Trompette A, Gollwitzer ES, Yadava K, Sichelstiel AK, Sprenger N, Ngom-Bru C, et al. Gut microbiota metabolism of dietary fiber influences allergic airway disease and hematopoiesis. Nat Med. 2014;20(2):159–66. https://doi.org/10.1038/nm.3444.
Article
CAS
PubMed
Google Scholar
Backhed F, Fraser CM, Ringel Y, Sanders ME, Sartor RB, Sherman PM, et al. Defining a healthy human gut microbiome: current concepts, future directions, and clinical applications. Cell Host Microbe. 2012;12(5):611–22. https://doi.org/10.1016/j.chom.2012.10.012.
Article
CAS
PubMed
Google Scholar
Petersen C, Round JL. Defining dysbiosis and its influence on host immunity and disease. Cell Microbiol. 2014;16(7):1024–33. https://doi.org/10.1111/cmi.12308.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hsiao EY, McBride SW, Hsien S, Sharon G, Hyde ER, McCue T, et al. Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders. Cell. 2013;155(7):1451–63. https://doi.org/10.1016/j.cell.2013.11.024.
Article
CAS
PubMed
PubMed Central
Google Scholar
Garrett WS. Cancer and the microbiota. Science. 2015;348(6230):80–6. https://doi.org/10.1126/science.aaa4972.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ley RE, Backhed F, Turnbaugh P, Lozupone CA, Knight RD, Gordon JI. Obesity alters gut microbial ecology. Proc Natl Acad Sci U S A. 2005;102(31):11070–5. https://doi.org/10.1073/pnas.0504978102.
Article
CAS
PubMed
PubMed Central
Google Scholar
Khan MJ, Gerasimidis K, Edwards CA, Shaikh MG. Role of gut microbiota in the aetiology of obesity: proposed mechanisms and review of the literature. J Obes. 2016;2016:7353642.
PubMed
PubMed Central
Google Scholar
Hildebrandt MA, Hoffmann C, Sherrill-Mix SA, Keilbaugh SA, Hamady M, Chen YY, et al. High-fat diet determines the composition of the murine gut microbiome independently of obesity. Gastroenterology. 2009;137(5):):1716–24 e1711-1712.
Article
CAS
Google Scholar
Turnbaugh PJ, Ridaura VK, Faith JJ, Rey FE, Knight R, Gordon JI. The effect of diet on the human gut microbiome: a metagenomic analysis in humanized gnotobiotic mice. Sci Transl Med. 2009;1(6):6ra14.
Article
PubMed
PubMed Central
Google Scholar
Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature. 2010;464(7285):59–65. https://doi.org/10.1038/nature08821.
Article
CAS
PubMed
PubMed Central
Google Scholar
Costea PI, Hildebrand F, Arumugam M, Backhed F, Blaser MJ, Bushman FD, et al. Enterotypes in the landscape of gut microbial community composition. Nat Microbiol. 2018;3(1):8–16. https://doi.org/10.1038/s41564-017-0072-8.
Article
CAS
PubMed
Google Scholar
Wu GD, Chen J, Hoffmann C, Bittinger K, Chen YY, Keilbaugh SA, et al. Linking long-term dietary patterns with gut microbial enterotypes. Science. 2011;334(6052):105–8. https://doi.org/10.1126/science.1208344.
Article
CAS
PubMed
PubMed Central
Google Scholar
De Filippo C, Cavalieri D, Di Paola M, Ramazzotti M, Poullet JB, Massart S, et al. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci U S A. 2010;107(33):14691–6. https://doi.org/10.1073/pnas.1005963107.
Article
PubMed
PubMed Central
Google Scholar
De Filippis F, Pellegrini N, Vannini L, Jeffery IB, La Storia A, Laghi L, et al. High-level adherence to a Mediterranean diet beneficially impacts the gut microbiota and associated metabolome. Gut. 2016;65(11):1812–21. https://doi.org/10.1136/gutjnl-2015-309957.
Article
CAS
PubMed
Google Scholar
Lloyd-Price J, Abu-Ali G, Huttenhower C. The healthy human microbiome. Genome Med. 2016;8(1):51. https://doi.org/10.1186/s13073-016-0307-y.
Article
PubMed
PubMed Central
Google Scholar
Ley RE, Turnbaugh PJ, Klein S, Gordon JI. Microbial ecology: human gut microbes associated with obesity. Nature. 2006;444(7122):1022–3. https://doi.org/10.1038/4441022a.
Article
CAS
PubMed
Google Scholar
Newman TM, Vitolins MZ, Cook KL. From the table to the tumor: the role of Mediterranean and Western dietary patterns in shifting microbial-mediated signaling to impact breast cancer risk. Nutrients. 2019;11(11):2565-80.
Nagpal R, Shively CA, Appt SA, Register TC, Michalson KT, Vitolins MZ, et al. Gut microbiome composition in non-human primates consuming a Western or Mediterranean diet. Front Nutr. 2018;5:28. https://doi.org/10.3389/fnut.2018.00028.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yasuda K, Oh K, Ren B, Tickle TL, Franzosa EA, Wachtman LM, et al. Biogeography of the intestinal mucosal and lumenal microbiome in the rhesus macaque. Cell Host Microbe. 2015;17(3):385–91. https://doi.org/10.1016/j.chom.2015.01.015.
Article
CAS
PubMed
PubMed Central
Google Scholar
Clayton JB, Vangay P, Huang H, Ward T, Hillmann BM, Al-Ghalith GA, et al. Captivity humanizes the primate microbiome. Proc Natl Acad Sci U S A. 2016;113(37):10376–81. https://doi.org/10.1073/pnas.1521835113.
Article
CAS
PubMed
PubMed Central
Google Scholar
Aagaard K, Petrosino J, Keitel W, Watson M, Katancik J, Garcia N, et al. The Human Microbiome Project strategy for comprehensive sampling of the human microbiome and why it matters. FASEB J. 2013;27(3):1012–22. https://doi.org/10.1096/fj.12-220806.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jovel J, Patterson J, Wang W, Hotte N, O'Keefe S, Mitchel T, et al. Characterization of the gut microbiome using 16S or shotgun metagenomics. Front Microbiol. 2016;7:459.
Article
PubMed
PubMed Central
Google Scholar
Norman JM, Handley SA, Virgin HW. Kingdom-agnostic metagenomics and the importance of complete characterization of enteric microbial communities. Gastroenterology. 2014;146(6):1459–69. https://doi.org/10.1053/j.gastro.2014.02.001.
Article
CAS
PubMed
Google Scholar
Shively CA, Register TC, Appt SE, Clarkson TB, Uberseder B, Clear KYJ, et al. Consumption of Mediterranean versus Western diet leads to distinct mammary gland microbiome populations: implications for breast cancer. Cell Reports. 2018;25(1):47–56. https://doi.org/10.1016/j.celrep.2018.08.078.
Article
CAS
PubMed
Google Scholar
Shively CA, Appt SE, Vitolins MZ, Uberseder B, Michalson KT, Silverstein-Metzler MG, et al. Mediterranean versus Western diet effects on caloric intake, obesity, metabolism, and hepatosteatosis in nonhuman primates. Obesity (Silver Spring). 2019;27(5):777–84. https://doi.org/10.1002/oby.22436.
Article
CAS
Google Scholar
Anantharamaiah GM, Garber DW, Goldberg D, Morrel E, Datta G, Palgunachari MN, et al. Novel fatty acyl apoE mimetic peptides have increased potency to reduce plasma cholesterol in mice and macaques. J Lipid Res. 2018;59(11):2075–83. https://doi.org/10.1194/jlr.M085985.
Article
CAS
PubMed
PubMed Central
Google Scholar
Connelly S, Fanelli B, Hasan NA, Colwell RR, Kaleko M. Oral beta-lactamase protects the canine gut microbiome from oral amoxicillin-mediated damage. Microorganisms. 2019;7(5):150.
Leonard MM, Karathia H, Pujolassos M, Troisi J, Valitutti F, Subramanian P, et al. Multi-omics analysis reveals the influence of genetic and environmental risk factors on developing gut microbiota in infants at risk of celiac disease. Microbiome. 2020;8(1):130. https://doi.org/10.1186/s40168-020-00906-w.
Article
PubMed
PubMed Central
Google Scholar
Ottesen A, Ramachandran P, Reed E, White JR, Hasan N, Subramanian P, et al. Enrichment dynamics of Listeria monocytogenes and the associated microbiome from naturally contaminated ice cream linked to a listeriosis outbreak. BMC Microbiol. 2016;16(1):275. https://doi.org/10.1186/s12866-016-0894-1.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ponnusamy D, Kozlova EV, Sha J, Erova TE, Azar SR, Fitts EC, et al. Cross-talk among flesh-eating Aeromonas hydrophila strains in mixed infection leading to necrotizing fasciitis. Proc Natl Acad Sci U S A. 2016;113(3):722–7. https://doi.org/10.1073/pnas.1523817113.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hasan NA, Young BA, Minard-Smith AT, Saeed K, Li H, Heizer EM, et al. Microbial community profiling of human saliva using shotgun metagenomic sequencing. PLoS One. 2014;9(5):e97699. https://doi.org/10.1371/journal.pone.0097699.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lax S, Smith DP, Hampton-Marcell J, Owens SM, Handley KM, Scott NM, et al. Longitudinal analysis of microbial interaction between humans and the indoor environment. Science. 2014;345(6200):1048–52. https://doi.org/10.1126/science.1254529.
Article
CAS
PubMed
PubMed Central
Google Scholar
Garcia-Mantrana I, Selma-Royo M, Alcantara C, Collado MC. Shifts on gut microbiota associated to Mediterranean diet adherence and specific dietary intakes on general adult population. Front Microbiol. 2018;9:890. https://doi.org/10.3389/fmicb.2018.00890.
Article
PubMed
PubMed Central
Google Scholar
Nagpal R, Wang S, Solberg Woods LC, Seshie O, Chung ST, Shively CA, et al. Comparative microbiome signatures and short-chain fatty acids in mouse, rat, non-human primate, and human feces. Front Microbiol. 2018;9:2897. https://doi.org/10.3389/fmicb.2018.02897.
Article
PubMed
PubMed Central
Google Scholar
Amato KR, Yeoman CJ, Cerda G, Schmitt CA, Cramer JD, Miller ME, et al. Variable responses of human and non-human primate gut microbiomes to a Western diet. Microbiome. 2015;3(1):53. https://doi.org/10.1186/s40168-015-0120-7.
Article
PubMed
PubMed Central
Google Scholar
Tett A, Huang KD, Asnicar F, Fehlner-Peach H, Pasolli E, Karcher N, et al. The Prevotella copri complex comprises four distinct clades underrepresented in Westernized populations. Cell Host Microbe. 2019;26(5):666–79 e667. https://doi.org/10.1016/j.chom.2019.08.018.
Article
CAS
PubMed
PubMed Central
Google Scholar
De Vadder F, Kovatcheva-Datchary P, Zitoun C, Duchampt A, Backhed F, Mithieux G. Microbiota-produced succinate improves glucose homeostasis via intestinal gluconeogenesis. Cell Metab. 2016;24(1):151–7. https://doi.org/10.1016/j.cmet.2016.06.013.
Article
CAS
PubMed
Google Scholar
Kovatcheva-Datchary P, Nilsson A, Akrami R, Lee YS, De Vadder F, Arora T, et al. Dietary fiber-induced improvement in glucose metabolism is associated with increased abundance of Prevotella. Cell Metab. 2015;22(6):971–82. https://doi.org/10.1016/j.cmet.2015.10.001.
Article
CAS
PubMed
Google Scholar
Scher JU, Sczesnak A, Longman RS, Segata N, Ubeda C, Bielski C, et al. Expansion of intestinal Prevotella copri correlates with enhanced susceptibility to arthritis. Elife. 2013;2:e01202. https://doi.org/10.7554/eLife.01202.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wen C, Zheng Z, Shao T, Liu L, Xie Z, Le Chatelier E, et al. Quantitative metagenomics reveals unique gut microbiome biomarkers in ankylosing spondylitis. Genome Biol. 2017;18(1):142. https://doi.org/10.1186/s13059-017-1271-6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pedersen HK, Gudmundsdottir V, Nielsen HB, Hyotylainen T, Nielsen T, Jensen BA, et al. Human gut microbes impact host serum metabolome and insulin sensitivity. Nature. 2016;535(7612):376–81. https://doi.org/10.1038/nature18646.
Article
CAS
PubMed
Google Scholar
Li J, Zhao F, Wang Y, Chen J, Tao J, Tian G, et al. Gut microbiota dysbiosis contributes to the development of hypertension. Microbiome. 2017;5(1):14. https://doi.org/10.1186/s40168-016-0222-x.
Article
PubMed
PubMed Central
Google Scholar
Hatton GB, Yadav V, Basit AW, Merchant HA. Animal farm: considerations in animal gastrointestinal physiology and relevance to drug delivery in humans. J Pharm Sci. 2015;104(9):2747–76. https://doi.org/10.1002/jps.24365.
Article
CAS
PubMed
Google Scholar
Chung WS, Walker AW, Louis P, Parkhill J, Vermeiren J, Bosscher D, et al. Modulation of the human gut microbiota by dietary fibres occurs at the species level. BMC Biol. 2016;14(1):3. https://doi.org/10.1186/s12915-015-0224-3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ilhan ZE, Marcus AK, Kang DW, Rittmann BE, Krajmalnik-Brown R. pH-mediated microbial and metabolic interactions in fecal enrichment cultures. mSphere. 2017;2(3):e00047-17.
Kianoush N, Adler CJ, Nguyen KA, Browne GV, Simonian M, Hunter N. Bacterial profile of dentine caries and the impact of pH on bacterial population diversity. PLoS One. 2014;9(3):e92940. https://doi.org/10.1371/journal.pone.0092940.
Article
CAS
PubMed
PubMed Central
Google Scholar
Devillard E, McIntosh FM, Duncan SH, Wallace RJ. Metabolism of linoleic acid by human gut bacteria: different routes for biosynthesis of conjugated linoleic acid. J Bacteriol. 2007;189(6):2566–70. https://doi.org/10.1128/JB.01359-06.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wanders AJ, Brouwer IA, Siebelink E, Katan MB. Effect of a high intake of conjugated linoleic acid on lipoprotein levels in healthy human subjects. PLoS One. 2010;5(2):e9000. https://doi.org/10.1371/journal.pone.0009000.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yassour M, Lim MY, Yun HS, Tickle TL, Sung J, Song YM, et al. Sub-clinical detection of gut microbial biomarkers of obesity and type 2 diabetes. Genome Med. 2016;8(1):17. https://doi.org/10.1186/s13073-016-0271-6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kepka A, Kuroczycka-Saniutycz E, Chojnowska S, Filonowicz R, Korzeniecka-Kozerska A, Wasilewska A. Urine L-carnitine excretion in hypertensive adolescents. Ir J Med Sci. 2015;184(1):219–25. https://doi.org/10.1007/s11845-014-1091-6.
Article
CAS
PubMed
Google Scholar
Haschke M, Vitins T, Lude S, Todesco L, Novakova K, Herrmann R, et al. Urinary excretion of carnitine as a marker of proximal tubular damage associated with platin-based antineoplastic drugs. Nephrol Dial Transplant. 2010;25(2):426–33. https://doi.org/10.1093/ndt/gfp456.
Article
CAS
PubMed
Google Scholar
Tain YL, Hsu CN. Toxic dimethylarginines: asymmetric dimethylarginine (ADMA) and symmetric dimethylarginine (SDMA). Toxins (Basel). 2017;9(3):92.
Taylor SL, Ganti S, Bukanov NO, Chapman A, Fiehn O, Osier M, et al. A metabolomics approach using juvenile cystic mice to identify urinary biomarkers and altered pathways in polycystic kidney disease. Am J Physiol Renal Physiol. 2010;298(4):F909–22. https://doi.org/10.1152/ajprenal.00722.2009.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hanifa MA, Skott M, Maltesen RG, Rasmussen BS, Nielsen S, Frokiaer J, et al. Tissue, urine and blood metabolite signatures of chronic kidney disease in the 5/6 nephrectomy rat model. Metabolomics. 2019;15(8):112. https://doi.org/10.1007/s11306-019-1569-3.
Article
CAS
PubMed
Google Scholar
Toyohara T, Akiyama Y, Suzuki T, Takeuchi Y, Mishima E, Tanemoto M, et al. Metabolomic profiling of uremic solutes in CKD patients. Hypertens Res. 2010;33(9):944–52. https://doi.org/10.1038/hr.2010.113.
Article
PubMed
Google Scholar
Pietzner M, Kaul A, Henning AK, Kastenmuller G, Artati A, Lerch MM, et al. Comprehensive metabolic profiling of chronic low-grade inflammation among generally healthy individuals. BMC Med. 2017;15(1):210. https://doi.org/10.1186/s12916-017-0974-6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zandkarimi F, Vanegas J, Fern X, Maier CS, Bobe G. Metabotypes with elevated protein and lipid catabolism and inflammation precede clinical mastitis in prepartal transition dairy cows. J Dairy Sci. 2018;101(6):5531–48. https://doi.org/10.3168/jds.2017-13977.
Article
CAS
PubMed
PubMed Central
Google Scholar
Prentice KJ, Luu L, Allister EM, Liu Y, Jun LS, Sloop KW, et al. The furan fatty acid metabolite CMPF is elevated in diabetes and induces beta cell dysfunction. Cell Metab. 2014;19(4):653–66. https://doi.org/10.1016/j.cmet.2014.03.008.
Article
CAS
PubMed
Google Scholar
Prentice KJ, Wendell SG, Liu Y, Eversley JA, Salvatore SR, Mohan H, et al. CMPF, a metabolite formed upon prescription omega-3-acid ethyl ester supplementation, prevents and reverses steatosis. EBioMedicine. 2018;27:200–13. https://doi.org/10.1016/j.ebiom.2017.12.019.
Article
PubMed
Google Scholar
Naruszewicz M, Johansson ML, Zapolska-Downar D, Bukowska H. Effect of Lactobacillus plantarum 299v on cardiovascular disease risk factors in smokers. Am J Clin Nutr. 2002;76(6):1249–55. https://doi.org/10.1093/ajcn/76.6.1249.
Article
CAS
PubMed
Google Scholar
Usman HA. Effect of administration of Lactobacillus gasseri on serum lipids and fecal steroids in hypercholesterolemic rats. J Dairy Sci. 2000;83(8):1705–11. https://doi.org/10.3168/jds.S0022-0302(00)75039-9.
Article
CAS
PubMed
Google Scholar
Kumar R, Grover S, Batish VK. Bile salt hydrolase (Bsh) activity screening of Lactobacilli: in vitro selection of indigenous Lactobacillus strains with potential bile salt hydrolysing and cholesterol-lowering ability. Probiotics Antimicrob Proteins. 2012;4(3):162–72. https://doi.org/10.1007/s12602-012-9101-3.
Article
CAS
PubMed
Google Scholar
London LE, Kumar AH, Wall R, Casey PG, O'Sullivan O, Shanahan F, et al. Exopolysaccharide-producing probiotic Lactobacilli reduce serum cholesterol and modify enteric microbiota in ApoE-deficient mice. J Nutr. 2014;144(12):1956–62. https://doi.org/10.3945/jn.114.191627.
Article
CAS
PubMed
Google Scholar
Qu T, Yang L, Wang Y, Jiang B, Shen M, Ren D. Reduction of serum cholesterol and its mechanism by Lactobacillus plantarum H6 screened from local fermented food products. Food Funct. 2020;11(2):1397–409. https://doi.org/10.1039/C9FO02478F.
Article
CAS
PubMed
Google Scholar
Gauffin Cano P, Santacruz A, Moya A, Sanz Y. Bacteroides uniformis CECT 7771 ameliorates metabolic and immunological dysfunction in mice with high-fat-diet induced obesity. PLoS One. 2012;7(7):e41079. https://doi.org/10.1371/journal.pone.0041079.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fernandez-Murga ML, Sanz Y. Safety assessment of bacteroides uniformis CECT 7771 isolated from stools of healthy breast-fed infants. PLoS One. 2016;11(1):e0145503. https://doi.org/10.1371/journal.pone.0145503.
Article
CAS
PubMed
PubMed Central
Google Scholar
Riviere A, Selak M, Lantin D, Leroy F, De Vuyst L. Bifidobacteria and butyrate-producing colon bacteria: importance and strategies for their stimulation in the human gut. Front Microbiol. 2016;7:979.
Article
PubMed
PubMed Central
Google Scholar
Rinninella E, Raoul P, Cintoni M, Franceschi F, Miggiano GAD, Gasbarrini A, et al. What is the healthy gut microbiota composition? A changing ecosystem across age, environment, diet, and diseases. Microorganisms. 2019;7(1):14.
Wikoff WR, Anfora AT, Liu J, Schultz PG, Lesley SA, Peters EC, et al. Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites. Proc Natl Acad Sci U S A. 2009;106(10):3698–703. https://doi.org/10.1073/pnas.0812874106.
Article
PubMed
PubMed Central
Google Scholar
Jennis M, Cavanaugh CR, Leo GC, Mabus JR, Lenhard J, Hornby PJ. Microbiota-derived tryptophan indoles increase after gastric bypass surgery and reduce intestinal permeability in vitro and in vivo. Neurogastroenterol Motil. 2018;30(2):e13178.
Estruch R, Ros E, Martinez-Gonzalez MA. Mediterranean diet for primary prevention of cardiovascular disease. N Engl J Med. 2013;369(7):676–7. https://doi.org/10.1056/NEJMc1306659.
Article
PubMed
Google Scholar
Urpi-Sarda M, Casas R, Chiva-Blanch G, Romero-Mamani ES, Valderas-Martinez P, Salas-Salvado J, et al. The Mediterranean diet pattern and its main components are associated with lower plasma concentrations of tumor necrosis factor receptor 60 in patients at high risk for cardiovascular disease. J Nutr. 2012;142(6):1019–25. https://doi.org/10.3945/jn.111.148726.
Article
CAS
PubMed
Google Scholar
Sureda A, Bibiloni MDM, Julibert A, Bouzas C, Argelich E, Llompart I, et al. Adherence to the Mediterranean diet and inflammatory markers. Nutrients. 2018;10(1):62.
Esposito K, Marfella R, Ciotola M, Di Palo C, Giugliano F, Giugliano G, et al. Effect of a mediterranean-style diet on endothelial dysfunction and markers of vascular inflammation in the metabolic syndrome: a randomized trial. JAMA. 2004;292(12):1440–6. https://doi.org/10.1001/jama.292.12.1440.
Article
CAS
PubMed
Google Scholar
Llorente-Cortes V, Estruch R, Mena MP, Ros E, Gonzalez MA, Fito M, et al. Effect of Mediterranean diet on the expression of pro-atherogenic genes in a population at high cardiovascular risk. Atherosclerosis. 2010;208(2):442–50. https://doi.org/10.1016/j.atherosclerosis.2009.08.004.
Article
CAS
PubMed
Google Scholar