Livingston G, Huntley J, Sommerlad A, Ames D, Ballard C, Banerjee S, et al. Dementia prevention, intervention, and care: 2020 report of the Lancet Commission. Lancet. 2020;396(10248):413–46. https://doi.org/10.1016/S0140-6736(20)30367-6.
Article
PubMed
PubMed Central
Google Scholar
Morris MC. The role of nutrition in Alzheimer's disease: epidemiological evidence. Eur J Neurol. 2009;16(Suppl 1):1–7. https://doi.org/10.1111/j.1468-1331.2009.02735.x.
Article
PubMed
PubMed Central
Google Scholar
Laitinen MH, Ngandu T, Rovio S, Helkala EL, Uusitalo U, Viitanen M, et al. Fat intake at midlife and risk of dementia and Alzheimer's disease: a population-based study. Dement Geriatr Cogn Disord. 2006;22(1):99–107. https://doi.org/10.1159/000093478.
Article
CAS
PubMed
Google Scholar
Moshfegh A, Goldman J, Cleveland L. What we eat in America. NHANES 2001–2002. USDA, Agricultural Research Service: Beltsville (MD); 2005.
Google Scholar
Stephen AM, Champ MMJ, Cloran SJ, Fleith M, van Lieshout L, Mejborn H, et al. Dietary fibre in Europe: current state of knowledge on definitions, sources, recommendations, intakes and relationships to health. Nutr Res Rev. 2017;30(2):149–90. https://doi.org/10.1017/S095442241700004X.
Article
CAS
PubMed
Google Scholar
Wang HJ, Wang ZH, Zhang JG, Du WW, Su C, Zhang J, et al. Trends in dietary fiber intake in Chinese aged 45 years and above, 1991-2011. Eur J Clin Nutr. 2014;68(5):619–22. https://doi.org/10.1038/ejcn.2014.24.
Article
CAS
PubMed
Google Scholar
Lattimer JM, Haub MD. Effects of dietary fiber and its components on metabolic health. Nutrients. 2010;2(12):1266–89. https://doi.org/10.3390/nu2121266.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gareau MG. Microbiota-Gut-Brain Axis and Cognitive Function. In Microbial Endocrinology. In: Lyte M, Cryan JF, editors. The Microbiota-Gut-Brain Axis in Health and Disease. New York, NY: Springer New York; 2014. p. 357–71.
Google Scholar
Bruce-Keller AJ, Salbaum JM, Luo M, Blanchard E, Taylor CM, Welsh DA, et al. Obese-type gut microbiota induce neurobehavioral changes in the absence of obesity. Biol Psychiatry. 2015;77(7):607–15. https://doi.org/10.1016/j.biopsych.2014.07.012.
Article
PubMed
Google Scholar
Sharon G, Sampson TR, Geschwind DH, Mazmanian SK. The Central Nervous System and the Gut Microbiome. Cell. 2016;167(4):915–32. https://doi.org/10.1016/j.cell.2016.10.027.
Article
CAS
PubMed
PubMed Central
Google Scholar
Erny D, Hrabe de Angelis AL, Jaitin D, Wieghofer P, Staszewski O, David E, et al. Host microbiota constantly control maturation and function of microglia in the CNS. Nat Neurosci. 2015;18(7):965–77. https://doi.org/10.1038/nn.4030.
Article
CAS
PubMed
PubMed Central
Google Scholar
Stadlbauer V, Engertsberger L, Komarova I, Feldbacher N, Leber B, Pichler G, et al. Dysbiosis, gut barrier dysfunction and inflammation in dementia: a pilot study. BMC Geriatr. 2020;20(1):248. https://doi.org/10.1186/s12877-020-01644-2.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhan X, Stamova B, Jin L-W, DeCarli C, Phinney B, Sharp FR. Gram-negative bacterial molecules associate with Alzheimer disease pathology. Neurology. 2016;87(22):2324–32. https://doi.org/10.1212/WNL.0000000000003391.
Article
CAS
PubMed
PubMed Central
Google Scholar
Podbielska M, Das A, Smith AW, Chauhan A, Ray SK, Inoue J, et al. Neuron-microglia interaction induced bi-directional cytotoxicity associated with calpain activation. J Neurochem. 2016;139(3):440–55. https://doi.org/10.1111/jnc.13774.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu Y, Zhang Y, Zheng X, Fang T, Yang X, Luo X, et al. Galantamine improves cognition, hippocampal inflammation, and synaptic plasticity impairments induced by lipopolysaccharide in mice. J Neuroinflammation. 2018;15(1):112. https://doi.org/10.1186/s12974-018-1141-5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Roy ER, Wang B, Wan Y-W, Chiu G, Cole A, Yin Z, et al. Type I interferon response drives neuroinflammation and synapse loss in Alzheimer disease. J Clin Invest. 2020;130(4):1912–30. https://doi.org/10.1172/JCI133737.
Article
CAS
PubMed
PubMed Central
Google Scholar
Price KA, Varghese M, Sowa A, Yuk F, Brautigam H, Ehrlich ME, et al. Altered synaptic structure in the hippocampus in a mouse model of Alzheimer’s disease with soluble amyloid-β oligomers and no plaque pathology. Mol Neurodegener. 2014;9(1):41. https://doi.org/10.1186/1750-1326-9-41.
Article
PubMed
PubMed Central
Google Scholar
Bereczki E, Branca RM, Francis PT, Pereira JB, Baek JH, Hortobágyi T, et al. Synaptic markers of cognitive decline in neurodegenerative diseases: a proteomic approach. Brain. 2018;141(2):582–95. https://doi.org/10.1093/brain/awx352.
Article
PubMed
PubMed Central
Google Scholar
Zabolotny JM, Kim YB, Welsh LA, Kershaw EE, Neel BG, Kahn BB. Protein-tyrosine phosphatase 1B expression is induced by inflammation in vivo. J Biol Chem. 2008;283(21):14230–41. https://doi.org/10.1074/jbc.M800061200.
Article
CAS
PubMed
PubMed Central
Google Scholar
Vieira MN, Lyra ESNM, Ferreira ST, De Felice FG. Protein tyrosine phosphatase 1B (PTP1B): a potential target for Alzheimer's therapy? Front Aging Neurosci. 2017;9:7. https://doi.org/10.3389/fnagi.2017.00007.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kanno T, Tsuchiya A, Shimizu T, Tanaka A, Nishizaki T. Indomethacin serves as a potential inhibitor of protein phosphatases. Cell Physiol Biochem. 2012;30(4):1014–22. https://doi.org/10.1159/000341478.
Article
CAS
PubMed
Google Scholar
Song B, Lai B, Zheng Z, Zhang Y, Luo J, Wang C, et al. Inhibitory phosphorylation of GSK-3 by CaMKII couples depolarization to neuronal survival. J Biol Chem. 2010;285(52):41122–34. https://doi.org/10.1074/jbc.M110.130351.
Article
CAS
PubMed
PubMed Central
Google Scholar
de Barreda EG, Pérez M, Ramos PG, de Cristobal J, Martín-Maestro P, Morán A, et al. Tau-knockout mice show reduced GSK3-induced hippocampal degeneration and learning deficits. Neurobiol Dis. 2010;37(3):622–9. https://doi.org/10.1016/j.nbd.2009.11.017.
Article
CAS
Google Scholar
Zhou L, McInnes J, Wierda K, Holt M, Herrmann AG, Jackson RJ, et al. Tau association with synaptic vesicles causes presynaptic dysfunction. Nat Commun. 2017;8(1):15295. https://doi.org/10.1038/ncomms15295.
Article
PubMed
PubMed Central
Google Scholar
Burgos-Barragan G, Wit N, Meiser J, Dingler FA, Pietzke M, Mulderrig L, et al. Mammals divert endogenous genotoxic formaldehyde into one-carbon metabolism. Nature. 2017;548(7669):549–54. https://doi.org/10.1038/nature23481.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wood PL. Lipidomics of Alzheimer's disease: current status. Alzheimers Res Ther. 2012;4(1):5–5. https://doi.org/10.1186/alzrt103.
Article
CAS
PubMed
PubMed Central
Google Scholar
Roux PP, Topisirovic I. Regulation of mRNA translation by signaling pathways. Cold Spring Harb Perspect Biol. 2012;4(11):a012252. https://doi.org/10.1101/cshperspect.a012252.
Article
CAS
PubMed
PubMed Central
Google Scholar
Inestrosa NC, Carvajal FJ, Zolezzi JM, Tapia-Rojas C, Serrano F, Karmelic D, et al. Peroxisome proliferators reduce spatial memory impairment, synaptic failure, and neurodegeneration in brains of a double transgenic mice model of Alzheimer's disease. Journal of Alzheimer's disease : JAD. 2013;33(4):941–59. https://doi.org/10.3233/JAD-2012-120397.
Article
CAS
PubMed
Google Scholar
Cimini A, Moreno S, D'Amelio M, Cristiano L, D'Angelo B, Falone S, et al. Early biochemical and morphological modifications in the brain of a transgenic mouse model of Alzheimer's disease: a role for peroxisomes. Journal of Alzheimer's disease : JAD. 2009;18(4):935–52. https://doi.org/10.3233/JAD-2009-1199.
Article
CAS
PubMed
Google Scholar
den Besten G, van Eunen K, Groen AK, Venema K, Reijngoud D-J, Bakker BM. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J Lipid Res. 2013;54(9):2325–40. https://doi.org/10.1194/jlr.R036012.
Article
CAS
Google Scholar
Khan NA, Raine LB, Drollette ES, Scudder MR, Kramer AF, Hillman CH. Dietary fiber is positively associated with cognitive control among prepubertal children. J Nutr. 2015;145(1):143–9. https://doi.org/10.3945/jn.114.198457.
Article
CAS
PubMed
Google Scholar
Yang K, Broussard JI, Levine AT, Jenson D, Arenkiel BR, Dani JA. Dopamine receptor activity participates in hippocampal synaptic plasticity associated with novel object recognition. Eur J Neurosci. 2017;45(1):138–46. https://doi.org/10.1111/ejn.13406.
Article
PubMed
Google Scholar
Haam J, Yakel JL. Cholinergic modulation of the hippocampal region and memory function. J Neurochem. 2017;142(Suppl 2):111–21. https://doi.org/10.1111/jnc.14052.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hampel H, Mesulam MM, Cuello AC, Farlow MR, Giacobini E, Grossberg GT, et al. The cholinergic system in the pathophysiology and treatment of Alzheimer's disease. Brain. 2018;141(7):1917–33. https://doi.org/10.1093/brain/awy132.
Article
PubMed
PubMed Central
Google Scholar
Latina V, Caioli S, Zona C, Ciotti MT, Borreca A, Calissano P, et al. NGF-dependent changes in ubiquitin homeostasis trigger early cholinergic degeneration in cellular and animal AD-model. Front Cell Neurosci. 2018;12:487. https://doi.org/10.3389/fncel.2018.00487.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zalcman G, Federman N, Romano A. CaMKII Isoforms in Learning and Memory: Localization and Function. Front Mol Neurosci. 2018;11:445. https://doi.org/10.3389/fnmol.2018.00445.
Article
CAS
PubMed
PubMed Central
Google Scholar
Song GJ, Jung M, Kim J-H, Park H, Rahman MH, Zhang S, et al. A novel role for protein tyrosine phosphatase 1B as a positive regulator of neuroinflammation. J Neuroinflammation. 2016;13(1):86. https://doi.org/10.1186/s12974-016-0545-3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gampierakis I-A, Koutmani Y, Semitekolou M, Morianos I, Polissidis A, Katsouda A, et al. Hippocampal neural stem cells and microglia response to experimental inflammatory bowel disease (IBD). Mol Psychiatry. 2020;26(4):1248–63. https://doi.org/10.1038/s41380-020-0651-6.
Article
CAS
PubMed
Google Scholar
Clarke G, Kennedy PJ, Groeger JA, Quigley EMM, Shanahan F, Cryan JF, et al. Impaired cognitive function in Crohn’s disease: Relationship to disease activity. Brain, Behavior, & Immunity - Health. 2020;5:100093.
Article
Google Scholar
Fan W, Zhang S, Hu J, Liu B, Wen L, Gong M, et al. Aberrant brain function in active-stage ulcerative colitis patients: a resting-state functional MRI study. Front Hum Neurosci. 2019;13 https://doi.org/10.3389/fnhum.2019.00107.
Zhang R, Miller RG, Gascon R, Champion S, Katz J, Lancero M, et al. Circulating endotoxin and systemic immune activation in sporadic amyotrophic lateral sclerosis (sALS). J Neuroimmunol. 2009;206(1-2):121–4. https://doi.org/10.1016/j.jneuroim.2008.09.017.
Article
CAS
PubMed
Google Scholar
Qin L, Wu X, Block ML, Liu Y, Breese GR, Hong JS, et al. Systemic LPS causes chronic neuroinflammation and progressive neurodegeneration. Glia. 2007;55(5):453–62. https://doi.org/10.1002/glia.20467.
Article
PubMed
PubMed Central
Google Scholar
Liu Y, Zhang Y, Zheng X, Fang T, Yang X, Luo X, et al. Galantamine improves cognition, hippocampal inflammation, and synaptic plasticity impairments induced by lipopolysaccharide in mice. J Neuroinflammation. 2018;15(1):112. https://doi.org/10.1186/s12974-018-1141-5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Vargas-Caraveo A, Sayd A, Maus SR, Caso JR, Madrigal JLM, García-Bueno B, et al. Lipopolysaccharide enters the rat brain by a lipoprotein-mediated transport mechanism in physiological conditions. Sci Rep. 2017;7(1):13113. https://doi.org/10.1038/s41598-017-13302-6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Catrysse L, van Loo G. Inflammation and the metabolic syndrome: the tissue-specific functions of NF-κB. Trends Cell Biol. 2017;27(6):417–29. https://doi.org/10.1016/j.tcb.2017.01.006.
Article
CAS
PubMed
Google Scholar
Sonnenburg ED, Smits SA, Tikhonov M, Higginbottom SK, Wingreen NS, Sonnenburg JL. Diet-induced extinctions in the gut microbiota compound over generations. Nature. 2016;529(7585):212–5. https://doi.org/10.1038/nature16504.
Article
CAS
PubMed
PubMed Central
Google Scholar
Thomas F, Hehemann J-H, Rebuffet E, Czjzek M, Michel G. Environmental and gut bacteroidetes: the food connection. Front Microbiol. 2011;2:93. https://doi.org/10.3389/fmicb.2011.00093.
Article
PubMed
PubMed Central
Google Scholar
Bäckhed F, Ley RE, Sonnenburg JL, Peterson DA, Gordon JI. Host-Bacterial Mutualism in the Human Intestine. Science. 2005;307(5717):1915–20. https://doi.org/10.1126/science.1104816.
Article
CAS
PubMed
Google Scholar
Mahowald MA, Rey FE, Seedorf H, Turnbaugh PJ, Fulton RS, Wollam A, et al. Characterizing a model human gut microbiota composed of members of its two dominant bacterial phyla. Proc Natl Acad Sci. 2009;106(14):5859–64. https://doi.org/10.1073/pnas.0901529106.
Article
PubMed
PubMed Central
Google Scholar
Lin T-L, Shu C-C, Chen Y-M, Lu J-J, Wu T-S, Lai W-F, et al. Like cures like: pharmacological activity of anti-inflammatory lipopolysaccharides from gut microbiome. Front Pharmacol. 2020;11 https://doi.org/10.3389/fphar.2020.00554.
Nagpal R, Neth BJ, Wang S, Craft S, Yadav H. Modified Mediterranean-ketogenic diet modulates gut microbiome and short-chain fatty acids in association with Alzheimer's disease markers in subjects with mild cognitive impairment. EBioMedicine. 2019;47:529–42.
Article
PubMed
PubMed Central
Google Scholar
Manderino L, Carroll I, Azcarate-Peril MA, Rochette A, Heinberg L, Peat C, et al. Preliminary evidence for an association between the composition of the gut microbiome and cognitive function in neurologically healthy older adults. Journal of the International Neuropsychological Society : JINS. 2017;23(8):700–5. https://doi.org/10.1017/S1355617717000492.
Article
PubMed
Google Scholar
Cattaneo A, Cattane N, Galluzzi S, Provasi S, Lopizzo N, Festari C, et al. Association of brain amyloidosis with pro-inflammatory gut bacterial taxa and peripheral inflammation markers in cognitively impaired elderly. Neurobiol Aging. 2017;49:60–8. https://doi.org/10.1016/j.neurobiolaging.2016.08.019.
Article
CAS
PubMed
Google Scholar
Zhuang Z-Q, Shen L-L, Li W-W, Fu X, Zeng F, Gui L, et al. Gut Microbiota is Altered in Patients with Alzheimer's Disease. Journal of Alzheimer's disease : JAD. 2018;63(4):1337–46. https://doi.org/10.3233/JAD-180176.
Article
CAS
PubMed
Google Scholar
Karaki S, Mitsui R, Hayashi H, Kato I, Sugiya H, Iwanaga T, et al. Short-chain fatty acid receptor, GPR43, is expressed by enteroendocrine cells and mucosal mast cells in rat intestine. Cell Tissue Res. 2006;324(3):353–60. https://doi.org/10.1007/s00441-005-0140-x.
Article
CAS
PubMed
Google Scholar
Tazoe H, Otomo Y, Karaki S, Kato I, Fukami Y, Terasaki M, et al. Expression of short-chain fatty acid receptor GPR41 in the human colon. Biomed Res. 2009;30(3):149–56. https://doi.org/10.2220/biomedres.30.149.
Article
CAS
PubMed
Google Scholar
Maslowski KM, Vieira AT, Ng A, Kranich J, Sierro F, Yu D, et al. Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43. Nature. 2009;461(7268):1282–6. https://doi.org/10.1038/nature08530.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sun Z, Li J, Dai Y, Wang W, Shi R, Wang Z, et al. Indigo naturalis alleviates dextran sulfate sodium-induced colitis in rats via altering gut microbiota. Front Microbiol. 2020;11:731. https://doi.org/10.3389/fmicb.2020.00731.
Article
PubMed
PubMed Central
Google Scholar
Kim MH, Kang SG, Park JH, Yanagisawa M, Kim CH. Short-chain fatty acids activate GPR41 and GPR43 on intestinal epithelial cells to promote inflammatory responses in mice. Gastroenterology. 2013;145:396–406.e310.
Article
CAS
PubMed
Google Scholar
Willemsen LEM, Koetsier MA, van Deventer SJH, van Tol EAF. Short chain fatty acids stimulate epithelial mucin 2 expression through differential effects on prostaglandin E(1) and E(2) production by intestinal myofibroblasts. Gut. 2003;52(10):1442–7. https://doi.org/10.1136/gut.52.10.1442.
Article
CAS
PubMed
PubMed Central
Google Scholar
Litvak Y, Byndloss MX, Bäumler AJ. Colonocyte metabolism shapes the gut microbiota. Science (New York, NY). 2018;362:eaat9076.
Article
Google Scholar
Askarova S, Umbayev B, Masoud A-R, Kaiyrlykyzy A, Safarova Y, Tsoy A, Olzhayev F, Kushugulova A The links between the gut microbiome, aging, modern lifestyle and Alzheimer's disease. Front Cell Infect Microbiol 2020; 10:104-104, DOI: https://doi.org/10.3389/fcimb.2020.00104.
Edwards GA III, Gamez N, Escobedo G Jr, Calderon O, Moreno-Gonzalez I. Modifiable Risk Factors for Alzheimer’s Disease. Front Aging Neurosci. 2019;11 https://doi.org/10.3389/fnagi.2019.00146.
Zhang L, Wang Y, Xiayu X, Shi C, Chen W, Song N, et al. Altered gut microbiota in a mouse model of Alzheimer's disease. J Alzheimers Dis. 2017;60(4):1241–57. https://doi.org/10.3233/JAD-170020.
Article
CAS
PubMed
Google Scholar
Bonfili L, Cecarini V, Berardi S, Scarpona S, Suchodolski JS, Nasuti C, et al. Microbiota modulation counteracts Alzheimer’s disease progression influencing neuronal proteolysis and gut hormones plasma levels. Sci Rep. 2017;7(1):2426. https://doi.org/10.1038/s41598-017-02587-2.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang B, Wang HE, Bai Y-M, Tsai S-J, Su T-P, Chen T-J, et al. Inflammatory bowel disease is associated with higher dementia risk: a nationwide longitudinal study. Gut. 2021;70(1):85–91. https://doi.org/10.1136/gutjnl-2020-320789.
Article
PubMed
Google Scholar
Livingston G, Sommerlad A, Orgeta V, Costafreda SG, Huntley J, Ames D, et al. Dementia prevention, intervention, and care. Lancet. 2017;390(10113):2673–734. https://doi.org/10.1016/S0140-6736(17)31363-6.
Article
PubMed
Google Scholar
Mattson MP. The impact of dietary energy intake on cognitive aging. Front Aging Neurosci. 2010;2:5–5. https://doi.org/10.3389/neuro.24.005.2010.
Article
PubMed
PubMed Central
Google Scholar
Clark MJ, Slavin JL. The effect of fiber on satiety and food intake: a systematic review. J Am Coll Nutr. 2013;32(3):200–11. https://doi.org/10.1080/07315724.2013.791194.
Article
CAS
PubMed
Google Scholar
Beck EJ, Tapsell LC, Batterham MJ, Tosh SM, Huang XF. Increases in peptide Y-Y levels following oat beta-glucan ingestion are dose-dependent in overweight adults. Nutr Res. 2009;29(10):705–9. https://doi.org/10.1016/j.nutres.2009.09.012.
Article
CAS
PubMed
Google Scholar
Huang XF, Yu Y, Beck EJ, South T, Li Y, Batterham MJ, et al. Diet high in oat β-glucan activates the gut-hypothalamic (PYY3 − 36−NPY) axis and increases satiety in diet-induced obesity in mice. Mol Nutr Food Res. 2011;55(7):1118–21. https://doi.org/10.1002/mnfr.201100095.
Article
CAS
PubMed
Google Scholar
Larraufie P, Martin-Gallausiaux C, Lapaque N, Dore J, Gribble FM, Reimann F, et al. SCFAs strongly stimulate PYY production in human enteroendocrine cells. Sci Rep. 2018;8(1):74. https://doi.org/10.1038/s41598-017-18259-0.
Article
CAS
PubMed
PubMed Central
Google Scholar
Desai MS, Seekatz AM, Koropatkin NM, Kamada N, Hickey CA, Wolter M, et al. A Dietary Fiber-Deprived Gut Microbiota Degrades the Colonic Mucus Barrier and Enhances Pathogen Susceptibility. Cell. 2016;167:1339–1353.e1321.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hsu TM, Konanur VR, Taing L, Usui R, Kayser BD, Goran MI, et al. Effects of sucrose and high fructose corn syrup consumption on spatial memory function and hippocampal neuroinflammation in adolescent rats. Hippocampus. 2015;25(2):227–39. https://doi.org/10.1002/hipo.22368.
Article
CAS
PubMed
Google Scholar
Patkar OL, Mohamed AZ, Narayanan A, Mardon K, Cowin G, Bhalla R, et al. A binge high sucrose diet provokes systemic and cerebral inflammation in rats without inducing obesity. Sci Rep. 2021;11(1):11252. https://doi.org/10.1038/s41598-021-90817-z.
Article
CAS
PubMed
PubMed Central
Google Scholar
Smith PM, Howitt MR, Panikov N, Michaud M, Gallini CA, Bohlooly-Y M, et al. The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science (New York, NY). 2013;341:569–73.
Article
CAS
Google Scholar
Chassaing B, Ley RE, Gewirtz AT. Intestinal epithelial cell toll-like receptor 5 regulates the intestinal microbiota to prevent low-grade inflammation and metabolic syndrome in mice. Gastroenterology. 2014;147:1363–1377.e1317.
Article
CAS
PubMed
Google Scholar