Furness JB. The enteric nervous system and neurogastroenterology. Nat Rev Gastroenterol Hepatol. 2012;9(5):286–94. https://doi.org/10.1038/nrgastro.2012.32.
Article
CAS
PubMed
Google Scholar
Sharkey KA, Beck PL, McKay DM. Neuroimmunophysiology of the gut: advances and emerging concepts focusing on the epithelium. Nat Rev Gastroenterol Hepatol. 2018;15(12):765–84. https://doi.org/10.1038/s41575-018-0051-4.
Article
CAS
PubMed
Google Scholar
Gulbransen BD, Sharkey KA. Novel functional roles for enteric glia in the gastrointestinal tract. Nat Rev Gastroenterol Hepatol. 2012;9(11):625–32. https://doi.org/10.1038/nrgastro.2012.138.
Article
CAS
PubMed
Google Scholar
Spencer NJ, Hu H. Enteric nervous system: sensory transduction, neural circuits and gastrointestinal motility. Nat Rev Gastroenterol Hepatol. 2020;17(6):338–51. https://doi.org/10.1038/s41575-020-0271-2.
Article
PubMed
PubMed Central
Google Scholar
Yoo BB, Mazmanian SK. The enteric network: interactions between the immune and nervous systems of the gut. Immunity. 2017;46(6):910–26. https://doi.org/10.1016/j.immuni.2017.05.011.
Article
CAS
PubMed
PubMed Central
Google Scholar
Brierley SM, Linden DR. Neuroplasticity and dysfunction after gastrointestinal inflammation. Nat Rev Gastroenterol Hepatol. 2014;11(10):611–27. https://doi.org/10.1038/nrgastro.2014.103.
Article
PubMed
Google Scholar
Black CJ, Ford AC. Global burden of irritable bowel syndrome: trends, predictions and risk factors. Nat Rev Gastroenterol Hepatol. 2020;17(8):473–86. https://doi.org/10.1038/s41575-020-0286-8.
Article
PubMed
Google Scholar
Collaborators GIBD. The global, regional, and national burden of inflammatory bowel disease in 195 countries and territories, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet Gastroenterol Hepatol. 2020;5:17–30.
Article
Google Scholar
Ni J, Wu GD, Albenberg L, Tomov VT. Gut microbiota and IBD: causation or correlation? Nat Rev Gastroenterol Hepatol. 2017;14(10):573–84. https://doi.org/10.1038/nrgastro.2017.88.
Article
PubMed
PubMed Central
Google Scholar
Chang C, Lin H. Dysbiosis in gastrointestinal disorders. Best Pract Res Clin Gastroenterol. 2016;30(1):3–15. https://doi.org/10.1016/j.bpg.2016.02.001.
Article
PubMed
Google Scholar
Collins SM. A role for the gut microbiota in IBS. Nat Rev Gastroenterol Hepatol. 2014;11(8):497–505. https://doi.org/10.1038/nrgastro.2014.40.
Article
CAS
PubMed
Google Scholar
Hung LY, Boonma P, Unterweger P, Parathan P, Haag A, Luna RA, et al. Neonatal antibiotics disrupt motility and enteric neural circuits in mouse colon. Cell Mol Gastroenterol Hepatol. 2019;8:298–300.e296.
Article
PubMed
PubMed Central
Google Scholar
O’Mahony SM, Felice VD, Nally K, Savignac HM, Claesson MJ, Scully P, et al. Disturbance of the gut microbiota in early-life selectively affects visceral pain in adulthood without impacting cognitive or anxiety-related behaviors in male rats. Neuroscience. 2014;277:885–901. https://doi.org/10.1016/j.neuroscience.2014.07.054.
Article
CAS
PubMed
Google Scholar
Cho I, Yamanishi S, Cox L, Methé BA, Zavadil J, Li K, et al. Antibiotics in early life alter the murine colonic microbiome and adiposity. Nature. 2012;488(7413):621–6. https://doi.org/10.1038/nature11400.
Article
CAS
PubMed
PubMed Central
Google Scholar
Collins J, Borojevic R, Verdu EF, Huizinga JD, Ratcliffe EM. Intestinal microbiota influence the early postnatal development of the enteric nervous system. Neurogastroenterol Motil. 2014;26(1):98–107. https://doi.org/10.1111/nmo.12236.
Article
CAS
PubMed
Google Scholar
Mao YK, Kasper DL, Wang B, Forsythe P, Bienenstock J, Kunze WA. Bacteroides fragilis polysaccharide A is necessary and sufficient for acute activation of intestinal sensory neurons. Nat Commun. 2013;4(1):1465. https://doi.org/10.1038/ncomms2478.
Article
CAS
PubMed
Google Scholar
Hung LY, Parathan P, Boonma P, Wu Q, Wang Y, Haag A, et al. Antibiotic exposure postweaning disrupts the neurochemistry and function of enteric neurons mediating colonic motor activity. Am J Physiol Gastrointest Liver Physiol. 2020;318(6):G1042–g1053. https://doi.org/10.1152/ajpgi.00088.2020.
Article
CAS
PubMed
PubMed Central
Google Scholar
Anitha M, Vijay-Kumar M, Sitaraman SV, Gewirtz AT, Srinivasan S. Gut microbial products regulate murine gastrointestinal motility via Toll-like receptor 4 signaling. Gastroenterology. 2012;143:1006–1016.e1004.
Article
CAS
PubMed
Google Scholar
Caputi V, Marsilio I, Filpa V, Cerantola S, Orso G, Bistoletti M, et al. Antibiotic-induced dysbiosis of the microbiota impairs gut neuromuscular function in juvenile mice. Br J Pharmacol. 2017;174(20):3623–39. https://doi.org/10.1111/bph.13965.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ge X, Ding C, Zhao W, Xu L, Tian H, Gong J, et al. Antibiotics-induced depletion of mice microbiota induces changes in host serotonin biosynthesis and intestinal motility. J Transl Med. 2017;15(1):13. https://doi.org/10.1186/s12967-016-1105-4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Grasa L, Abecia L, Forcén R, Castro M, de Jalón JAG, Latorre E, et al. Antibiotic-induced depletion of murine microbiota induces mild inflammation and changes in Toll-like receptor patterns and intestinal motility. Microb Ecol. 2015;70(3):835–48. https://doi.org/10.1007/s00248-015-0613-8.
Article
CAS
PubMed
Google Scholar
Kabouridis PS, Lasrado R, McCallum S, Chng SH, Snippert HJ, Clevers H, et al. Microbiota controls the homeostasis of glial cells in the gut lamina propria. Neuron. 2015;85(2):289–95. https://doi.org/10.1016/j.neuron.2014.12.037.
Article
CAS
PubMed
PubMed Central
Google Scholar
Obata Y, Castaño Á, Boeing S, Bon-Frauches AC, Fung C, Fallesen T, et al. Neuronal programming by microbiota regulates intestinal physiology. Nature. 2020;578(7794):284–9. https://doi.org/10.1038/s41586-020-1975-8.
Article
CAS
PubMed
Google Scholar
Yano JM, Yu K, Donaldson GP, Shastri GG, Ann P, Ma L, et al. Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis. Cell. 2015;161(2):264–76. https://doi.org/10.1016/j.cell.2015.02.047.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yarandi SS, Kulkarni S, Saha M, Sylvia KE, Sears CL, Pasricha PJ. Intestinal bacteria maintain adult enteric nervous system and nitrergic neurons via Toll-like receptor 2-induced neurogenesis in mice. Gastroenterology. 2020;159:200–213.e208.
Article
CAS
PubMed
Google Scholar
Yoon H, Schaubeck M, Lagkouvardos I, Blesl A, Heinzlmeir S, Hahne H, et al. Increased pancreatic protease activity in response to antibiotics impairs gut barrier and triggers colitis. Cell Mol Gastroenterol Hepatol. 2018;6:370–388.e373.
Article
PubMed
PubMed Central
Google Scholar
van Tilburg BE, Pettersen VK, Gutierrez MW, Laforest-Lapointe I, Jendzjowsky NG, Cavin J-B, et al. Intestinal fungi are causally implicated in microbiome assembly and immune development in mice. Nat Commun. 2020;11(1):2577. https://doi.org/10.1038/s41467-020-16431-1.
Article
CAS
Google Scholar
Parker EA, Roy T, D'Adamo CR, Wieland LS. Probiotics and gastrointestinal conditions: an overview of evidence from the Cochrane Collaboration. Nutrition. 2018;45:125–134.e111.
Article
PubMed
Google Scholar
Ooijevaar RE, Terveer EM, Verspaget HW, Kuijper EJ, Keller JJ. Clinical application and potential of fecal microbiota transplantation. Annu Rev Med. 2019;70(1):335–51. https://doi.org/10.1146/annurev-med-111717-122956.
Article
CAS
PubMed
Google Scholar
Akira S, Takeda K. Toll-like receptor signalling. Nat Rev Immunol. 2004;4(7):499–511. https://doi.org/10.1038/nri1391.
Article
CAS
PubMed
Google Scholar
Burgueño JF, Abreu MT. Epithelial Toll-like receptors and their role in gut homeostasis and disease. Nat Rev Gastroenterol Hepatol. 2020;17(5):263–78. https://doi.org/10.1038/s41575-019-0261-4.
Article
CAS
PubMed
Google Scholar
Brun P, Giron MC, Qesari M, Porzionato A, Caputi V, Zoppellaro C, et al. Toll-like receptor 2 regulates intestinal inflammation by controlling integrity of the enteric nervous system. Gastroenterology. 2013;145(6):1323–33. https://doi.org/10.1053/j.gastro.2013.08.047.
Article
CAS
PubMed
Google Scholar
Barajon I, Serrao G, Arnaboldi F, Opizzi E, Ripamonti G, Balsari A, et al. Toll-like receptors 3, 4, and 7 are expressed in the enteric nervous system and dorsal root ganglia. J Histochem Cytochem. 2009;57(11):1013–23. https://doi.org/10.1369/jhc.2009.953539.
Article
CAS
PubMed
PubMed Central
Google Scholar
Soret R, Chevalier J, De Coppet P, Poupeau G, Derkinderen P, Segain JP, et al. Short-chain fatty acids regulate the enteric neurons and control gastrointestinal motility in rats. Gastroenterology. 2010;138(5):1772–82. https://doi.org/10.1053/j.gastro.2010.01.053.
Article
CAS
PubMed
Google Scholar
Vincent AD, Wang XY, Parsons SP, Khan WI, Huizinga JD. Abnormal absorptive colonic motor activity in germ-free mice is rectified by butyrate, an effect possibly mediated by mucosal serotonin. Am J Physiol Gastrointest Liver Physiol. 2018;315(5):G896–g907. https://doi.org/10.1152/ajpgi.00237.2017.
Article
CAS
PubMed
Google Scholar
Reigstad CS, Salmonson CE, Rainey JF, Szurszewski JH, Linden DR, Sonnenburg JL, et al. Gut microbes promote colonic serotonin production through an effect of short-chain fatty acids on enterochromaffin cells. FASEB J. 2015;29(4):1395–403. https://doi.org/10.1096/fj.14-259598.
Article
CAS
PubMed
Google Scholar
Esquerre N, Basso L, Defaye M, Vicentini FA, Cluny N, Bihan D, et al. Colitis-induced microbial perturbation promotes postinflammatory visceral hypersensitivity. Cell Mol Gastroenterol Hepatol. 2020;10(2):225–44. https://doi.org/10.1016/j.jcmgh.2020.04.003.
Article
PubMed
PubMed Central
Google Scholar
Miller KA, Vicentini FA, Hirota SA, Sharkey KA, Wieser ME. Antibiotic treatment affects the expression levels of copper transporters and the isotopic composition of copper in the colon of mice. Proc Natl Acad Sci U S A. 2019;116(13):5955–60. https://doi.org/10.1073/pnas.1814047116.
Article
CAS
PubMed
PubMed Central
Google Scholar
Donaldson GP, Lee SM, Mazmanian SK. Gut biogeography of the bacterial microbiota. Nat Rev Microbiol. 2016;14(1):20–32. https://doi.org/10.1038/nrmicro3552.
Article
CAS
PubMed
Google Scholar
Mallon BS, Shick HE, Kidd GJ, Macklin WB. Proteolipid promoter activity distinguishes two populations of NG2-positive cells throughout neonatal cortical development. J Neurosci. 2002;22(3):876–85. https://doi.org/10.1523/JNEUROSCI.22-03-00876.2002.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rao M, Nelms BD, Dong L, Salinas-Rios V, Rutlin M, Gershon MD, et al. Enteric glia express proteolipid protein 1 and are a transcriptionally unique population of glia in the mammalian nervous system. Glia. 2015;63(11):2040–57. https://doi.org/10.1002/glia.22876.
Article
PubMed
PubMed Central
Google Scholar
Sharkey KA. Emerging roles for enteric glia in gastrointestinal disorders. J Clin Investig. 2015;125(3):918–25. https://doi.org/10.1172/JCI76303.
Article
PubMed
PubMed Central
Google Scholar
Kulkarni S, Micci MA, Leser J, Shin C, Tang SC, Fu YY, et al. Adult enteric nervous system in health is maintained by a dynamic balance between neuronal apoptosis and neurogenesis. Proc Natl Acad Sci U S A. 2017;114(18):E3709–e3718. https://doi.org/10.1073/pnas.1619406114.
Article
CAS
PubMed
PubMed Central
Google Scholar
Belkind-Gerson J, Graham HK, Reynolds J, Hotta R, Nagy N, Cheng L, et al. Colitis promotes neuronal differentiation of Sox2+ and PLP1+ enteric cells. Sci Rep. 2017;7(1):2525. https://doi.org/10.1038/s41598-017-02890-y.
Article
CAS
PubMed
PubMed Central
Google Scholar
Belkind-Gerson J, Hotta R, Nagy N, Thomas AR, Graham H, Cheng L, et al. Colitis induces enteric neurogenesis through a 5-HT4-dependent mechanism. Inflamm Bowel Dis. 2015;21(4):870–8. https://doi.org/10.1097/MIB.0000000000000326.
Article
PubMed
Google Scholar
Heanue TA, Pachnis V. Prospective identification and isolation of enteric nervous system progenitors using Sox2. Stem Cells. 2011;29(1):128–40. https://doi.org/10.1002/stem.557.
Article
CAS
PubMed
Google Scholar
Muller PA, Koscsó B, Rajani GM, Stevanovic K, Berres ML, Hashimoto D, et al. Crosstalk between muscularis macrophages and enteric neurons regulates gastrointestinal motility. Cell. 2014;158(2):300–13. https://doi.org/10.1016/j.cell.2014.04.050.
Article
CAS
PubMed
PubMed Central
Google Scholar
Smith PM, Howitt MR, Panikov N, Michaud M, Gallini CA, Bohlooly YM, et al. The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science. 2013;341(6145):569–73. https://doi.org/10.1126/science.1241165.
Article
CAS
PubMed
Google Scholar
Husebye E, Hellström PM, Sundler F, Chen J, Midtvedt T. Influence of microbial species on small intestinal myoelectric activity and transit in germ-free rats. Am J Physiol Gastrointest Liver Physiol. 2001;280(3):G368–80. https://doi.org/10.1152/ajpgi.2001.280.3.G368.
Article
CAS
PubMed
Google Scholar
Kashyap PC, Marcobal A, Ursell LK, Larauche M, Duboc H, Earle KA, et al. Complex interactions among diet, gastrointestinal transit, and gut microbiota in humanized mice. Gastroenterology. 2013;144(5):967–77. https://doi.org/10.1053/j.gastro.2013.01.047.
Article
PubMed
Google Scholar
Lomasney KW, Houston A, Shanahan F, Dinan TG, Cryan JF, Hyland NP. Selective influence of host microbiota on cAMP-mediated ion transport in mouse colon. Neurogastroenterol Motil. 2014;26(6):887–90. https://doi.org/10.1111/nmo.12328.
Article
CAS
PubMed
Google Scholar
Markle JG, Frank DN, Mortin-Toth S, Robertson CE, Feazel LM, Rolle-Kampczyk U, et al. Sex differences in the gut microbiome drive hormone-dependent regulation of autoimmunity. Science. 2013;339(6123):1084–8. https://doi.org/10.1126/science.1233521.
Article
CAS
PubMed
Google Scholar
Delungahawatta T, Amin JY, Stanisz AM, Bienenstock J, Forsythe P, Kunze WA. Antibiotic driven changes in gut motility suggest direct modulation of enteric nervous system. Front Neurosci. 2017;11:588. https://doi.org/10.3389/fnins.2017.00588.
Article
PubMed
PubMed Central
Google Scholar
Muller PA, Matheis F, Schneeberger M, Kerner Z, Jové V, Mucida D. Microbiota-modulated CART+ enteric neurons autonomously regulate blood glucose. Science. 2020;370(6514):314–21. https://doi.org/10.1126/science.abd6176.
Article
CAS
PubMed
PubMed Central
Google Scholar
Suez J, Zmora N, Zilberman-Schapira G, Mor U, Dori-Bachash M, Bashiardes S, et al. Post-antibiotic gut mucosal microbiome reconstitution is impaired by probiotics and improved by autologous FMT. Cell. 2018;174:1406–1423.e1416.
Article
CAS
PubMed
Google Scholar
Rakoff-Nahoum S, Paglino J, Eslami-Varzaneh F, Edberg S, Medzhitov R. Recognition of commensal microflora by toll-like receptors is required for intestinal homeostasis. Cell. 2004;118(2):229–41. https://doi.org/10.1016/j.cell.2004.07.002.
Article
CAS
PubMed
Google Scholar
Suzuki T, Yoshida S, Hara H. Physiological concentrations of short-chain fatty acids immediately suppress colonic epithelial permeability. Br J Nutr. 2008;100(2):297–305. https://doi.org/10.1017/S0007114508888733.
Article
CAS
PubMed
Google Scholar
Arpaia N, Campbell C, Fan X, Dikiy S, van der Veeken J, de Roos P, et al. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature. 2013;504(7480):451–5. https://doi.org/10.1038/nature12726.
Article
CAS
PubMed
PubMed Central
Google Scholar
Neunlist M, Toumi F, Oreschkova T, Denis M, Leborgne J, Laboisse CL, et al. Human ENS regulates the intestinal epithelial barrier permeability and a tight junction-associated protein ZO-1 via VIPergic pathways. Am J Physiol Gastrointest Liver Physiol. 2003;285(5):G1028–36. https://doi.org/10.1152/ajpgi.00066.2003.
Article
CAS
PubMed
Google Scholar
McVey Neufeld KA, Perez-Burgos A, Mao YK, Bienenstock J, Kunze WA. The gut microbiome restores intrinsic and extrinsic nerve function in germ-free mice accompanied by changes in calbindin. Neurogastroenterol Motil. 2015;27(5):627–36. https://doi.org/10.1111/nmo.12534.
Article
CAS
PubMed
Google Scholar
De Vadder F, Grasset E, Mannerås Holm L, Karsenty G, Macpherson AJ, Olofsson LE, et al. Gut microbiota regulates maturation of the adult enteric nervous system via enteric serotonin networks. Proc Natl Acad Sci U S A. 2018;115(25):6458–63. https://doi.org/10.1073/pnas.1720017115.
Article
CAS
PubMed
PubMed Central
Google Scholar
Laranjeira C, Sandgren K, Kessaris N, Richardson W, Potocnik A, Vanden Berghe P, et al. Glial cells in the mouse enteric nervous system can undergo neurogenesis in response to injury. J Clin Investig. 2011;121(9):3412–24. https://doi.org/10.1172/JCI58200.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gonçalves JT, Schafer ST, Gage FH. Adult neurogenesis in the hippocampus: from stem cells to behavior. Cell. 2016;167(4):897–914. https://doi.org/10.1016/j.cell.2016.10.021.
Article
CAS
PubMed
Google Scholar
Joseph NM, He S, Quintana E, Kim Y-G, Núñez G, Morrison SJ. Enteric glia are multipotent in culture but primarily form glia in the adult rodent gut. J Clin Investig. 2011;121(9):3398–411. https://doi.org/10.1172/JCI58186.
Article
CAS
PubMed
PubMed Central
Google Scholar
Suárez-Rodríguez R, Belkind-Gerson J. Cultured nestin–positive cells from postnatal mouse small bowel differentiate ex vivo into neurons, glia, and smooth muscle. Stem Cells. 2004;22(7):1373–85. https://doi.org/10.1634/stemcells.2003-0049.
Article
PubMed
Google Scholar
Takaki M, Goto K, Kawahara I, Nabekura J. Activation of 5-HT4 receptors facilitates neurogenesis of injured enteric neurons at an anastomosis in the lower gut. J Smooth Muscle Res. 2015;51(0):82–94. https://doi.org/10.1540/jsmr.51.82.
Article
PubMed
PubMed Central
Google Scholar
Gershon MD. Behind an enteric neuron there may lie a glial cell. J Clin Invest. 2011;121(9):3386–9. https://doi.org/10.1172/JCI59573.
Article
CAS
PubMed
PubMed Central
Google Scholar
Belkind-Gerson J, Carreon-Rodriguez A, Benedict LA, Steiger C, Pieretti A, Nagy N, et al. Nestin-expressing cells in the gut give rise to enteric neurons and glial cells. Neurogastroenterol Motil. 2013;25:61–69.e67.
Article
CAS
PubMed
Google Scholar
Matheis F, Muller PA, Graves CL, Gabanyi I, Kerner ZJ, Costa-Borges D, et al. Adrenergic signaling in muscularis macrophages limits infection-induced neuronal loss. Cell. 2020;180:64–78.e16.
Article
CAS
PubMed
PubMed Central
Google Scholar
Obata Y, Pachnis V. The effect of microbiota and the immune system on the development and organization of the enteric nervous system. Gastroenterology. 2016;151(5):836–44. https://doi.org/10.1053/j.gastro.2016.07.044.
Article
CAS
PubMed
Google Scholar
Hyland NP, Cryan JF. Microbe-host interactions: influence of the gut microbiota on the enteric nervous system. Dev Biol. 2016;417(2):182–7. https://doi.org/10.1016/j.ydbio.2016.06.027.
Article
CAS
PubMed
Google Scholar
Caputi V, Marsilio I, Cerantola S, Roozfarakh M, Lante I, Galuppini F, et al. Toll-like receptor 4 modulates small intestine neuromuscular function through nitrergic and purinergic pathways. Front Pharmacol. 2017;8:350. https://doi.org/10.3389/fphar.2017.00350.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li ZX, Li QY, Qiao J, Lu CZ, Xiao BG. Granulocyte-colony stimulating factor is involved in low-dose LPS-induced neuroprotection. Neurosci Lett. 2009;465(2):128–32. https://doi.org/10.1016/j.neulet.2009.08.069.
Article
CAS
PubMed
Google Scholar
Schuster A, Klotz M, Schwab T, Di Liddo R, Bertalot T, Schrenk S, et al. Maintenance of the enteric stem cell niche by bacterial lipopolysaccharides? Evidence and perspectives. J Cell Mol Med. 2014;18(7):1429–43. https://doi.org/10.1111/jcmm.12292.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rolls A, Shechter R, London A, Ziv Y, Ronen A, Levy R, et al. Toll-like receptors modulate adult hippocampal neurogenesis. Nat Cell Biol. 2007;9(9):1081–8. https://doi.org/10.1038/ncb1629.
Article
CAS
PubMed
Google Scholar
Liu M-T, Kuan Y-H, Wang J, Hen R, Gershon MD. 5-HT4 receptor-mediated neuroprotection and neurogenesis in the enteric nervous system of adult mice. J Neurosci. 2009;29(31):9683–99. https://doi.org/10.1523/JNEUROSCI.1145-09.2009.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nøhr MK, Pedersen MH, Gille A, Egerod KL, Engelstoft MS, Husted AS, et al. GPR41/FFAR3 and GPR43/FFAR2 as cosensors for short-chain fatty acids in enteroendocrine cells vs FFAR3 in enteric neurons and FFAR2 in enteric leukocytes. Endocrinology. 2013;154(10):3552–64. https://doi.org/10.1210/en.2013-1142.
Article
CAS
PubMed
Google Scholar
Hayes CL, Dong J, Galipeau HJ, Jury J, McCarville J, Huang X, et al. Commensal microbiota induces colonic barrier structure and functions that contribute to homeostasis. Sci Rep. 2018;8(1):14184. https://doi.org/10.1038/s41598-018-32366-6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Guo S, Nighot M, Al-Sadi R, Alhmoud T, Nighot P, Ma TY. Lipopolysaccharide regulation of intestinal tight junction permeability is mediated by TLR4 signal transduction pathway activation of FAK and MyD88. J Immunol. 2015;195(10):4999–5010. https://doi.org/10.4049/jimmunol.1402598.
Article
CAS
PubMed
Google Scholar
Tulstrup MV-L, Christensen EG, Carvalho V, Linninge C, Ahrné S, Højberg O, et al. Antibiotic treatment affects intestinal permeability and gut microbial composition in Wistar rats dependent on antibiotic class. PloS One. 2015;10(12):e0144854. https://doi.org/10.1371/journal.pone.0144854.
Article
CAS
PubMed
PubMed Central
Google Scholar
Reikvam DH, Erofeev A, Sandvik A, Grcic V, Jahnsen FL, Gaustad P, et al. Depletion of murine intestinal microbiota: effects on gut mucosa and epithelial gene expression. PLoS One. 2011;6(3):e17996. https://doi.org/10.1371/journal.pone.0017996.
Article
CAS
PubMed
PubMed Central
Google Scholar
Erny D, Hrabě de Angelis AL, Jaitin D, Wieghofer P, Staszewski O, David E, et al. Host microbiota constantly control maturation and function of microglia in the CNS. Nat Neurosci. 2015;18(7):965–77. https://doi.org/10.1038/nn.4030.
Article
CAS
PubMed
PubMed Central
Google Scholar
Colombo AV, Sadler RK, Llovera G, Singh V, Roth S, Heindl S, et al. Microbiota-derived short chain fatty acids modulate microglia and promote Aβ plaque deposition. Elife. 2021;10:e59826. https://doi.org/10.7554/eLife.59826.
Article
PubMed
PubMed Central
Google Scholar
Barman M, Unold D, Shifley K, Amir E, Hung K, Bos N, et al. Enteric salmonellosis disrupts the microbial ecology of the murine gastrointestinal tract. Infect Immun. 2008;76(3):907–15. https://doi.org/10.1128/IAI.01432-07.
Article
CAS
PubMed
Google Scholar