Salter SJ, Cox MJ, Turek EM, Calus ST, Cookson WO, Moffatt MF, et al. Reagent and laboratory contamination can critically impact sequence-based microbiome analyses. BMC Biol. 2014;12(1):87. https://doi.org/10.1186/s12915-014-0087-z.
Article
CAS
PubMed
PubMed Central
Google Scholar
Biesbroek G, Sanders EAM, Roeselers G, Wang X, Caspers MPM, Trzciński K, et al. Deep sequencing analyses of low density microbial communities: working at the boundary of accurate microbiota detection. PLoS ONE. 2012;7(3):e32942. https://doi.org/10.1371/journal.pone.0032942.
Article
CAS
PubMed
PubMed Central
Google Scholar
The Lancet Infectious Diseases. Microbiome studies and “blue whales in the Himalayas”. Lancet Infect Dis. 2018;18(9):925. https://doi.org/10.1016/S1473-3099(18)30503-6.
Article
CAS
PubMed
Google Scholar
Lauder AP, Roche AM, Sherrill-Mix S, Bailey A, Laughlin AL, Bittinger K, et al. Comparison of placenta samples with contamination controls does not provide evidence for a distinct placenta microbiota. Microbiome. 2016;4(1):29. https://doi.org/10.1186/s40168-016-0172-3.
Article
PubMed
PubMed Central
Google Scholar
Leiby JS, McCormick K, Sherrill-Mix S, Clarke EL, Kessler LR, Taylor LJ, et al. Lack of detection of a human placenta microbiome in samples from preterm and term deliveries. Microbiome. 2018;6(1):196. https://doi.org/10.1186/s40168-018-0575-4.
Article
PubMed
PubMed Central
Google Scholar
Dickson RP, Erb-Downward JR, Falkowski NR, Hunter EM, Ashley SL, Huffnagle GB. The lung microbiota of healthy mice are highly variable, cluster by environment, and reflect variation in baseline lung innate immunity. Am J Respir Crit Care Med. 2018;198(4):497–508. https://doi.org/10.1164/rccm.201711-2180OC.
Article
CAS
PubMed
PubMed Central
Google Scholar
Segal LN, Alekseyenko AV, Clemente JC, Kulkarni R, Wu B, Chen H, et al. Enrichment of lung microbiome with supraglottic taxa is associated with increased pulmonary inflammation. Microbiome. 2013;1(1):19. https://doi.org/10.1186/2049-2618-1-19.
Article
PubMed
PubMed Central
Google Scholar
Segal LN, Clemente JC, Tsay J-CJ, Koralov SB, Keller BC, Wu BG, et al. Enrichment of the lung microbiome with oral taxa is associated with lung inflammation of a Th17 phenotype. Nat Microbiol. 2016;1(5):16031. https://doi.org/10.1038/nmicrobiol.2016.31.
Article
CAS
PubMed
PubMed Central
Google Scholar
Charlson ES, Bittinger K, Haas AR, Fitzgerald AS, Frank I, Yadav A, et al. Topographical continuity of bacterial populations in the healthy human respiratory tract. Am J Respir Crit Care Med. 2011;184(8):957–63. https://doi.org/10.1164/rccm.201104-0655OC.
Article
PubMed
PubMed Central
Google Scholar
Charlson ES, Bittinger K, Chen J, Diamond JM, Li H, Collman RG, et al. Assessing bacterial populations in the lung by replicate analysis of samples from the upper and lower respiratory tracts. PLoS ONE. 2012;7(9):e42786. https://doi.org/10.1371/journal.pone.0042786.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dickson RP, Erb-Downward JR, Freeman CM, McCloskey L, Beck JM, Huffnagle GB, et al. Spatial variation in the healthy human lung microbiome and the adapted island model of lung biogeography. Ann Am Thorac Soc. 2015;12(6):821–30. https://doi.org/10.1513/AnnalsATS.201501-029OC.
Article
PubMed
PubMed Central
Google Scholar
Dickson RP, Erb-Downward JR, Freeman CM, McCloskey L, Falkowski NR, Huffnagle GB, et al. Bacterial topography of the healthy human lower respiratory tract. mBio. 2017;8(1):e02287–16. https://doi.org/10.1128/mBio.02287-16.
Article
PubMed
PubMed Central
Google Scholar
Sulaiman I, Wu BG, Li Y, Tsay J-C, Sauthoff M, Scott AS, et al. Functional lower airways genomic profiling of the microbiome to capture active microbial metabolism. Eur Respir J. 2021;2003434:2003434. https://doi.org/10.1183/13993003.03434-2020.
Article
Google Scholar
Wu BG, Sulaiman I, Tsay J-CJ, Perez L, Franca B, Li Y, et al. Episodic aspiration with oral commensals induces a MyD88-dependent, pulmonary Th17 response that mitigates susceptibility to Streptococcus pneumoniae. Am J Respir Crit Care Med. 2020;Epub ahead of print. https://doi.org/10.1164/rccm.202005-1596OC.
Mac Aogáin M, Baker JM, Dickson RP. On bugs and blowholes: why is aspiration the rule, not the exception? Am J Respir Crit Care Med. 2021;Epub ahead of print. https://doi.org/10.1164/rccm.202011-4257ED.
Dickson RP, Erb-Downward JR, Prescott HC, Martinez FJ, Curtis JL, Lama VN, et al. Intraalveolar catecholamines and the human lung microbiome. Am J Respir Crit Care Med. 2015;192(2):257–9. https://doi.org/10.1164/rccm.201502-0326LE.
Article
PubMed
PubMed Central
Google Scholar
Wang J, Lesko M, Badri MH, Kapoor BC, Wu BG, Li Y, et al. Lung microbiome and host immune tone in subjects with idiopathic pulmonary fibrosis treated with inhaled interferon-γ. ERJ Open Res. 2017;3(3):00008–2017. https://doi.org/10.1183/23120541.00008-2017.
Article
CAS
PubMed
PubMed Central
Google Scholar
O’Dwyer DN, Ashley SL, Gurczynski SJ, Xia M, Wilke C, Falkowski NR, et al. Lung microbiota contribute to pulmonary inflammation and disease progression in pulmonary fibrosis. Am J Respir Crit Care Med. 2019;199(9):1127–38. https://doi.org/10.1164/rccm.201809-1650OC.
Article
PubMed
PubMed Central
Google Scholar
Huang YJ, Nariya S, Harris JM, Lynch SV, Choy DF, Arron JR, et al. The airway microbiome in patients with severe asthma: associations with disease features and severity. J Allergy Clin Immunol. 2015;136(4):874–84. https://doi.org/10.1016/j.jaci.2015.05.044.
Article
PubMed
PubMed Central
Google Scholar
Zhang Q, Cox M, Liang Z, Brinkmann F, Cardenas PA, Duff R, et al. Airway microbiota in severe asthma and relationship to asthma severity and phenotypes. PLOS ONE. 2016;11(4):e0152724. https://doi.org/10.1371/journal.pone.0152724.
Article
CAS
PubMed
PubMed Central
Google Scholar
Durack J, Lynch SV, Nariya S, Bhakta NR, Beigelman A, Castro M, et al. Features of the bronchial bacterial microbiome associated with atopy, asthma, and responsiveness to inhaled corticosteroid treatment. J Allergy Clin Immunol. 2017;140(1):63–75. https://doi.org/10.1016/j.jaci.2016.08.055.
Article
CAS
PubMed
Google Scholar
Goleva E, Jackson LP, Harris JK, Robertson CE, Sutherland ER, Hall CF, et al. The effects of airway microbiome on corticosteroid responsiveness in asthma. Am J Respir Crit Care Med. 2013;188(10):1193–201. https://doi.org/10.1164/rccm.201304-0775OC.
Article
CAS
PubMed
PubMed Central
Google Scholar
Leitao Filho FS, Alotaibi NM, Ngan D, Tam S, Yang J, Hollander Z, et al. Sputum microbiome is associated with 1-year mortality after chronic obstructive pulmonary disease hospitalizations. Am J Respir Crit Care Med. 2019;199(10):1205–13. https://doi.org/10.1164/rccm.201806-1135OC.
Article
CAS
PubMed
Google Scholar
Molyneaux PL, Cox MJ, Willis-Owen SAG, Mallia P, Russell KE, Russell A-M, et al. The role of bacteria in the pathogenesis and progression of idiopathic pulmonary fibrosis. Am J Respir Crit Care Med. 2014;190(8):906–13. https://doi.org/10.1164/rccm.201403-0541OC.
Article
CAS
PubMed
PubMed Central
Google Scholar
Han MK, Zhou Y, Murray S, Tayob N, Noth I, Lama VN, et al. Lung microbiome and disease progression in idiopathic pulmonary fibrosis: an analysis of the COMET study. Lancet Respir Med. 2014;2(7):548–56. https://doi.org/10.1016/S2213-2600(14)70069-4.
Article
PubMed
PubMed Central
Google Scholar
Invernizzi R, Barnett J, Rawal B, Nair A, Ghai P, Kingston S, et al. Bacterial burden in the lower airways predicts disease progression in idiopathic pulmonary fibrosis and is independent of radiological disease extent. Eur Respir J. 2020;55(4):1901519. https://doi.org/10.1183/13993003.01519-2019.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dickson RP, Schultz MJ, van der Poll T, Schouten LR, Falkowski NR, Luth JE, et al. Lung microbiota predict clinical outcomes in critically ill patients. Am J Respir Crit Care Med. 2020;201(5):555–63. https://doi.org/10.1164/rccm.201907-1487OC.
Article
CAS
PubMed
PubMed Central
Google Scholar
Panzer AR, Lynch SV, Langelier C, Christie JD, McCauley K, Nelson M, et al. Lung microbiota is related to smoking status and to development of acute respiratory distress syndrome in critically ill trauma patients. Am J Respir Crit Care Med. 2018;197(5):621–31. https://doi.org/10.1164/rccm.201702-0441OC.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dickson RP, Erb-Downward JR, Freeman CM, Walker N, Scales BS, Beck JM, et al. Changes in the lung microbiome following lung transplantation include the emergence of two distinct Pseudomonas species with distinct clinical associations. PLoS ONE. 2014;9(5):e97214. https://doi.org/10.1371/journal.pone.0097214.
Article
CAS
PubMed
PubMed Central
Google Scholar
Combs MP, Wheeler DS, Luth J, Falkowski NR, Chanderraj R, Walker NM, et al. Increasing relative abundance of pseudomonads predicts chronic rejection after lung transplant. J Heart Lung Transplant. 2020;39(4):S65. https://doi.org/10.1016/j.healun.2020.01.1266.
Article
Google Scholar
Carney SM, Clemente JC, Cox MJ, Dickson RP, Huang YJ, Kitsios GD, et al. Methods in lung microbiome research. Am J Respir Cell Mol Biol. 2020;62(3):283–99. https://doi.org/10.1165/rcmb.2019-0273TR.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schulte H, Mühlfeld C, Brandenberger C. Age-related structural and functional changes in the mouse lung. Front Physiol. 2019;10:1466. https://doi.org/10.3389/fphys.2019.01466.
Article
PubMed
PubMed Central
Google Scholar
Dickson RP, Cox MJ. Sampling the lung microbiome. In: Cox MJ, Ege MJ, von Mutius E, editors. The lung microbiome. Sheffield, United Kingdom: European Respiratory Society; 2019. p. 1–17. https://doi.org/10.1183/2312508X.10015418.
Chapter
Google Scholar
Kilkenny C, Browne WJ, Cuthill IC, Emerson M, Altman DG. Improving bioscience research reporting: the ARRIVE guidelines for reporting animal research. PLoS Biol. 2010;8(6):e1000412. https://doi.org/10.1371/journal.pbio.1000412.
Article
CAS
PubMed
PubMed Central
Google Scholar
Percie du Sert N, Hurst V, Ahluwalia A, Alam S, Altman DG, Avey MT, et al. Revision of the ARRIVE guidelines: rationale and scope. BMJ Open Sci. 2018;2(1):e000002. https://doi.org/10.1136/bmjos-2018-000002.
Article
PubMed Central
Google Scholar
Ashley SL, Sjoding MW, Popova AP, Cui TX, Hoostal MJ, Schmidt TM, et al. Lung and gut microbiota are altered by hyperoxia and contribute to oxygen-induced lung injury in mice. Sci Transl Med. 2020;12(556):eaau9959. https://doi.org/10.1126/scitranslmed.aau9959.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mason KL, Erb Downward JR, Mason KD, Falkowski NR, Eaton KA, Kao JY, et al. Candida albicans and bacterial microbiota interactions in the cecum during recolonization following broad-spectrum antibiotic therapy. Infect Immun. 2012;80(10):3371–80. https://doi.org/10.1128/IAI.00449-12.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kozich JJ, Westcott SL, Baxter NT, Highlander SK, Schloss PD. Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform. Appl Environ Microbiol. 2013;79(17):5112–20. https://doi.org/10.1128/AEM.01043-13.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sze MA, Abbasi M, Hogg JC, Sin DD. A comparison between droplet digital and quantitative PCR in the analysis of bacterial 16S load in lung tissue samples from control and COPD GOLD 2. PLoS ONE. 2014;9(10):e110351. https://doi.org/10.1371/journal.pone.0110351.
Article
CAS
PubMed
PubMed Central
Google Scholar
Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Lozupone CA, Turnbaugh PJ, et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc Natl Acad Sci. 2011;108(Supplement 1):4516–22. https://doi.org/10.1073/pnas.1000080107.
Article
PubMed
Google Scholar
Schloss PD. MiSeq SOP - mothur. 2019. Available from: https://mothur.org/wiki/miseq_sop/.
Google Scholar
Koenigsknecht MJ, Theriot CM, Bergin IL, Schumacher CA, Schloss PD, Young VB. Dynamics and establishment of Clostridium difficile infection in the murine gastrointestinal tract. Infect Immun. 2015;83(3):934–41. https://doi.org/10.1128/IAI.02768-14.
Article
CAS
PubMed
PubMed Central
Google Scholar
Seekatz AM, Theriot CM, Molloy CT, Wozniak KL, Bergin IL, Young VB. Fecal microbiota transplantation eliminates Clostridium difficile in a murine model of relapsing disease. Infect Immun. 2015;83(10):3838–46. https://doi.org/10.1128/IAI.00459-15.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, et al. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol. 2009;75(23):7537–41. https://doi.org/10.1128/AEM.01541-09.
Article
CAS
PubMed
PubMed Central
Google Scholar
R Core Team. R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing; 2019. Available from: https://www.R-project.org/
Google Scholar
Wickham H, Averick M, Bryan J, Chang W, McGowan L, François R, et al. Welcome to the Tidyverse. J Open Source Softw. 2019;4(43):1686. https://doi.org/10.21105/joss.01686.
Article
Google Scholar
Wickham H. ggplot2: elegant graphics for data analysis. New York: Springer-Verlag; 2016. Available from: https://ggplot2.tidyverse.org. https://doi.org/10.1007/978-3-319-24277-4.
Book
Google Scholar
Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, et al. Vegan: community ecology package (R package version 2.5-6). 2019. Available from: https://CRAN.R-project.org/package=vegan.
cbmbtools: General purpose package containing useful functions for microbiome analysis pipelines. Available from: https://github.com/cb-42/cbmbtools.
Legendre P, Gallagher ED. Ecologically meaningful transformations for ordination of species data. Oecologia. 2001;129(2):271–80. https://doi.org/10.1007/s004420100716.
Article
PubMed
Google Scholar
Erb-Downward JR, Falkowski NR, D’Souza JC, McCloskey LM, McDonald RA, Brown CA, et al. Critical relevance of stochastic effects on low-bacterial-biomass 16S rRNA gene analysis. mBio. 2020;11(3):e00258–20. https://doi.org/10.1128/mBio.00258-20.
Article
PubMed
PubMed Central
Google Scholar
Schloss PD. Identifying and overcoming threats to reproducibility, replicability, robustness, and generalizability in microbiome research. mBio. 2018;9(3):e00525–18. https://doi.org/10.1128/mBio.00525-18.
Article
PubMed
PubMed Central
Google Scholar
Aagaard K, Ma J, Antony KM, Ganu R, Petrosino J, Versalovic J. The placenta harbors a unique microbiome. Sci Transl Med. 2014;6(237):237ra65. https://doi.org/10.1126/scitranslmed.3008599.
Article
CAS
PubMed
PubMed Central
Google Scholar
Barfod K, Roggenbuck M, Hansen L, Schjørring S, Larsen S, Sørensen S, et al. The murine lung microbiome in relation to the intestinal and vaginal bacterial communities. BMC Microbiol. 2013;13(1):303. https://doi.org/10.1186/1471-2180-13-303.
Article
CAS
PubMed
PubMed Central
Google Scholar
Singh N, Vats A, Sharma A, Arora A, Kumar A. The development of lower respiratory tract microbiome in mice. Microbiome. 2017;5(1):61. https://doi.org/10.1186/s40168-017-0277-3.
Article
PubMed
PubMed Central
Google Scholar
Yun Y, Srinivas G, Kuenzel S, Linnenbrink M, Alnahas S, Bruce KD, et al. Environmentally determined differences in the murine lung microbiota and their relation to alveolar architecture. PLoS ONE. 2014;9(12):e113466. https://doi.org/10.1371/journal.pone.0113466.
Article
CAS
PubMed
PubMed Central
Google Scholar
Richmond BW, Brucker RM, Han W, Du R-H, Zhang Y, Cheng D-S, et al. Airway bacteria drive a progressive COPD-like phenotype in mice with polymeric immunoglobulin receptor deficiency. Nat Commun. 2016;7(1):11240. https://doi.org/10.1038/ncomms11240.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gollwitzer ES, Saglani S, Trompette A, Yadava K, Sherburn R, McCoy KD, et al. Lung microbiota promotes tolerance to allergens in neonates via PD-L1. Nat Med. 2014;20(6):642–7. https://doi.org/10.1038/nm.3568.
Article
CAS
PubMed
Google Scholar
Dickson RP, Singer BH, Newstead MW, Falkowski NR, Erb-Downward JR, Standiford TJ, et al. Enrichment of the lung microbiome with gut bacteria in sepsis and the acute respiratory distress syndrome. Nat Microbiol. 2016;1(10):16113. https://doi.org/10.1038/nmicrobiol.2016.113.
Article
CAS
PubMed
PubMed Central
Google Scholar
Barfod KK, Vrankx K, Mirsepasi-Lauridsen HC, Hansen JS, Hougaard KS, Larsen ST, et al. The murine lung microbiome changes during lung inflammation and intranasal vancomycin treatment. Open Microbiol J. 2015;9(1):167–79. https://doi.org/10.2174/1874285801509010167.
Article
CAS
PubMed
PubMed Central
Google Scholar
Poroyko V, Meng F, Meliton A, Afonyushkin T, Ulanov A, Semenyuk E, et al. Alterations of lung microbiota in a mouse model of LPS-induced lung injury. Am J Physiol-Lung Cell Mol Physiol. 2015;309(1):L76–83. https://doi.org/10.1152/ajplung.00061.2014.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yadava K, Pattaroni C, Sichelstiel AK, Trompette A, Gollwitzer ES, Salami O, et al. Microbiota promotes chronic pulmonary inflammation by enhancing IL-17A and autoantibodies. Am J Respir Crit Care Med. 2016;193(9):975–87. https://doi.org/10.1164/rccm.201504-0779OC.
Article
CAS
PubMed
Google Scholar
Lutfi MF. The physiological basis and clinical significance of lung volume measurements. Multidiscip Respir Med. 2017;12(1):3. https://doi.org/10.1186/s40248-017-0084-5.
Article
PubMed
PubMed Central
Google Scholar
Minich JJ, Sanders JG, Amir A, Humphrey G, Gilbert JA, Knight R. Quantifying and understanding well-to-well contamination in microbiome research. mSystems. 2019;4(4):e00186–19. https://doi.org/10.1128/mSystems.00186-19.
Article
PubMed
PubMed Central
Google Scholar
Sinha R, Stanley G, Gulati GS, Ezran C, Travaglini KJ, Wei E, et al. Index switching causes “spreading-of-signal” among multiplexed samples in Illumina HiSeq 4000 DNA sequencing. BioRxiv. 2017;125724. https://doi.org/10.1101/125724.
Davis NM, Proctor DM, Holmes SP, Relman DA, Callahan BJ. Simple statistical identification and removal of contaminant sequences in marker-gene and metagenomics data. Microbiome. 2018;6(1):226. https://doi.org/10.1186/s40168-018-0605-2.
Article
PubMed
PubMed Central
Google Scholar
McKnight DT, Huerlimann R, Bower DS, Schwarzkopf L, Alford RA, Zenger KR. microDecon: a highly accurate read-subtraction tool for the post-sequencing removal of contamination in metabarcoding studies. Environ DNA. 2019;1(1):14–25. https://doi.org/10.1002/edn3.11.
Article
Google Scholar
Robinson KM, Crabtree J, Mattick JSA, Anderson KE, Dunning Hotopp JC. Distinguishing potential bacteria-tumor associations from contamination in a secondary data analysis of public cancer genome sequence data. Microbiome. 2017;5(1):9. https://doi.org/10.1186/s40168-016-0224-8.
Article
PubMed
PubMed Central
Google Scholar
Weiss S, Van Treuren W, Lozupone C, Faust K, Friedman J, Deng Y, et al. Correlation detection strategies in microbial data sets vary widely in sensitivity and precision. ISME J. 2016;10(7):1669–81. https://doi.org/10.1038/ismej.2015.235.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bosch AATM, Levin E, van Houten MA, Hasrat R, Kalkman G, Biesbroek G, et al. Development of upper respiratory tract microbiota in infancy is affected by mode of delivery. EBioMedicine. 2016;9:336–45. https://doi.org/10.1016/j.ebiom.2016.05.031.
Article
PubMed
PubMed Central
Google Scholar
Venkataraman A, Bassis CM, Beck JM, Young VB, Curtis JL, Huffnagle GB, et al. Application of a neutral community model to assess structuring of the human lung microbiome. mBio. 2015;6(1):e02284-e02214. doi: https://doi.org/10.1128/mBio.02284-14.
Pereira-Marques J, Hout A, Ferreira RM, Weber M, Pinto-Ribeiro I, van Doorn L-J, et al. Impact of host DNA and sequencing depth on the taxonomic resolution of whole metagenome sequencing for microbiome analysis. Front Microbiol. 2019;10:1277. https://doi.org/10.3389/fmicb.2019.01277.
Article
PubMed
PubMed Central
Google Scholar