Rosenberg E, Koren O, Reshef L, Efrony R, Zilber-Rosenberg I. The role of microorganisms in coral health, disease and evolution. Nat Rev Microbiol. 2007;5:355–62.
Article
CAS
PubMed
Google Scholar
Zilber-Rosenberg I, Rosenberg E. Role of microorganisms in the evolution of animals and plants: the hologenome theory of evolution. FEMS Microbiol Rev. 2008;32:723–35.
Article
CAS
PubMed
Google Scholar
Margulis L. Symbiosis as a source of evolutionary innovation: speciation and morphogenesis. In: Margulis L, Fester R, editors. Symbiogenesis and Symbionticism. Cambridge: MIT Press; 1991. p. 1–14.
Google Scholar
Lederberg J, McCray AT. “Ome Sweet Omics”—a genealogical treasury of words. Scientist. 2001;15:8.
Google Scholar
Chan J, Halachev MR, Loman NJ, Constantinidou C, Pallen MJ. Defining bacterial species in the genomic era: insights from the genus Acinetobacter. BMC Microbiol. 2012;12:302. https://doi.org/10.1186/1471-2180-12-302.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O, Krichevsky MI, Moore LH, Moore WEC, Murray RGE, Stackebrandt E, Starr MP, Truper HG. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Evol Microbiol. 1987;37:463–4.
Article
Google Scholar
OSTP (The White House Office of Science and Technology Policy) Fact Sheet: Announcing The National Microbiome Initiative. 2016. United States Government. https://www.whitehouse.gov/sites/whitehouse.gov/files/documents/OSTP%20National%20Microbiome%20Initiative%20Fact%20Sheet.pdf.
Alivisatos AP, Blaser MJ, Brodie EL, et al. Unified microbiome initiative consortium: a unified initiative to harness Earth’s microbiomes. Science. 2015;350:507–8.
Article
CAS
PubMed
Google Scholar
Sender R, Fuchs S, Milo R. Revised estimates for the number of human and bacteria cells in the body. PLoS Biol. 2016;14(8):e1002533. https://doi.org/10.1371/journal.pbio.1002533.
Article
PubMed
PubMed Central
CAS
Google Scholar
Yang X, Xie L, Li Y, Wei C. More than 9,000,000 unique genes in human gut bacterial community: estimating gene numbers inside a human body. PLoS One. 2009;4(6):e6074. https://doi.org/10.1371/journal.pone.0006074
Article
PubMed
PubMed Central
CAS
Google Scholar
Faith JJ, Guruge JL, Charbonneau M, et al. The long-term stability of the human gut microbiota. Science. 2013;341:1237439. https://doi.org/10.1126/science.1237439.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ogilvie LA, Jones BV. The human gut virome: a multifaceted majority. Front Microbiol. 2015;6:918. https://doi.org/10.3389/fmicb.2015.00918.
Article
PubMed
PubMed Central
Google Scholar
Hoffmann C, Dollive S, Grunberg S, Chen J, Li H, Wu GD, et al. Archaea and fungi of the human gut microbiome: correlations with diet and bacterial residents. PLoS One. 2013;8(6):e66019. https://doi.org/10.1371/journal.pone
Article
CAS
PubMed
PubMed Central
Google Scholar
Ley RE, Lozupone CA, Hamady M, Knight R, Gordon JI. Worlds within worlds: evolution of the vertebrate gut microbiota. Nat Rev Microbiol. 2008;6:776–88.
Article
CAS
PubMed
PubMed Central
Google Scholar
Group NHW, Peterson J, Garges S, Giovanni M, McInnes P, Wang L, Schloss JA, Bonazzi V, McEwen JE, Wetterstrand KA, et al. The NIH human microbiome project. Genome Res. 2009;19:2317–23.
Article
CAS
Google Scholar
Shapira M. Gut microbiotas and host evolution: scaling up symbiosis. Trends Ecol Evol. 2016;31:539–49.
Article
PubMed
Google Scholar
Turnbaugh PJ, Hamady M, Yatsunenko T, Cantarel BL. Diversity, stability and resilience of the human gut microbiota. Nature. 2012;489:220–30.
Article
CAS
Google Scholar
Taxis T, Wolff S, Gregg SJ, Minton NO, Zhang C, et al. The players may change but the game remains: network analyses of ruminal microbiomes suggest taxonomic differences mask functional similarity. Nucl Acids Res. 2015;2:9600–12.
Google Scholar
Bradley PH, Katherine S, Pollard KS. Proteobacteria explain significant functional variability in the human gut microbiome. Microbiome. 2017;5:36. https://doi.org/10.1186/s40168-017-0244.
Article
PubMed
PubMed Central
Google Scholar
Turnbough PJ, Hamady M, Yatsunenko T, et al. A core gut microbiome in obese and lean twin. Nature. 2009;457:480–4.
Article
CAS
Google Scholar
Doolittle WF, Booth A. It’s the song, not the singer: an exploration of holobiosis and evolutionary theory. Biol Philos. 2016; https://doi.org/10.1007/s10539-016-9542-2.
Bäckhed F, Roswall J, Peng Y, Feng Q, Jia H, Kovatcheva-Datchary P, Li Y, Xia Y, Xie H, Zhong H, et al. Dynamics and stabilization of the human gut microbiome during the first year of life. Cell Host Microbe. 2015;17(5):690–703.
Article
PubMed
CAS
Google Scholar
Song SJ, Dominguez-Bello MG, Knight R. How delivery mode and feeding can shape the bacterial community in the infant gut. CMAJ. 2013;185(5):373–3744. https://doi.org/10.1503/cmaj.130147.
Article
PubMed
PubMed Central
Google Scholar
Pop M. We are what we eat: how the diet of infants affects their gut microbiome. Genome Biol. 2012;13(4):152.
Article
PubMed
PubMed Central
Google Scholar
Yassour M, Vatanen T, Siljander H, Hämäläinen AM, et al. Natural history of the infant gut microbiome and impact of antibiotic treatment on bacterial strain diversity and stability. Sci Transl Med. 2016; https://doi.org/10.1126/scitranslmed.aad0917.
Tun HM, Konya T, Takaro TK, Brook JR, et al. Exposure to household furry pets influences the gut microbiota of infants at 3–4 months following various birth scenarios. Microbiome. 2017;5:40. https://doi.org/10.1186/s40168-017-0254.
Article
PubMed
PubMed Central
Google Scholar
Claesson MJ, Cusack S, O'Sullivan O, Greene-Diniz R, et al. Composition, variability, and temporal stability of the intestinal microbiota of the elderly. Proc Natl Acad Sci U S A. 2011;108:4586–91.
Article
CAS
PubMed
Google Scholar
Zoetendal EG, Akkermans AD, De Vos W. Temperature gradient gel electrophoresis analysis of 16S rRNA from human fecal samples reveals stable and host-specific communities of active bacteria. Appl Environ Microbiol. 1998;64:3854–9.
CAS
PubMed
PubMed Central
Google Scholar
Claesson MJ, Jeffery IB, Conde S, Power SE, et al. Gut microbiota composition correlates with diet and health in the elderly. Nature. 2012;488:178–84.
Article
CAS
PubMed
Google Scholar
Wu GD, Chen J, Hoffmann C, Bittinger K, et al. Linking long-term dietary patterns with gut microbial enterotypes. Science. 2011;334:105–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
David LA, Maurice CF, Carmody RN, Gootenberg DB, et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature. 2014;505:559–63.
Article
CAS
PubMed
Google Scholar
Queipo-Ortuño MI, Boto-Ordóñez M, Murri M, Gomez-Zumaquero JM, et al. Influence of red wine polyphenols and ethanol on the gut microbiota ecology and biochemical biomarkers. Am J Clin Nutr. 2012;95:1323–34.
Article
PubMed
CAS
Google Scholar
Zhernakova A, Kurilshikov A, Jan Bonder M, Tigchelaar EF, et al. Population-based metagenomics analysis reveals markers for gut microbiome composition and diversity. Science. 2016;352:565–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tzounis X, Rodriguez-Mateos A, Vulevic J, Gibson GR, Kwik-Uribe C, Spencer JP. Prebiotic evaluation of cocoa-derived flavanols in healthy humans by using a randomized, controlled, double-blind, crossover intervention study. Am J Clin Nutr. 2011;93:62–72.
Article
CAS
PubMed
Google Scholar
Chassaing B, Koren O, Goodrich JK, Poole AC, et al. Dietary emulsifiers impact the mouse gut microbiota promoting colitis and metabolic syndrome. Nature. 2013;519:92–6.
Article
CAS
Google Scholar
Suez J, Korem T, Zeevi D, Zilberman-Schapira G, et al. Artificial sweeteners induce glucose intolerance by altering the gut microbiota. Nature. 2014;514:181–6.
Article
CAS
PubMed
Google Scholar
Langdon A, Crook N, Dantas G. The effects of antibiotics on the microbiome throughout development and alternative approaches for therapeutic modulation. Genome Med. 2016;8(1):39. https://doi.org/10.1186/s13073.
Article
PubMed
PubMed Central
Google Scholar
Santacruz A, Marcos A, Wärnberg J, Martí A, Martin-Matillas M, Campoy C, Moreno LA, Veiga O, Redondo-Figuero C, et al. Interplay between weight loss and gut microbiota composition in overweight adolescents. Obesity. 2009;17:1906–15.
Article
PubMed
Google Scholar
Wang T, Cai G, Qiu Y, et al. Structural segregation of gut microbiota between colorectal cancer patients and healthy volunteers. ISME J. 2012;6:320–9.
Article
CAS
PubMed
Google Scholar
Qin J, Yingrui Li Y, Cai Z, Li S, et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature. 2012;490:55–60.
Article
CAS
PubMed
Google Scholar
Spor A, Omry Koren O, Ley R. Unravelling the effects of the environment and host genotype on the gut microbiome. Nat Rev Microbiol. 2011;9:279–90.
Article
CAS
PubMed
Google Scholar
Knight R, RWeersma RK, et al. Complex host genetics influence the microbiome in inflammatory bowel disease. Genome Med. 2014;6:107.
Article
PubMed
PubMed Central
CAS
Google Scholar
Bensona AK, Kelly SA, Leggea R, Maa F, et al. Individuality in gut microbiota composition is a complex polygenic trait shaped by multiple environmental and host genetic factors. Proc Natl Acad Sci U S A. 2010;44:18933–8.
Article
Google Scholar
Login FH, Heddi A. Insect system maintains long-term resident bacteria through a local response. J Insect Physiol. 2013;59:232–9.
Article
CAS
PubMed
Google Scholar
Limpens E, van Zeijl A, Geurts R. Lipochitooligosaccharides modulate plant host immunity to enable endosymbiosis. Annu Rev Phytopathol. 2015;53:311–34.
Article
CAS
PubMed
Google Scholar
McFall-Ngai M. Care for the community. Nature. 2007;445:153.
Article
CAS
PubMed
Google Scholar
Cerutti A, Chen K, Chorny A. Immunoglobulin responses at the mucosal interface. Annu Rev Immunol. 2011;29:273–93.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sison-Mangus MP, Mushegian AA, Ebert D. Water flies require microbiota for survival, growth and reproduction. ISME J. 2015;9:59–67.
Article
PubMed
Google Scholar
Rosengaus RB, Zecher CN, Schultheis KF, et al. Disruption of the termite gut microbiota and its prolonged consequences for fitness. Appl Environ Microbiol. 2011;77:4303–12.
Article
CAS
PubMed
PubMed Central
Google Scholar
Salem H, Kreutzer E, Sudakaran S, Kaltenpoth M. Actinobacteria as essential symbionts in firebugs and cotton strainers (Hemiptera, Pyrrhocoridae). Environ Microbiol. 2013;15:1956–68.
Article
PubMed
Google Scholar
Geraldine O, Canny GO, McCormick BA. Bacteria in the intestine, helpful residents or enemies from within? Infect Immun. 2008;76:3360–73.
Article
CAS
Google Scholar
Archambau C, Sismeirod O, Toedling J, Soubigoud G, et al. The intestinal microbiota interferes with the microRNA response upon oral Listeria infection. MBio. 2013;4(6):e00707–1.
Google Scholar
Ramsey MM, Freire MO, Gabrilska RA, Rumbaugh KP, Lemon KP. Staphylococcus aureus shifts toward commensalism in response to Corynebacterium species. Front Microbiol. 2016; https://doi.org/10.3389/fmicb.2016.01230.
Mills E, Shechtman K, Loya Y, Rosenberg E. Bacteria appear to play important roles both causing and preventing the bleaching of the coral Oculina patagonica. MEPS. 2013;4:155–62.
Article
Google Scholar
Donia MS, Cimermancic P, Schulze CJ, Fischbach MA. A systematic analysis of biosynthetic gene clusters in the human microbiome reveals a common family of antibiotics. Cell. 2014;158:1402–1414.76.
Article
CAS
PubMed
PubMed Central
Google Scholar
Drekonja D, Reich J, Gezahegn S, Greer N, Shaukat A, MacDonald R, Rutks I, Wilt TJ. Fecal microbiota transplantation for Clostridium difficile infection: a systematic review. Ann Intern Med. 2015;162:630–8.
Article
PubMed
Google Scholar
Cytryn E, Kolton M. Microbial protection against plant disease. In: Rosenberg E, Gophna U, editors. chapter 4 Beneficial microorganisms in multicellular life forms. Heidelberg: Springer; 2011.
Google Scholar
Marasco R, Rolli E, Ettoumi B, Vigani G, Mapell F. A drought resistance-promoting microbiome is selected by root system under desert farming. PLoS One. 2012;7(10):e48479.79.
Article
CAS
Google Scholar
Rosenberg E, Zilber-Rosenberg I. Microbes drive evolution of animals and plants: the hologenome concept. MBio. 2016;7(2):e01395.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gage DJ. Infection and invasion of roots by symbiotic, nitrogen-fixing rhizobia during nodulation of temperate legumes. Microbiol Mol Biol Rev. 2017;68:280–300.
Article
CAS
Google Scholar
Jami E, Israel A, Kotser A, Mizrahi I. Exploring the bovine rumen bacterial community from birth to adulthood. ISME J. 2013;7:1069–79.
Article
PubMed
PubMed Central
Google Scholar
Brune A. Symbiotic digestion of lignocellulose in termite guts. Nat Rev Microbiol. 2014;12:168–80.
Article
CAS
PubMed
Google Scholar
Zhang J, Zhang Y, Li J, Liu M, Liu Z. Midgut transcriptome of the cockroach Periplaneta americana and its microbiota: digestion, detoxification and oxidative stress response. PLoS One. 2016;11(5):e0155254.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ayayee PA, Larsen T, Sabree Z. Symbiotic essential amino acids provisioning in the American cockroach, Periplaneta americana (Linnaeus) under various dietary conditions. PeerJ. 2016;4:e2046.
Article
PubMed
PubMed Central
CAS
Google Scholar
Rumpho ME, Pelletreau KN, Moustafa A, Bhattacharya D. The making of a photosynthetic animal. J Exp Biol. 2010;214:303–11.
Article
PubMed Central
Google Scholar
Ponnudurai R, Kleiner M, Sayavedra L, Petersen JM, et al. Metabolic and physiological interdependencies in the Bathymodiolus azoricus symbiosis. ISME J. 2017;11(2):463–77.
Article
CAS
PubMed
Google Scholar
Rubin-Blum M, Antony CP, Borowski C, Sayavedra L, et al. Short-chain alkanes fuel mussel and sponge Cycloclasticus symbionts from deep-sea gas and oil seeps. Nat Microbiol. 2017;19:17093. https://doi.org/10.1038/nmicrobiol.93.
Article
Google Scholar
Han M, Wang C, Liu P, et al. Dietary fiber gap and host gut microbiota. Protein Pept Lett. 2017;24:388–96.
Article
CAS
PubMed
Google Scholar
Martinez-Augustin O, Sanchez de Medina F. Intestinal bile acid physiology and pathophysiology. World J Gastroenterol. 2008;14:5630–40.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sharma S, Erickson KM, Troutman JM. Complete tetrasaccharide repeat unit biosynthesis of the immunomodulatory Bacteroides fragilis capsular polysaccharide A. ACS Chem Biol. 2017;12:92–101.
Article
CAS
PubMed
Google Scholar
LeBlanc JG, Milani C, Savoy de Giori G, Sesma F, et al. Bacteria as vitamin suppliers to their host: a gut microbiota perspective. Curr Opin Biotechnol. 2013;24:160–8.
Article
CAS
PubMed
Google Scholar
Ley RE, Turnbaugh PJ, Klein S, Gordon JI. Microbial ecology: human gut microbes associated with obesity. Nature. 2006;444:1022–3.
Article
CAS
PubMed
Google Scholar
Ridaura VK, Faith JJ, Rey FE, Cheng J, et al. Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science. 2013;341:1241214. https://doi.org/10.1126/science.1241214.
Article
PubMed
CAS
Google Scholar
Koren O, Goodrich JK, Cullender TC, et al. Host remodeling of the gut microbiome and metabolic changes during pregnancy. Cell. 2012;150:470–80.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jones KM, Kobayashi H, Davies BW, Taga ME, Walker GC. How rhizobial symbionts invade plants: the Sinorhizobium medicago model. Nat Rev Microbiol. 2007;5:619–33.
Article
CAS
PubMed
PubMed Central
Google Scholar
McFall-Ngai MJ. Consequences of evolving with bacterial symbionts: insights from the squid–Vibrio association. Ann Rev Ecol Syst. 1999;30:235–56.
Article
Google Scholar
Baker AC. Flexibility and specificity in coral-algal symbiosis: diversity, ecology, and biogeography of Symbiodinium. Annu Rev Ecol Evol Syst. 2003;34:661–89.
Article
Google Scholar
Bulgarelli D, Schlaeppi K, Spaepen S, van Themaat E, Schulze-Lefert P. Structure and functions of the bacterial microbiota of plants. Annu Rev Plant Biol. 2013;64:807–38.
Article
CAS
PubMed
Google Scholar
Sommer F, Bäckhed F. The gut microbiota—masters of host development and physiology. Nat Rev Microbiol. 2013;11:227–38.
Article
CAS
PubMed
Google Scholar
Thaiss CA, Zmora N, Levy M, Einav E. The microbiome and innate immunity. Nature. 2016;535:65–74.
Article
CAS
PubMed
Google Scholar
Round JL, Mazmanian SK. The gut microbiome shapes intestinal immune responses during health and disease. Nat Rev Immunol. 2009;5:312–23.
Google Scholar
Sjogren K, Engdahl C, Henning P, Lerner UH, Tremaroli V, Lagerquist MK, Bäckhed F, Ohlsson C. The gut microbiota regulates bone mass in mice. J Bone Miner Res. 2012;27:1357–67.
Article
PubMed
CAS
Google Scholar
Schirbel A, SeanKessler S, Rieder F, West G, et al. Pro-angiogenic activity of TLRs and NLRs: a novel link between gut microbiota and intestinal angiogenesis. Gastroenterology. 2013;144:613–23.
Article
CAS
PubMed
Google Scholar
Gaikwad SS, Ghaskadbi SS, Shouche YS, Ghaskadbi S. Changes in the microbial community associated with Hydra during reproduction. Matters. 2017; https://doi.org/10.19185/matters.201706000004.
Murillo-Rincon AP, Klimovich A, Pemöller E, et al. Spontaneous body contractions are modulated by the microbiome of Hydra. Sci Rep. 2017;7:15937. https://doi.org/10.1038/s41598-017-16191-x.
Article
PubMed
PubMed Central
CAS
Google Scholar
Heijtz RD, Wang S, Anuard F, Qian Y, Björkholm B, et al. Normal gut microbiota modulates brain development and behavior. Proc Natl Acad Sci. 2011;108:3047.
Article
CAS
PubMed Central
Google Scholar
Foster JA, Neufeld KM. Gut–brain axis: how the microbiome influences anxiety and depression. Trends Neurosci. 2013;36:305–312.107.
Article
CAS
PubMed
Google Scholar
O’Mahonya SM, Clarkea G, Borrea YE, Dinana TG, Cryana JF. Serotonin, tryptophan metabolism and the brain-gut-microbiome axis. Behav Brain Res. 2015;277:32–48.
Article
CAS
Google Scholar
Rosenberg E, Zilber-Rosenberg I. Do microbes warm their hosts? Gut Microbes. 2016;7:283–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Russell JB. Heat production by ruminal bacteria in continuous culture and its relationship to maintenance energy. J Bacteriol. 1987;168:694–701.
Article
Google Scholar
Russel JB. A re-assessment of bacterial growth efficiency: the heat production and membrane potential of Streptococcus bovis in batch and continuous culture. Arch Microbiol. 1991;155:559–65.
Article
Google Scholar
Henry CJ. Basal metabolic rate studies in humans: measurement and development of new equations. Pub Health Nutr. 2005;8:1133–52.
Article
CAS
Google Scholar
Fuller A, Mitchell D. Oral antibiotics reduce body temperature of healthy rabbits in a thermoneutral environment. J Basic Clin Physiol Pharm. 2011;10:1–14.
Article
Google Scholar
Kluger MJ, Conn CA, Franklin B, Freter R, Abrams GD. Effect of gastrointestinal flora on body temperature of rats and mice. Am J Phys. 1990;258:552–7.
Article
Google Scholar
Bäckhed F, Ding H, Wang T, Hooper LV, Koh GY, Nagy A, Semenkovich CF, Gordon JI. The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci U S A. 2004;101:15718–23.
Article
PubMed
PubMed Central
CAS
Google Scholar
Herrera CM, Pozo MI. Nectar yeasts warm the flowers of a winter-blooming plant. Proc Biol Sci. 2010;277:1827–34.
Article
PubMed
PubMed Central
Google Scholar
Baumann P, Lai CY, Roubakhsh D, Moran NA, Clark MA. Genetics, physiology, and evolutionary relationships of the genus Buchnera—intracellular symbionts of aphids. Annu Rev Microbiol. 1995;49:55–94.
Article
CAS
PubMed
Google Scholar
Veneti Z, Clark ME, Karr TL, Savakis C, Bourtziz K. 2004. Heads or tails: host-parasite interactions in the Drosophila-Wolbachia system. Appl Environ Microbiol 2004; 70:5366-5372.
Fell PE. Reproductive biology of invertebrates. Asexual propagation and reproductive strategies. In: Adyodi KG, Adyodi RG, editors. Porifera. Chichester: Wiley; 1993. p. 1–44.
Google Scholar
Osawa R, Blanshard WH, Ocallaghan PG. Microbiological studies of the intestinal microflora of the koala, Phascolarctos cinereus. II. Pap, a special maternal feces consumed by juvenile koalas. Aust J Zool. 1993;41:611–20.
Article
Google Scholar
Brune A, Dietrich C. The gut microbiota of termites: digesting the diversity in the light of ecology and evolution. Annu Rev Microbiol. 2015;69:145–66.
Article
CAS
PubMed
Google Scholar
Zimmer M, Topp W. The role of coprophagy in nutrient release from feces of phytophagous insects. Soil Biol Biochem. 2002;34:1093–9.
Article
CAS
Google Scholar
Aagaard K, Ma J, Antony KM, Ganu R, Petrosino J, Versalovic J. The placenta harbors a unique microbiome. Sci Transl Med. 2014;6:237ra65.
Article
PubMed
PubMed Central
CAS
Google Scholar
Collado MC, Rautava S, Aakko J, Isolauri E, Salminen S. Human gut colonisation may be initiated in utero by distinct microbial communities in the placenta and amniotic fluid. Sci Rep. 2016;6:23129.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lauder AP, Roche AM, Sherrill-Mix S, et al. A comparison of placenta samples with contamination controls does not provide evidence for a distinct placenta microbiota. Microbiome. 2016;4:29. https://doi.org/10.1186/s40168-016-0172-3.
Article
PubMed
PubMed Central
Google Scholar
Blaser MJ, Dominguez-Bello. The human microbiome before birth. Cell Host Microbiome. 2016;20:558–60.
Article
CAS
Google Scholar
Mueller NT, Bakacs E, Combellick J, Grigoryan Z, Dominguez-Bello MG. The infant microbiome development: mom matters. Trends Mol Med. 2014;21:109–17.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sakwinska O, Moine D, Delley M, Combremont S, et al. Microbiota in breast milk of Chinese lactating mothers. PLoS One. 2016;11(8):e0160856.
Article
PubMed
PubMed Central
CAS
Google Scholar
Fernández L, Langa S, Martína V, Maldonadoa A, et al. The human milk microbiota: origin and potential roles in health and disease. Pharmacol Res. 2013;69:1–10.
Article
PubMed
CAS
Google Scholar
Jost T, Lacroix C, Braesier C, Chassard C. Assessment of bacterial diversity in breast milk using culture-dependent and culture- independent approaches. Br J Nutr. 2013;14:1–10.
Google Scholar
Jin L, Hinde K, Tao L. Species diversity and relative abundance of lactic acid bacteria in the milk of rhesus monkeys (Macaca mulatta). J Med Primatol. 2011;40:52–8.
Article
CAS
PubMed
Google Scholar
Addis MA, Uzzau TS, Oikonomou Bicalho GRC, Moroni P. The bovine milk microbiota: insights and perspectives from -omics studies. Mol BioSyst. 2016;19:2359–72.
Article
CAS
Google Scholar
Martín R, Lang S, Jimínez E, Marín MM, et al. Human milk is a source of lactic acid bacteria for the infant gut. J Pediatr. 2003;143:754–75.
Article
PubMed
Google Scholar
Milani C, Mancabelli L, Lugli LGA, et al. Exploring vertical transmission of Bifidobacteria from mother to child. Appl Environ Microbiol. 2015;81:7078–87.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sela DA, Li Y, Lerno L, Wu S, et al. An infant-associated bacterial commensal utilizes breast milk sialyloligosaccharides. J Biol Chem. 2011;286:11909–18.
Article
CAS
PubMed
PubMed Central
Google Scholar
Garrido D, Ruiz-Moyano S, Kirmiz SN, Davis JC, et al. A novel gene cluster allows preferential utilization of fucosylated milk oligosaccharides in Bifidobacterium longum subsp. longum SC596. Sci Rep. 2016;6:35045. https://doi.org/10.1038/srep35045.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liévin V, Peiffer I, Hudault S, et al. Bifidobacterium strains from resident infant human gastrointestinal microflora exert antimicrobial activity. Gut. 2000;47:646–52.
Article
PubMed
PubMed Central
Google Scholar
Turroni F, Milani C, Duranti S, Ferrario C, et al. Bifidobacteria and the infant gut: an example of co-evolution and natural selection. Cell Mol Life Sci. 2017; https://doi.org/10.1007/s00018-017-2672-0.
Nyholm SV, Stewart JJ, Ruby EG, et al. Recognition between symbiotic Vibrio fischeri and the haemocytes of Euprymna scolopes. Environ Microbiol. 2008;11:483–93.
Article
Google Scholar
Tadych M, Bergen MS, White JF. Epichloë spp. associated with grasses: new insights on life cycles, dissemination and evolution. Mycologia. 2014;106:181–201.
Article
PubMed
Google Scholar
Achtman M, Azuma T, Berg DE, Ito Y, et al. Recombination and clonal groupings within Helicobacter pylori from different geographical regions. Mol Microbiol. 1999;32:459–70.
Article
CAS
PubMed
Google Scholar
Falush D, Wirth T, Linz B, Pritchard JK, et al. Traces of human migrations in Helicobacter pylori populations. Science. 2003;299:1582–5.
Article
CAS
PubMed
Google Scholar
Fraune S, Bosch TCG. Long-term maintenance of species-specific bacterial microbiota in the basal metazoan Hydra. Proc Natl Acad Sci U S A. 2007;104:13146–51.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ochman H, Worobey M, Kuo C-H, et al. Evolutionary relationships of wild hominids recapitulated by gut microbial communities. PLoS Biol. 2010;8:e1000546.
Article
PubMed
PubMed Central
CAS
Google Scholar
Moran NA, Sloan DB. The hologenome concept: helpful or hollow? PLoS Biol. 2015;13(12):e1002311.
Article
PubMed
PubMed Central
CAS
Google Scholar
Sanders JG, Powell S, Kronauer DJ, Vasconcelos HL, Frederickson ME, Pierce NE. Stability and phylogenetic correlation in gut microbiota: lessons from ants and apes. Mol Ecol. 2014;23:1268–83.
Article
PubMed
Google Scholar
Moeller AH, Caro-Quintero A, Mjungu D, Georgiev AV, et al. Co-speciation of gut microbiota with hominids. Science. 2016;353:380–2.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kwong WK, Moran NA. Gut microbial communities of social bees. Nat Rev Microbiol. 2016;14:374–84.
Article
CAS
PubMed
PubMed Central
Google Scholar
Brooks AW, Kohl KD, Brucker RM, van Opstal EJ, Bordenstein SR. Phylosymbiosis: relationships and functional effects of microbial communities across host evolutionary history. PLoS Biol. 2016;14:e2000225. pmid:27861590
Article
PubMed
PubMed Central
CAS
Google Scholar
De Filippo C, Cavalieria D, Di Paolab M, et al. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci U S A. 2010;107:14691–6.
Article
PubMed
PubMed Central
Google Scholar
Koenig JE, Spor A, Scalfone N, et al. Succession of microbial consortia in the developing infant gut microbiome. Proc Natl Acad Sci U S A. 2010;108:4578–85.
Article
PubMed
PubMed Central
Google Scholar
Turnbaugh PJ, Ridaura VK, Faith JJ, Rey FE, Knight R, Gordon JI. The effect of diet on the human gut microbiome: a metagenomic analysis in humanized gnotobiotic mice. Sci Transl Med. 2009;1:6ra14.160. Zimmermann MB, Chassard
Article
CAS
Google Scholar
Rohner F, N'Goran EK. The effects of iron fortification on the gut microbiota in African children: a randomized controlled trial in Côte d'Ivoire. Am J Clin Nutr. 2010;92:1406–15.
Article
PubMed
CAS
Google Scholar
Petra L, Hold G, Flint H. The gut microbiota, bacterial metabolites and colorectal cancer. Nat Rev Microbiol. 2014;12:661–72.
Article
CAS
Google Scholar
Palmnäs MSA, Cowan TE, Bomhof MR, Su J, et al. Low-dose aspartame consumption differentially affects gut microbiota-host metabolic interactions in the diet-induced obese rat. PLoS One. 2014;9:e109841.
Article
PubMed
PubMed Central
CAS
Google Scholar
Chassaing B, Koren O, Goodrich J, Poole A. Dietary emulsifiers impact the mouse gut microbiota promoting colitis and metabolic syndrome. Nature. 2015;519:92–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yuna J, Roh SW, Whon TW, Jung M, et al. Insect gut bacterial diversity determined by environmental habitat, diet, developmental stage, and phylogeny of host. Appl Environ Microbiol. 2014;80:5254–64.
Article
CAS
Google Scholar
Shanahan F, Quigley EMM. Manipulation of the microbiota for treatment of IBS and IBD—challenges and controversies. Gastroenterology. 2014;146:1554–63.
Article
PubMed
Google Scholar
Mouzaki M, Comelli EM, Arendt BM, Bonengelet J. Intestinal microbiota in patients with nonalcoholic fatty liver disease. Hepatology. 2013;58:120–7.
Article
CAS
PubMed
Google Scholar
Shena J, Obinc MS, Zhaoa L. The gut microbiota, obesity and insulin resistance. Mol Asp Med. 2013;34:39–58.
Article
CAS
Google Scholar
Scott KP, Gratz SW, Sheridan PO, Flint HJ, Dunca SH. The influence of diet on the gut microbiota. Pharmacol Res. 2013;69:52–60.
Article
CAS
PubMed
Google Scholar
Zogg GP, Zak DR, Ringelberg DB, MacDonald NW, et al. Compositional and functional shifts in microbial communities due to soil warming. Soil Sci Soc Am J. 1997;61:475–81.
Article
CAS
Google Scholar
Dethlefsen L, Relman DA. Incomplete recovery and individualized responses of the human distal gut microbiota to repeated antibiotic perturbation. PNAS. 2011;108:4554–456.
Article
CAS
PubMed
Google Scholar
Panda S, Elkhader I, Casellas F, López Vivancos J, et al. Short-term effect of antibiotics on human gut microbiota. PLoS One. 2014;9:e95476.
Article
PubMed
PubMed Central
CAS
Google Scholar
Jernberg C, Löfmark S, Edlund C, Jansson JK. Long-term impacts of antibiotic exposure on the human intestinal microbiota. Microbiology. 2010;156:3216–23.
Article
CAS
PubMed
Google Scholar
Hutkins RW, Krumbeck JA, Bindels LB, Cani PD, et al. Prebiotics: why definitions matter. Curr Opin Biotechnol. 2016;37:1–7.
Article
CAS
PubMed
Google Scholar
Zilber-Rosenberg I, Rosenberg E. Prebiotics and probiotics within the framework of the hologenome concept. J Microb Biochem Techn. 2011; https://doi.org/10.4172/1948-5948.S1-001
Rosenberg E, Sharon G, Zilber-Rosenberg I. The hologenome theory of evolution: a fusion of neo-Darwinism and Lamarckism. Environ Microbiol. 2009;11:2959–62.
Article
PubMed
Google Scholar
Dyall SD, Brown MT, Johnson PJ. Ancient invasions: from endosymbionts to organelles. Science. 2001;304:253–7.
Article
CAS
Google Scholar
McFadden GI, Van Dooren GG. Evolution: red algal genome affirms a common origin of all plastids. Curr Biol. 2004;14:R514–516.179.
Article
CAS
PubMed
Google Scholar
Martin W. Archaebacteria (Archaea) and the origin of the eukaryotic nucleus. Curr Opin Microbiol. 2005;8:630–7.
Article
CAS
PubMed
Google Scholar
Dietrich C, Köhler T, Brune A. The cockroach origin of the termite gut microbiota: patterns in bacterial community structure reflect major evolutionary events. Appl Environ Microbiol. 2014;80:2261–9.
Article
PubMed
PubMed Central
CAS
Google Scholar
Vršanský P, van de Kamp T, Azar D, Prokin A, Vidlička L, Vagovič P. Cockroaches probably cleaned up after dinosaurs. PLoS One. 2013;8(12):e80560.
Article
PubMed
PubMed Central
CAS
Google Scholar
Mackie RI. Mutualistic fermentative digestion in the gastrointestinal tract: diversity and evolution. Integr Comp Biol. 2002;42(2):319.
Article
PubMed
Google Scholar
Stanley GD. Photosymbiosis and the evolution of modern coral reefs. Science. 2006;312:857–8.
Article
CAS
PubMed
Google Scholar
Dubilier N, Bergin C, Lott C. Symbiotic diversity in marine animals: the art of harnessing chemosynthesis. Nat Rev Microbiol. 2008;6:725–40.
Article
CAS
PubMed
Google Scholar
Russell JA, Moreau CS, Goldman-Huertas B, Mikiko Fujiwara M, et al. Bacterial gut symbionts are tightly linked with the evolution of herbivory in ants. PNAS. 2009;106:21236–41.
Article
CAS
PubMed
PubMed Central
Google Scholar
Oldroyd GED, Murray JM, Poole PS, Downie JA. The rules of engagement in the legume-rhizobial symbiosis. Annu Rev Genet. 2011;45:119–44.
Article
CAS
PubMed
Google Scholar
Gao C, Ren X, Mason AS, Liu H, et al. Horizontal gene transfer in plants. Funct Integr Genomics. 2014;14:23–9.
Article
CAS
PubMed
Google Scholar
Liu L, Chen X, Skogerbø G, Zhang P, et al. The human microbiome: a hot spot of microbial horizontal gene transfer. Genomics. 2012;100:265–70.
Article
CAS
PubMed
Google Scholar
Sousa A, Frazão N, Ramiro RS, Gordo I. Evolution of commensal bacteria in the intestinal tract of mice. Curr Opin Microbiol. 2017;38:114–21.
Article
PubMed
Google Scholar
Hehemann JH, Correc G, Barbeyron T, et al. Transfer of carbohydrate-active enzymes from marine bacteria to Japanese gut microbiota. Nature. 2010;464:908–14.
Article
CAS
PubMed
Google Scholar
Hehemann JH, Kelly AG, Pudlo NA, Martens EC, Boraston AB. Bacteria of the human gut microbiome catabolize red seaweed glycans with carbohydrate-active enzyme updates from extrinsic microbes. Proc Natl Acad Sci U S A. 2012;109:19786–91.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nikoh N, Tanaka K, Shibata F, et al. Wolbachia genome integrated in an insect chromosome: evolution and fate of laterally transferred endosymbiont genes. Genome Res. 2008;18:272–80.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gladyshev EA, Meselson M, Arkhipova IR. Massive horizontal gene transfer in bdelloid rotifers. Science. 2008;320:1210–3.
Article
CAS
PubMed
Google Scholar
Moran NA, Jarvik T. Lateral transfer of genes from fungi underlies carotenoid production in aphids. Science. 2010;328:624–7.
Article
CAS
PubMed
Google Scholar
Mitreva M, Smant G, Helder J. Role of horizontal gene transfer in the evolution of plant parasitism among nematodes. Methods Mol Biol. 2009;532:517–35.
Article
CAS
PubMed
Google Scholar
Sieber KB, Bromley RE, Hotopp JCD. Lateral gene transfer between prokaryotes and eukaryotes. Exp Cell Res. 2017; https://doi.org/10.1016/j.yexcr.2017.02.009.
Schönknecht G, Chen WH, Ternes CM, et al. Gene transfer from bacteria and archaea facilitated evolution of an extremophilic eukaryote. Science. 2013;339:1207–10.
Article
PubMed
CAS
Google Scholar
Crisp A, Boschetti C, Perry M, et al. Expression of multiple horizontally acquired genes is a hallmark of both vertebrate and invertebrate genomes. Genome Biol. 2015;16:50. https://doi.org/10.1186/s13059-015-0607-3.
Article
PubMed
PubMed Central
Google Scholar
Yue J, Hu X, Huang J. Horizontal gene transfer in the innovation and adaptation of land plants. Plant Signal Behav. 2013;8:e24130.
Article
PubMed
PubMed Central
CAS
Google Scholar
Dupressoir A, Lavialle C, Heidmann T. From ancestral infectious retroviruses to bona fide cellular genes: role of the captured syncytins in placentation. Placenta. 2012;33:663–71.
Article
CAS
PubMed
Google Scholar
Lavialle C, Cornelis G, Dupressoir A, et al. Paleovirology of ‘syncytins’, retroviral env genes exapted for a role in placentation. Philos Trans R Soc Lond Ser B Biol Sci. 2013;368:20120507.
Article
CAS
Google Scholar
Wagner GP, Kin K, Muglia L, Pavlicev M. Evolution of mammalian pregnancy and the origin of the decidual stromal cell. Int J Dev Biol. 2014;58:117–26.
Article
CAS
PubMed
Google Scholar
Dodd DMB. Reproductive isolation as a consequence of adaptive divergence in Drosophila-pseudoobscura. Evolution. 1989;43:1308–11.
Article
PubMed
Google Scholar
Coyne JA, Orr HA. Speciation. Sunderland: Sinauer; 2004.
Google Scholar
Sharon G, Segal D, Ringo JM, et al. Commensal bacteria play a role in mating preference of Drosophila melanogaster. Proc Natl Acad Sci U S A. 2010;107:20051–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sharon G, Segal D, Zilber-Rosenberg I, Rosenberg E. Symbiotic bacteria are responsible for diet-induced mating preference in Drosophila melanogaster, providing support for the hologenome concept of evolution. Gut Microbes. 2011;2:190–2.
Article
PubMed
Google Scholar
Ezenwa VO, Williams AE. Microbes and animal olfactory communication: where do we go from here? BioEssays. 2014;36:847–54.
Article
PubMed
Google Scholar
Brucker RM, Bordenstein SR. The hologenomic basis of speciation: gut bacteria cause hybrid lethality in the genus Nasonia. Science. 2013;341:667–9.
Article
CAS
PubMed
Google Scholar
Wang J, Kalyan S, Steck N, et al. Analysis of intestinal microbiota in hybrid house mice reveals evolutionary divergence in a vertebrate hologenome. Nat Commun. 2015;6:6440. https://doi.org/10.1038/ncomms7440.
Article
CAS
PubMed
Google Scholar
Roughgarden J, Gilbert SF, Rosenberg E, et al. Holobionts as units of selection and a model of their population dynamics and evolution. Biol Theory. 2017; https://doi.org/10.1007/s13752-017-0287-1.
Wong AC, Chaston JM, Douglas AE. The inconstant gut microbiota of Drosophila species revealed by 16S rRNA gene analysis. Intl Soc Microbil Ecol J. 2012;10:1922–32.
Google Scholar
Schmitt S, Tsai P, Bell J, et al. Assessing the complex sponge microbiota: core, variable and species-specific bacterial communities in marine sponges. ISME J. 2012;6:564–76.
Article
CAS
PubMed
Google Scholar
Ainsworth TD, Krause L, Bridge T, et al. The coral core microbiome identifies rare bacterial taxa as ubiquitous endosymbionts. ISME J. 2015;9:2261–74.
Article
CAS
Google Scholar
Moran NA, Hansen AK, Powell JE, Sabree ZL. Distinctive gut microbiota of honey bees assessed using deep sampling from individual worker bees. PLoS One. 2012;7(4):e36393. https://doi.org/10.1371/journal.pone.0036393
Article
CAS
PubMed
PubMed Central
Google Scholar
He S, Ivanova N, Kirton E, et al. Comparative metagenomic and metatranscriptomic analysis of hindgut paunch microbiota in wood- and dung-feeding higher termites. PLoS One. 2013;8(4):e61126.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dirksen P, Marsh SA, Braker I, Heitland N, et al. The native microbiome of the nematode Caenorhabditis elegans: gateway to a new host-microbiome model. BMC Biol. 2016;14:38.
Article
PubMed
PubMed Central
CAS
Google Scholar
Hammer TJ, McMillan WO, Fierer N. Metamorphosis of a butterfly-associated bacterial community. PLoS One. 2014;9(1):e86995. https://doi.org/10.1371/journal.pone
Article
PubMed
PubMed Central
CAS
Google Scholar
Nam YD, Jung MJ, Roh SW, et al. Comparative analysis of Korean human gut microbiota by barcoded pyrosequencing. PLoS One. 2011;6(7):e22109. https://doi.org/10.1371/journal.pone.0022109.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ying S, Zeng D-N, Chi L, Tan Y, Galzote C, Cardona C, et al. The influence of age and gender on skin-associated microbial communities in urban and rural human populations. PLoS One. 2015;10(10):e0141842. https://doi.org/10.1371/journal.pone.0141842
Article
PubMed
PubMed Central
CAS
Google Scholar
Jami E, Mizrahi I. Composition and similarity of bovine rumen microbiota across individual animals. PLoS One. 2012;7(3):e33306.
Article
CAS
PubMed
PubMed Central
Google Scholar
Colston TJ, Noonan BP, Jackson CR. Phylogenetic analysis of bacterial communities in different regions of the gastrointestinal tract of Agkistrodon piscivorus, the cottonmouth snake. PLoS One. 2015;10(6):e0128793. https://doi.org/10.1371/journal.pone.0128793
Article
PubMed
PubMed Central
CAS
Google Scholar
Hong PY, Wheeler E, Cann IKO, Mackie RI. Phylogenetic analysis of the fecal microbial community in herbivorous land and marine iguanas of the Galápagos Islands using 16S rRNA-based pyrosequencing. ISME J. 2011;5:1461–70.
Article
PubMed
PubMed Central
Google Scholar
Godoy-Vitorino F, Ley RE, Gao Z, et al. Bacterial community in the crop of the hoatzin, a neotropical folivorous flying bird. Appl Environ Microbiol. 2008;74:5905–12.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xue Z, Zhang W, Wang L, Hou R, et al. The bamboo-eating giant panda harbors a carnivore-like gut microbiota, with excessive seasonal variations. MBio. 2015;6:e00022–15. https://doi.org/10.1128/mBio.00022-15.
Article
CAS
PubMed
PubMed Central
Google Scholar
Edwards J, Johnsona C, Santos-Medellína C, Luriea E, et al. Structure, variation, and assembly of the root-associated microbiomes of rice. Proc Natl Acad Sci U S A. 2015;112:911–20.
Article
CAS
Google Scholar
Burke C, Thomas T, Lewis M, et al. Composition, uniqueness and variability of the epiphytic bacterial community of the green alga Ulva australis. ISME J. 2011;5:590–600.
Article
CAS
PubMed
Google Scholar
Koopman M, Fuselier DM, Hird S, et al. The carnivorous pale pitcher plant harbors distinct and time-dependent bacterial communities. Appl Environ Microbiol. 2010;76:1851–60.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bai Y, Müller DB, Srinivas G, et al. Functional overlap of the Arabidopsis leaf and root microbiota. Nature. 2015;528:364–9.
Article
CAS
PubMed
Google Scholar
Mendes R, Garveva P, Raaijmakers JM. The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiol Rev. 2013;37(5):634–63.
Article
CAS
PubMed
Google Scholar
Vaughn D. Why run and hide when you can divide? Evidence for larval cloning and reduced larval size as an adaptive inducible defense. Mar Biol. 2010;15:1301–12.
Article
Google Scholar
Hart MW. Life history evolution and comparative developmental biology of echinoderms. Evol Dev. 2002;4:62–71.
Article
PubMed
Google Scholar
Sipkema D, de Caralt S, Morillo JA, Al-Soud WA, et al. Similar sponge-associated bacteria can be acquired via both vertical and horizontal transmission. Environ Microbiol. 2015;10:3807–21.
Article
CAS
Google Scholar
Hodgson S, Cates C, Hodgson J, et al. Vertical transmission of fungal endophytes is widespread in forbs. Ecol Evol. 2014;4:1199–208.
Article
PubMed
PubMed Central
Google Scholar
Kovacs M, Szendro Z, Milisits G, et al. Effect of nursing methods and feces consumption on the development of bacteroides, lactobacillus and coliform flora in the caecum of the newborn rabbits. Reprod Nutr Dev. 2006;46:205–10.
Article
PubMed
Google Scholar
Baldo L, Riera JL, Tooming-Klunderud A, Albà MM, Salzburger W. Gut microbiota dynamics during dietary shift in eastern African cichlid fishes. PLoS One. 2015;10(5):e0127462.
Article
PubMed
PubMed Central
CAS
Google Scholar
Colombo BM, Scalvenzi T, Benlamara S, Pollet N. Microbiota and mucosal immunity in amphibians. Front Immunol. 2015; https://doi.org/10.3389/fimmu.
Gilbert SF. A holobiont birth narrative: the epigenetic transmission of the human microbiome. Front Genet. 2014;5:282. https://doi.org/10.3389/fgene.
Article
PubMed
PubMed Central
Google Scholar