Biol. 2013;14:209. https://doi.org/10.1186/gb-2013-14-6-209.
Article
CAS
Google Scholar
Rodriguez PA, Rothballer M, Chowdhury SP, Nussbaumer T, Gutjahr C, Falter-Braun P. Systems biology of plant-microbiome interactions. Mol Plant. 2019;12:804–21. https://doi.org/10.1016/j.molp.2019.05.006.
Article
CAS
Google Scholar
Berendsen RL, Pieterse CMJ, Bakker PAHM. The rhizosphere microbiome and plant health. Trends Plant Sci. 2012;17:478–86. https://doi.org/10.1016/j.tplants.2012.04.001.
Article
CAS
Google Scholar
Hacquard S, Garrido-Oter R, González A, Spaepen S, Ackermann G, Lebeis S, et al. Microbiota and host nutrition across plant and animal kingdoms. Cell Host Microbe. 2015;17:603–16. https://doi.org/10.1016/j.chom.2015.04.009.
Article
CAS
Google Scholar
Toju H, Peay KG, Yamamichi M, Narisawa K, Hiruma K. Core microbiomes for sustainable agroecosystems. Nat Plants. 2018;4:247–57. https://doi.org/10.1038/s41477-018-0139-4.
Article
Google Scholar
Griggs RG, Steenwerth KL, Mills DA, Bokulich NA. Sources and assembly of microbial communities in vineyards as a functional component of winegrowing. Front Microbiol. 2021;12:Article 673810. https://doi.org/10.3389/fmicb.2021.673810.
Article
Google Scholar
Compant S, Samad A, Faist H, Sessitsch A. A review on the plant microbiome: ecology, functions, and emerging trends in microbial application. J Adv Res. 2019;19:29–37. https://doi.org/10.1016/j.jare.2019.03.004.
Article
CAS
Google Scholar
Trivedi P, Leach JE, Tringe SG, Sa T, Singh BK. Plant–microbiome interactions: from community assembly to plant health. Nat Rev Microbiol. 2020;18:607–21. https://doi.org/10.1038/s41579-020-0412-1.
Article
CAS
Google Scholar
Xiong C, Zhu YG, Wang JT, Singh B, Han LL, Shen JP, et al. Host selection shapes crop microbiome assembly and network complexity. New Phytol. 2021;229:1091–104. https://doi.org/10.1111/nph.16890.
Article
CAS
Google Scholar
Haichar FEZ, Marol C, Berge O, Rangel-Castro JI, Prosser JI, Balesdent J, et al. Plant host habitat and root exudates shape soil bacterial community structure. ISME J. 2008;2:1221–30. https://doi.org/10.1038/ismej.2008.80.
Article
CAS
Google Scholar
Badri DV, Vivanco JM. Regulation and function of root exudates. Plant Cell Environ. 2009;32:666–81. https://doi.org/10.1111/j.1365-3040.2009.01926.x.
Article
CAS
Google Scholar
Pacheco AR, Segrè D. A multidimensional perspective on microbial interactions. FEMS Microb Lett. 2019;366:fnz125. https://doi.org/10.1093/femsle/fnz125.
Article
CAS
Google Scholar
Konopka A. What is microbial community ecology. ISME J. 2009;3:1223–30. https://doi.org/10.1038/ismej.2009.88.
Article
Google Scholar
Hassani MA, Durán P, Hacquard S. Microbial interactions within the plant holobiont. Microbiome. 2018;58. https://doi.org/10.1186/s40168-018-0445-0.
Sung J, Kim S, Cabatbat JJT, Jang S, Jin YS, Jung GY, et al. Global metabolic interaction network of the human gut microbiota for context-specific community-scale analysis. Nat Commun. 2017;8:15393. https://doi.org/10.1038/ncomms15393.
Article
CAS
Google Scholar
Coyte KZ, Rakoff-Nahoum S. Understanding competition and cooperation within the mammalian gut microbiome. Curr Biol. 2019;29:R538–44. https://doi.org/10.1016/j.cub.2019.04.017.
Article
CAS
Google Scholar
Lam TJ, Stamboulian M, Han W, Ye Y. Model-based and phylogenetically adjusted quantification of metabolic interaction between microbial species. PLoS Comput Biol. 2020;16:e1007951. https://doi.org/10.1371/journal.pcbi.1007951.
Article
CAS
Google Scholar
Levy R, Borenstein E. Metabolic modeling of species interaction in the human microbiome elucidates community-level assembly rules. Proc Natl Acad Sci U S A. 2013;110:12804–9. https://doi.org/10.1073/pnas.1300926110.
Article
Google Scholar
Johnson DR, Goldschmidt F, Lilja EE, Ackermann M. Metabolic specialization and the assembly of microbial communities. ISME J. 2012;6:1985–91. https://doi.org/10.1038/ismej.2012.46.
Article
CAS
Google Scholar
Zomorrodi AR, Segrè D. Genome-driven evolutionary game theory helps understand the rise of metabolic interdependencies in microbial communities. Nat Commun. 2017;8:1563. https://doi.org/10.1038/s41467-017-01407-5.
Article
CAS
Google Scholar
Morris JJ, Lenski RE, Zinser ER. The black queen hypothesis: evolution of dependencies through adaptive gene loss. mBio 2012;3:e00036–e00012. https://doi.org/10.1128/mBio.00036-12.
Lovley DR. Happy together: microbial communities that hook up to swap electrons. ISME J. 2017;11:327–36. https://doi.org/10.1038/ismej.2016.136.
Article
CAS
Google Scholar
Seif Y, Choudhary KS, Hefner Y, Anand A, Yang L, Palsson BO. Metabolic and genetic basis for auxotrophies in Gram-negative species. Proc Natl Acad Sci U S A. 2020;117:6264–73. https://doi.org/10.1073/pnas.1910499117.
Article
CAS
Google Scholar
Mee MT, Collins JJ, Church GM, Wang HH. Syntrophic exchange in synthetic microbial communities. Proc Natl Acad Sci U S A. 2014:2149–56. https://doi.org/10.1073/pnas.1405641111.
Fritts RK, McCully AL, McKinlay JB. Extracellular metabolism sets the table for microbial cross-feeding. Microbiol Mol Biol Rev. 2021;85:1–29. https://doi.org/10.1128/mmbr.00135-20.
Article
CAS
Google Scholar
Bernstein DB, Dewhirst FE, Segrè D. Metabolic network percolation quantifies biosynthetic capabilities across the human oral microbiome. eLife. 2019;8:e39733. https://doi.org/10.7554/eLife.39733.001.
Article
Google Scholar
Faust K, Bauchinger F, Laroche B, de Buyl S, Lahti L, Washburne AD, et al. Signatures of ecological processes in microbial community time series. Microbiome. 2018;6:120. https://doi.org/10.1186/s40168-018-0496-2.
Article
Google Scholar
Muller EEL, Faust K, Widder S, Herold M, Martínez Arbas S, Wilmes P. Using metabolic networks to resolve ecological properties of microbiomes. Curr Opin Syst Biol. 2018;8:73–80. https://doi.org/10.1016/j.coisb.2017.12.004.
Article
Google Scholar
Kumar M, Ji B, Zengler K, Nielsen J. Modelling approaches for studying the microbiome. Nat Microbiol. 2019;4:1253–67. https://doi.org/10.1038/s41564-019-0491-9.
Article
CAS
Google Scholar
Mataigne V, Vannier V, Vandenkoornhuyse P, Hacquard S. Microbial systems ecology to understand cross-feeding in microbiomes. Front Microbiol. 12:Article 780469. https://doi.org/10.3389/fmicb.2021.780469.
Feist AM, Herrgård MJ, Thiele I, Reed JL, Palsson B. Reconstruction of biochemical networks in microorganisms. Nat Rev Microbiol. 2009;7:129–43. https://doi.org/10.1038/nrmicro1949.
Article
CAS
Google Scholar
Henry CS, Dejongh M, Best AA, Frybarger PM, Linsay B, Stevens RL. High-throughput generation, optimization and analysis of genome-scale metabolic models. Nat Biotechnol. 2010;28:977–82. https://doi.org/10.1038/nbt.1672.
Article
CAS
Google Scholar
Alneberg J, Bennke C, Beier S, Bunse C, Quince C, Ininbergs K, et al. Ecosystem-wide metagenomic binning enables prediction of ecological niches from genomes. Commun Biol. 2020;3:119. https://doi.org/10.1038/s42003-020-0856-x.
Article
Google Scholar
Easson CG, Thacker RW. Phylogenetic signal in the community structure of host-specific microbiomes of tropical marine sponges. Front Microbiol. 2014;5:Article 532. https://doi.org/10.3389/fmicb.2014.00532.
Article
Google Scholar
Aguirre De Cárcer D. A conceptual framework for the phylogenetically constrained assembly of microbial communities. Microbiome. 2019;7:142. https://doi.org/10.1186/s40168-019-0754-y.
Article
Google Scholar
Li T, Long M, Li H, Gatesoupe FJ, Zhang X, Zhang Q, et al. Multi-omics analysis reveals a correlation between the host phylogeny, gut microbiota and metabolite profiles in cyprinid fishes. Front Microbiol. 2017;8:Article 454. https://doi.org/10.3389/fmicb.2017.00454.
Article
Google Scholar
Goberna M, Verdú M. Predicting microbial traits with phylogenies. ISME J. 2016;10:959–67. https://doi.org/10.1038/ismej.2015.171.
Article
Google Scholar
Orsi WD, Richards TA, Francis WR. Predicted microbial secretomes and their target substrates in marine sediment. Nat Microbiol. 2017;3:32–7. https://doi.org/10.1038/s41564-017-0047-9.
Article
CAS
Google Scholar
Bednarek P, Kwon C, Schulze-Lefert P. Not a peripheral issue: secretion in plant-microbe interactions. Curr Opin Plant Biol. 2010;13:378–87. https://doi.org/10.1016/j.pbi.2010.05.002.
Article
CAS
Google Scholar
Baran R, Brodie EL, Mayberry-Lewis J, Hummel E, Da Rocha UN, Chakraborty R, et al. Exometabolite niche partitioning among sympatric soil bacteria. Nat Commun. 2015;6:8289. https://doi.org/10.1038/ncomms9289.
Article
CAS
Google Scholar
Bai Y, Müller DB, Srinivas G, Garrido-oter R, Potthoff E, Rott M, et al. Functional overlap of the Arabidopsis leaf and root microbiota. Nature. 2015;528:364–9. https://doi.org/10.1038/nature16192.
Article
CAS
Google Scholar
Wippel K, Tao K, Niu Y, Zgadzaj R, Kiel N, Guan R, et al. Host preference and invasiveness of commensal bacteria in the Lotus and Arabidopsis root microbiota. Nat Microbiol. 2021;6:1150–62. https://doi.org/10.1038/s41564-021-00941-9.
Article
CAS
Google Scholar
Wu M, Eisen JA. A simple, fast, and accurate method of phylogenomic inference. Genome Biol. 2008;9:R151. https://doi.org/10.1186/gb-2008-9-10-r151.
Article
CAS
Google Scholar
Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W, et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol. 2011;7:539. https://doi.org/10.1038/msb.2011.75.
Article
Google Scholar
Price MN, Dehal PS, Arkin AP. FastTree 2 - approximately maximum-likelihood trees for large alignments. PLoS One. 2010;5:e9490. https://doi.org/10.1371/journal.pone.0009490.
Article
CAS
Google Scholar
Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–20.
Article
CAS
Google Scholar
Tritt A, Eisen JA, Facciotti MT, Darling AE. An integrated pipeline for de novo assembly of microbial genomes. PLoS One. 2012;7:e42304.
Article
CAS
Google Scholar
Li R, Zhu H, Ruan J, Qian W, Fang X, Shi Z, et al. De novo assembly of human genomes with massively parallel short read sequencing. Genome Res. 2010;20:265–72.
Article
CAS
Google Scholar
Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics. 2014;30:2068–9.
Article
CAS
Google Scholar
Overbeek R, Begley T, Butler RM, Choudhuri JV, Chuang H-Y, Cohoon M, et al. The subsystems approach to genome annotation and its use in the project to annotate 1000 genomes. Nucleic Acids Res. 2005;33:5691–702.
Article
CAS
Google Scholar
Manni M, Berkeley MR, Seppey M, Simão FA, Zdobnov EM. busco update: novel and streamlined workflows along with broader and deeper phylogenetic coverage for scoring of eukaryotic, prokaryotic, and viral genomes. Mol Biol Evol. 2021;38:4647–54.
Article
CAS
Google Scholar
Caspi R, Foerster H, Fulcher CA, Kaipa P, Krummenacker M, Latendresse M, et al. The MetaCyc Database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases. Nucleic Acids Res. 2008;36:623–31. https://doi.org/10.1093/nar/gkm900.
Article
CAS
Google Scholar
Belcour A, Frioux C, Aite M, Hildebrand F, Siegel A. Metage2Metabo, microbiota-scale metabolic complementarity for the identification of key species. eLife. 2020;9:e61968. https://doi.org/10.7554/eLife.61968.
Article
CAS
Google Scholar
Aite M, Chevallier M, Frioux C, Trottier C, Got J, Cortés MP, et al. Traceability, reproducibility and wiki-exploration for “à-la-carte” reconstructions of genome-scale metabolic models. PLoS Comput Biol. 2018;14:e1006146. https://doi.org/10.1371/journal.pcbi.1006146.
Article
CAS
Google Scholar
Karp PD, Paley S, Romero P. The pathway tools software. Bioinformatics. 2002;18:S225–32. https://doi.org/10.1093/bioinformatics/18.suppl_1.S225.
Article
Google Scholar
Karp PD, Paley SM, Midford PE, Krummenacker M, Billington R, Kothari A, et al. Pathway tools version 24.0: integrated software for pathway/genome informatics and systems biology. arXiv. 2020; https://arxiv.org/pdf/1510.03964.pdf
Google Scholar
Karp PD, Latendresse M, Caspi R. The pathway tools pathway prediction algorithm. Stand Genomic Sci. 2011;5:424–9. https://doi.org/10.4056/sigs.1794338.
Article
Google Scholar
Thiele I, Palsson B. A protocol for generating a high-quality genome-scale metabolic reconstruction. Nat Protoc. 2010;5:93–121. https://doi.org/10.1038/nprot.2009.203.
Article
CAS
Google Scholar
Frioux C, Fremy E, Trottier C, Siegel A. Scalable and exhaustive screening of metabolic functions carried out by microbial consortia. Bioinformatics. 2018;34:i934–43. https://doi.org/10.1093/bioinformatics/bty588.
Article
CAS
Google Scholar
Huerta-Cepas J, Serra F, Bork P. ETE 3: reconstruction, analysis, and visualization of phylogenomic data. Mol Biol Evol. 2016;33:1635–8. https://doi.org/10.1093/molbev/msw046.
Article
CAS
Google Scholar
Oberhardt MA, Zarecki R, Gronow S, Lang E, Klenk HP, Gophna U, et al. Harnessing the landscape of microbial culture media to predict new organism-media pairings. Nat Commun. 2015;6:8493. https://doi.org/10.1038/ncomms9493.
Article
CAS
Google Scholar
Kim T, Dreher K, Nilo-Poyanco R, Lee I, Fiehn O, Lange BM, et al. Patterns of metabolite changes identified from large-scale gene perturbations in arabidopsis using a genome-scale metabolic network. Plant Physiol. 2015;167:1685–98. https://doi.org/10.1104/pp.114.252361.
Article
CAS
Google Scholar
Baudoin E, Benizri E, Guckert A. Impact of artificial root exudates on the bacterial community structure in bulk soil and maize rhizosphere. Soil Biol Biochem. 2003;35:1183–92. https://doi.org/10.1016/S0038-0717(03)00179-2.
Article
CAS
Google Scholar
Laniau J, Frioux C, Nicolas J, Baroukh C, Cortes M, Got J, et al. Combining graph and flux-based structures to decipher phenotypic essential metabolites within metabolic networks. PeerJ. 5:e3860. https://doi.org/10.7717/peerj.3860.
Collet G, Eveillard D, Gebser M, Prigent S. Extending the metabolic network of Ectocarpus Siliculosus using answer set programming. In: Cabalar P, editor. Log Program Nonmonotonic Reason. Berlin, Heidelberg: Springer Berlin Heidelberg; 2013. p. 245–56. https://doi.org/10.1007/978-3-642-40564-8_25.
Chapter
Google Scholar
Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, et al. vegan: community ecology package. 2020. https://cran.r-project.org/package=vegan
Google Scholar
Wickham H. ggplot2: elegant graphics for data analysis. New York: Springer-Verlag; 2016. https://ggplot2.tidyverse.org. ISBN 978-3-319-24277-4
Book
Google Scholar
Lefevere H, Bauters L, Gheysen G. Salicylic acid biosynthesis in plants. Front Plant Sci. 2020;11:article338. https://doi.org/10.3389/fpls.2020.00338.
Article
Google Scholar
Mishra AK, Baek KH. Salicylic acid biosynthesis and metabolism: a divergent pathway for plants and bacteria. Biomolecules. 2021;11:705. https://doi.org/10.3390/biom11050705.
Article
CAS
Google Scholar
Jaffe AL, Castelle CJ, Matheus Carnevali PB, Gribaldo S, Banfield JF. The rise of diversity in metabolic platforms across the Candidate Phyla Radiation. BMC Biol. 2020;18:69. https://doi.org/10.1186/s12915-020-00804-5.
Article
CAS
Google Scholar
Barberán A, Ramirez KS, Leff JW, Bradford MA, Wall DH, Fierer N. Why are some microbes more ubiquitous than others? Predicting the habitat breadth of soil bacteria. Ecol Lett. 2014;17:794–802. https://doi.org/10.1111/ele.12282.
Article
Google Scholar
Martiny JBH, Jones SE, Lennon JT, Martiny AC. Microbiomes in light of traits: a phylogenetic perspective. Science. 2015;350:aac9323. https://doi.org/10.1126/science.aac9323.
Article
CAS
Google Scholar
Fahimipour AK, Gross T. Mapping the bacterial metabolic niche space. Nat Commun. 2020;11:1–8. https://doi.org/10.1038/s41467-020-18695-z.
Article
CAS
Google Scholar
Russel J, Røder HL, Madsen JS, Burmølle M, Sørensen SJ. Antagonism correlates with metabolic similarity in diverse bacteria. Proc Natl Acad Sci U S A. 2017;114:10684–8. https://doi.org/10.1073/pnas.1706016114.
Article
CAS
Google Scholar
Zelezniak A, Andrejev S, Ponomarova O, Mende DR, Bork P, Patil KR. Metabolic dependencies drive species co-occurrence in diverse microbial communities. Proc Natl Acad Sci U S A. 2015;112:6449–54. https://doi.org/10.1073/pnas.1522642113.
Article
CAS
Google Scholar
Hester ER, Jetten MSM, Welte CU, Lücker S. Metabolic overlap in environmentally diverse microbial communities. Front Genet. 2019;10:Article 989. https://doi.org/10.3389/fgene.2019.00989.
Article
CAS
Google Scholar
Violle C, Nemergut DR, Pu Z, Jiang L. Phylogenetic limiting similarity and competitive exclusion. Ecol Lett. 2011;14:782–7. https://doi.org/10.1111/j.1461-0248.2011.01644.x.
Article
Google Scholar
Choi K, Khan R, Lee SW. Dissection of plant microbiota and plant-microbiome interactions. J Microbiol. 2021;59:281–91. https://doi.org/10.1007/s12275-021-0619-5.
Article
CAS
Google Scholar
Sun H, Jiang S, Jiang C, Wu C, Gao M, Wang Q. A review of root exudates and rhizosphere microbiome for crop production. Environ Sci Pollut Res. 2021;28:54497–510. https://doi.org/10.1007/s11356-021-15838-7.
Article
CAS
Google Scholar
Machado D, Maistrenko OM, Andrejev S, Kim Y, Bork P, Patil KR, et al. Polarization of microbial communities between competitive and cooperative metabolism. Nat Ecol Evol. 2021;5:195–203. https://doi.org/10.1038/s41559-020-01353-4.
Article
Google Scholar
Erlandson S, Wei X, Savage J, Cavender-Bares J, Peay K. Soil abiotic variables are more important than Salicaceae phylogeny or habitat specialization in determining soil microbial community structure. Mol Ecol. 2018;27:2007–24. https://doi.org/10.1111/mec.14576.
Article
Google Scholar
Cui J, Yuan X, Zhang Q, Zhou J, Lin K, Xu J, et al. Nutrient availability is a dominant predictor of soil bacterial and fungal community composition after nitrogen addition in subtropical acidic forests. PLoS One. 2021;16:e0246263. https://doi.org/10.1371/journal.pone.0246263.
Article
CAS
Google Scholar
Musilova L, Ridl J, Polivkova M, Macek T, Uhlik O. Effects of secondary plant metabolites on microbial populations: changes in community structure and metabolic activity in contaminated environments. Int J Mol Sci. 2016;17:1205. https://doi.org/10.3390/ijms17081205.
Article
CAS
Google Scholar
Voges MJEEE, Bai Y, Schulze-Lefert P, Sattely ES. Plant-derived coumarins shape the composition of an Arabidopsis synthetic root microbiome. Proc Natl Acad Sci U S A. 2019;116:12558–65. https://doi.org/10.1073/pnas.1820691116.
Article
CAS
Google Scholar
Jacoby RP, Koprivova A, Kopriva S. Pinpointing secondary metabolites that shape the composition and function of the plant microbiome. J Exp Bot. 2021;72:57–69. https://doi.org/10.1093/jxb/eraa424.
Article
CAS
Google Scholar
Mas A, Jamshidi S, Lagadeuc Y, Eveillard D, Vandenkoornhuyse P. Beyond the black queen hypothesis. ISME J. 2016;10:2085–91. https://doi.org/10.1038/ismej.2016.22.
Article
Google Scholar
Borenstein E, Kupiec M, Feldman MW, Ruppin E. Large-scale reconstruction and phylogenetic analysis of metabolic environments. Proc Natl Acad Sci U S A. 2008;105:14482–7. https://doi.org/10.1073/pnas.0806162105.
Article
Google Scholar
Klitgord N, Segré D. Environments that induce synthetic microbial ecosystems. PLoS Comput Biol. 2010;6:e1001002. https://doi.org/10.1371/journal.pcbi.1001002.
Article
CAS
Google Scholar
Thommes M, Wang T, Zhao Q, Paschalidis IC, Segrè D. Designing metabolic division of labor in microbial communities. mSystems. 2019;4:e00263–18. https://doi.org/10.1128/msystems.00263-18.
Article
CAS
Google Scholar
Pacheco AR, Moel M, Segrè D. Costless metabolic secretions as drivers of interspecies interactions in microbial ecosystems. Nat Commun. 2019;10:103. https://doi.org/10.1038/s41467-018-07946-9.
Article
CAS
Google Scholar
Lebeis SL, Paredes SH, Lundberg DS, Breakfield N, Gehring J, McDonald M, et al. Salicylic acid modulates colonization of the root microbiome by specific bacterial taxa. Science. 2015;349:860–4. https://doi.org/10.1126/science.aaa8764.
Article
CAS
Google Scholar
Sriswasdi S, Yang CC, Iwasaki W. Generalist species drive microbial dispersion and evolution. Nat Commun. 2017;8:1162. https://doi.org/10.1038/s41467-017-01265-1.
Article
CAS
Google Scholar
Giovannoni SJ, Cameron Thrash J, Temperton B. Implications of streamlining theory for microbial ecology. ISME J. 2014;8:1553–65. https://doi.org/10.1038/ismej.2014.60.
Article
Google Scholar
Gil R, Peretó J. Small genomes and the difficulty to define minimal translation and metabolic machineries. Front Ecol Evol. 2015;3:Article123. https://doi.org/10.3389/fevo.2015.00123.
Article
Google Scholar
Niu B, Paulson NJ, Zheng X, Kolter R. Simplified and representative bacterial community of maize roots. Proc Natl Acad Sci U S A. 2017:24–6. https://doi.org/10.1073/pnas.1616148114.
Bodenhausen N, Bortfeld-Miller M, Ackermann M, Vorholt JA. A synthetic community approach reveals plant genotypes affecting the phyllosphere microbiota. PLoS Genet. 2014;10:e1004283. https://doi.org/10.1371/journal.pgen.1004283.
Article
CAS
Google Scholar
Louca S, Jacques SMS, Pires APF, Leal JS, Srivastava DS, Parfrey LW, et al. High taxonomic variability despite stable functional structure across microbial communities. Nat Ecol Evol. 2016;1:0015. https://doi.org/10.1038/s41559-016-0015.
Article
Google Scholar