Stappenbeck TS, Virgin HW. Accounting for reciprocal host–microbiome interactions in experimental science. Nature. 2016;534:191–9.
Article
CAS
PubMed
Google Scholar
Brereton NJB, Gonzalez E, Marleau J, Nissim WG, Labrecque M, Joly S, Pitre FE. Comparative transcriptomic approaches exploring contamination stress tolerance in Salix sp. reveal the importance for a metaorganismal de novo assembly approach for nonmodel plants. Plant Physiol. 2016;171:3–24.
Article
PubMed
PubMed Central
CAS
Google Scholar
Haas BJ, Papanicolaou A, Yassour M, Grabherr M, Blood PD, Bowden J, Couger MB, Eccles D, Li B, Lieber M, et al. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat Protoc. 2013;8:1494–512.
Article
CAS
PubMed
Google Scholar
Henner P, Schiavon M, Morel JL, Lichtfouse E. Polycyclic aromatic hydrocarbon (PAH) occurrence and remediation methods. Analusis. 1997;25:M56–9.
CAS
Google Scholar
De Sousa C. Contaminated sites: the Canadian situation in an international context. J Environ Manag. 2001;62:131–54.
Article
CAS
Google Scholar
Hamin EM. Turning brownfields into greenbacks. J Am Plan Assoc. 1999;65:236–7.
Google Scholar
Panagos P, Van Liedekerke M, Yigini Y, Montanarella L. Contaminated sites in Europe: review of the current situation based on data collected through a European network. J Environ Public Health. 2013;2013:158764.
Article
PubMed
PubMed Central
CAS
Google Scholar
Glass D, Raskin I, Ensley B. Phytoremediation of toxic metals: using plants to clean up the environment. Phytoremediation toxic metals. Wiley; 2000. p. 304.
Pilon-Smits E. Phytoremediation. Annu Rev Plant Biol. 2005;56:15–39.
Article
CAS
PubMed
Google Scholar
Pulford ID, Watson C. Phytoremediation of heavy metal-contaminated land by trees—a review. Environ Int. 2003;29:529–40.
Article
CAS
PubMed
Google Scholar
Bell TH, Joly S, Pitre FE, Yergeau E. Increasing phytoremediation efficiency and reliability using novel omics approaches. Trends Biotechnol. 2014;32:271–80.
Article
CAS
PubMed
Google Scholar
Bell TH, El-Din Hassan S, Lauron-Moreau A, Al-Otaibi F, Hijri M, Yergeau E, St-Arnaud M. Linkage between bacterial and fungal rhizosphere communities in hydrocarbon-contaminated soils is related to plant phylogeny. ISME J. 2014;8:331–43.
Article
CAS
PubMed
Google Scholar
Bissonnette L, St-Arnaud M, Labrecque M. Phytoextraction of heavy metals by two Salicaceae clones in symbiosis with arbuscular mycorrhizal fungi during the second year of a field trial. Plant Soil. 2010;332:55–67.
Article
CAS
Google Scholar
FCM: (The Federation of Canadian Municipalities) brownfields, sustainability snapshot 2009. 2009.
Google Scholar
Ray M, Brereton N, Shield I, Karp A, Murphy R. Variation in cell wall composition and accessibility in relation to biofuel potential of short rotation coppice willows. Bioenergy Res. 2012;5:1–14.
Article
Google Scholar
Heller MC, Keoleian GA, Mann MK, Volk TA. Life cycle energy and environmental benefits of generating electricity from willow biomass. Renew Energy. 2004;29:1023–42.
Article
CAS
Google Scholar
Gnansounou E, Dauriat A. Techno-economic analysis of lignocellulosic ethanol: a review. Bioresour Technol. 2010;101:4980–91.
Article
CAS
PubMed
Google Scholar
Galbe M, Sassner P, Wingren A, Zacchi G. Process engineering economics of bioethanol production. Biofuels. 2007;108:303–27.
Article
CAS
Google Scholar
Hamelinck CN, van Hooijdonk G, Faaij APC. Ethanol from lignocellulosic biomass: techno-economic performance in short-, middle- and long-term. Biomass Bioenergy. 2005;28:384–410.
Article
CAS
Google Scholar
Bonfante P, Anca I-A. Plants, mycorrhizal fungi, and bacteria: a network of interactions. Annu Rev Microbiol. 2009;63:363–83.
Article
CAS
PubMed
Google Scholar
Hassan SED, Bell TH, Stefani FOP, Denis D, Hijri M, St-Arnaud M. Contrasting the community structure of arbuscular mycorrhizal fungi from hydrocarbon-contaminated and uncontaminated soils following willow (Salix spp. L.) planting. PLoS One. 2014;9:e102838.
Article
PubMed Central
CAS
Google Scholar
Almeida-Rodríguez AM, Gómes MP, Loubert-Hudon A, Joly S, Labrecque M. Symbiotic association between Salix purpurea L. and Rhizophagus irregularis: modulation of plant responses under copper stress. Tree Physiol. 2015;36(4):407–20. tpv119
Article
PubMed
CAS
Google Scholar
Wang B, Qiu Y-L. Phylogenetic distribution and evolution of mycorrhizas in land plants. Mycorrhiza. 2006;16:299–363.
Article
CAS
PubMed
Google Scholar
Grigoriev IV, Nikitin R, Haridas S, Kuo A, Ohm R, Otillar R, Riley R, Salamov A, Zhao X, Korzeniewski F. MycoCosm portal: gearing up for 1000 fungal genomes. Nucleic Acids Res. 2014;42(Database issue):D699–704.
Abbasian F, Lockington R, Palanisami T, Ramadass K, Megharaj M, Naidu R. Microbial diversity and hydrocarbon degrading gene capacity of a crude oil field soil as determined by metagenomics analysis. Biotechnol Prog. 2016;32(3):638–48.
Article
CAS
PubMed
Google Scholar
Bamforth SM, Singleton I. Bioremediation of polycyclic aromatic hydrocarbons: current knowledge and future directions. J Chem Technol Biotechnol. 2005;80:723–36.
Article
CAS
Google Scholar
Yergeau E, Sanschagrin S, Maynard C, St-Arnaud M, Greer CW. Microbial expression profiles in the rhizosphere of willows depend on soil contamination. ISME J. 2014;8:344–58.
Article
CAS
PubMed
Google Scholar
Taktek S, St-Arnaud M, Piché Y, Fortin JA, Antoun H. Igneous phosphate rock solubilization by biofilm-forming mycorrhizobacteria and hyphobacteria associated with Rhizoglomus irregulare DAOM 197198. Mycorrhiza. 2017;27(1):13–22.
Article
CAS
PubMed
Google Scholar
Frey-Klett P, Garbaye J, Tarkka M. The mycorrhiza helper bacteria revisited. New Phytol. 2007;176:22–36.
Article
CAS
PubMed
Google Scholar
Garbaye J. Helper bacteria—a new dimension to the mycorrhizal symbiosis. New Phytol. 1994;128:197–210.
Article
Google Scholar
Taghavi S, Van Der Lelie D, Hoffman A, Zhang Y-B, Walla MD, Vangronsveld J, Newman L, Monchy S. Genome sequence of the plant growth promoting endophytic bacterium Enterobacter sp. 638. PLoS Genet. 2010;6:e1000943.
Article
PubMed
PubMed Central
CAS
Google Scholar
Chang S, Puryear J, Cairney J. A simple and efficient method for isolating RNA from pine trees. Plant Mol Biol Report. 1993;11:113–6.
Article
CAS
Google Scholar
Gambino G, Perrone I, Gribaudo I. A rapid and effective method for RNA extraction from different tissues of grapevine and other woody plants. Phytochem Anal. 2008;19:520–5.
Article
CAS
PubMed
Google Scholar
Stewart FJ, Ottesen EA, DeLong EF. Development and quantitative analyses of a universal rRNA-subtraction protocol for microbial metatranscriptomics. ISME j. 2010;4:896–907.
Article
CAS
PubMed
Google Scholar
Meyer M, Kircher M. Illumina sequencing library preparation for highly multiplexed target capture and sequencing. Cold Spring Harb Protoc. 2010;2010:t5448.
Article
Google Scholar
Lohse M, Bolger AM, Nagel A, Fernie AR, Lunn JE, Stitt M, Usadel B. RobiNA: a user-friendly, integrated software solution for RNA-Seq-based transcriptomics. Nucleic Acids Res. 2012;40:W622–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9:357–U354.
Article
CAS
PubMed
PubMed Central
Google Scholar
Langmead B. Aligning short sequencing reads with Bowtie. Curr Protoc Bioinformatics. 2010;CHAPTER 11:Unit 11.17.
Google Scholar
Villacorta-Martin C, Núñez de Cáceres González FF, de Haan J, Huijben K, Passarinho P, Lugassi-Ben Hamo M, Zaccai M. Whole transcriptome profiling of the vernalization process in Lilium longiflorum (cultivar White Heaven) bulbs. BMC Genomics. 2015;16:550.
Article
PubMed
PubMed Central
CAS
Google Scholar
Roberts A, Pachter L. Streaming fragment assignment for real-time analysis of sequencing experiments. Nat Methods. 2013;10:71–U99.
Article
CAS
PubMed
Google Scholar
Anders S, Huber W. Differential expression analysis for sequence count data. Genome Biol. 2010;11:R106.
Article
CAS
PubMed
PubMed Central
Google Scholar
Leng N, Dawson JA, Thomson JA, Ruotti V, Rissman AI, Smits BMG, Haag JD, Gould MN, Stewart RM, Kendziorski C. EBSeq: an empirical Bayes hierarchical model for inference in RNA-seq experiments. Bioinformatics. 2013;29:1035–43.
Article
CAS
PubMed
PubMed Central
Google Scholar
Soneson C, Delorenzi M. A comparison of methods for differential expression analysis of RNA-seq data. Bmc Bioinformatics. 2013;14:91.
Article
PubMed
PubMed Central
Google Scholar
Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26:139–40.
Article
CAS
PubMed
Google Scholar
Robinson MD, Oshlack A. A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol. 2010;11:R25.
Article
PubMed
PubMed Central
CAS
Google Scholar
Gonzalez E, Brereton NJB, Marleau J, Guidi Nissim W, Labrecque M, Pitre FE, Joly S. Meta-transcriptomics indicates biotic cross-tolerance in willow trees cultivated on petroleum hydrocarbon contaminated soil. BMC Plant Biol. 2015;15:246.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ondov BD, Bergman NH, Phillippy AM. Interactive metagenomic visualization in a Web browser. Bmc Bioinformatics. 2011;12:385.
Article
PubMed
PubMed Central
Google Scholar
Mao F, Dam P, Chou J, Olman V, Xu Y. DOOR: a database for prokaryotic operons. Nucleic Acids Res. 2009;37:D459–63.
Article
CAS
PubMed
Google Scholar
Hultman J, Waldrop MP, Mackelprang R, David MM, McFarland J, Blazewicz SJ, Harden J, Turetsky MR, McGuire AD, Shah MB. Multi-omics of permafrost, active layer and thermokarst bog soil microbiomes. Nature. 2015;521:208–12.
Article
CAS
PubMed
Google Scholar
Tveit A, Schwacke R, Svenning MM, Urich T. Organic carbon transformations in high-Arctic peat soils: key functions and microorganisms. ISME j. 2013;7:299–311.
Article
CAS
PubMed
Google Scholar
Bent SJ, Pierson JD, Forney LJ. Measuring species richness based on microbial community fingerprints: the emperor has no clothes. Appl Environ Microbiol. 2007;73:2399–401.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bellemain E, Carlsen T, Brochmann C, Coissac E, Taberlet P, Kauserud H. ITS as an environmental DNA barcode for fungi: an in silico approach reveals potential PCR biases. BMC Microbiol. 2010;10:189.
Article
PubMed
PubMed Central
CAS
Google Scholar
Lindner DL, Banik MT. Intragenomic variation in the ITS rDNA region obscures phylogenetic relationships and inflates estimates of operational taxonomic units in genus Laetiporus. Mycologia. 2011;103:731–40.
Article
PubMed
Google Scholar
Vetrovsky T, Baldrian P. The variability of the 16S rRNA gene in bacterial genomes and its consequences for bacterial community analyses. PLoS One. 2013;8(2):e57923.
Article
CAS
PubMed
PubMed Central
Google Scholar
Guo LL, Sui ZH, Zhang S, Ren YY, Liu Y. Comparison of potential diatom ‘barcode’ genes (the 18S rRNA gene and ITS, COI, rbcL) and their effectiveness in discriminating and determining species taxonomy in the Bacillariophyta. Int J Syst Evol Microbiol. 2015;65:1369–80.
Article
CAS
PubMed
Google Scholar
Maslunka C, Gifford B, Tucci J, Gurtler V, Seviour RJ. Insertions or deletions (Indels) in the rrn 16S-23S rRNA gene internal transcribed spacer region (ITS) compromise the typing and identification of strains within the Acinetobacter calcoaceticus-baumannii (Acb) complex and closely related members. PLoS One. 2014;9(8):e105390. https://doi.org/10.1371/journal.pone.0105390.
Porras-Alfaro A, Liu KL, Kuske CR, Xie G. From genus to phylum: large-subunit and internal transcribed spacer rRNA operon regions show similar classification accuracies influenced by database composition. Appl Environ Microbiol. 2014;80:829–40.
Article
PubMed
PubMed Central
CAS
Google Scholar
Iffis B, St-Arnaud M, Hijri M. Petroleum hydrocarbon contamination, plant identity and arbuscular mycorrhizal fungal (AMF) community determine assemblages of the AMF spore-associated microbes. Environ Microbiol. 2016;18:2689–704.
Article
CAS
PubMed
Google Scholar
Yergeau E, Bell TH, Champagne J, Maynard C, Tardif S, Tremblay J, Greer CW. Transplanting soil microbiomes leads to lasting effects on willow growth, but not on the rhizosphere microbiome. Front Microbiol. 2015;6:1436.
Article
PubMed
PubMed Central
Google Scholar
Brereton NJB, Ahmed F, Sykes D, Ray MJ, Shield I, Karp A, Murphy RJ. X-ray micro-computed tomography in willow reveals tissue patterning of reaction wood and delay in programmed cell death. BMC Plant Biol. 2015;15:83.
Article
PubMed
PubMed Central
CAS
Google Scholar
Sandermann H. Plant metabolism of xenobiotics. Trends Biochem Sci. 1992;17:82–4.
Article
CAS
PubMed
Google Scholar
Noguchi A, Saito A, Homma Y, Nakao M, Sasaki N, Nishino T, Takahashi S, Nakayama T. A UDP-glucose: isoflavone 7-O-glucosyltransferase from the roots of soybean (glycine max) seedlings purification, gene cloning, phylogenetics, and an implication for an alternative strategy of enzyme catalysis. J Biol Chem. 2007;282:23581–90.
Article
CAS
PubMed
Google Scholar
Dixon R, Wright G, Behrns G, Teskey R, Hinckley T. Water deficits and root growth of ectomycorrhizal white oak seedlings. Can J For Res. 1980;10:545–8.
Article
Google Scholar
Dixon R, Pallardy S, Garrett H, Cox G, Sander I. Comparative water relations of container-grown and bare-root ectomycorrhizal and nonmycorrhizal Quercus velutina seedlings. Can J Bot. 1983;61:1559–65.
Article
Google Scholar
Lehto T, Zwiazek JJ. Ectomycorrhizas and water relations of trees: a review. Mycorrhiza. 2011;21:71–90.
Article
PubMed
Google Scholar
Marjanović Ž, Uehlein N, Kaldenhoff R, Zwiazek JJ, Weiß M, Hampp R, Nehls U. Aquaporins in poplar: what a difference a symbiont makes! Planta. 2005;222:258–68.
Article
PubMed
CAS
Google Scholar
Fischer WN, Loo DD, Ludewig U, Boorer KJ, Tegeder M, Rentsch D, Wright EM, Frommer WB. Low and high affinity amino acid H+-cotransporters for cellular import of neutral and charged amino acids. Plant J. 2002;29:717–31.
Article
CAS
PubMed
Google Scholar
Garcia K, Doidy J, Zimmermann SD, Wipf D, Courty P-E. Take a trip through the plant and fungal transportome of mycorrhiza. Trends Plant Sci. 2016;21(11):937–50.
Article
CAS
PubMed
Google Scholar
Grennan AK. The role of trehalose biosynthesis in plants. Plant Physiol. 2007;144:3–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bago B, Pfeffer PE, Douds DD, Brouillette J, Bécard G, Shachar-Hill Y. Carbon metabolism in spores of the arbuscular mycorrhizal fungusGlomus intraradices as revealed by nuclear magnetic resonance spectroscopy. Plant Physiol. 1999;121:263–72.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ferreira AS, Tótola MR, Borges AC. Physiological implications of trehalose in the ectomycorrhizal fungus Pisolithus sp. under thermal stress. J Therm Biol. 2007;32:34–41.
Article
CAS
Google Scholar
Chen L-Q, Hou B-H, Lalonde S, Takanaga H, Hartung ML, Qu X-Q, Guo W-J, Kim J-G, Underwood W, Chaudhuri B. Sugar transporters for intercellular exchange and nutrition of pathogens. Nature. 2010;468:527–32.
Article
CAS
PubMed
PubMed Central
Google Scholar
Doidy J, Grace E, Kühn C, Simon-Plas F, Casieri L, Wipf D. Sugar transporters in plants and in their interactions with fungi. Trends Plant Sci. 2012;17:413–22.
Article
CAS
PubMed
Google Scholar
Manck-Götzenberger J, Requena N. Arbuscular mycorrhiza symbiosis induces a major transcriptional reprogramming of the potato SWEET sugar transporter family. Front Plant Sci. 2016;7:487.
Article
PubMed
PubMed Central
Google Scholar
Chen HY, Huh JH, Yu YC, Ho LH, Chen LQ, Tholl D, Frommer WB, Guo WJ. The Arabidopsis vacuolar sugar transporter SWEET2 limits carbon sequestration from roots and restricts Pythium infection. Plant J. 2015;83:1046–58.
Article
CAS
PubMed
Google Scholar
Floß DS, Hause B, Lange PR, Kuester H, Strack D, Walter MH. Knock-down of the MEP pathway isogene 1-deoxy-D-xylulose 5-phosphate synthase 2 inhibits formation of arbuscular mycorrhiza-induced apocarotenoids, and abolishes normal expression of mycorrhiza-specific plant marker genes. Plant J. 2008;56:86–100.
Article
PubMed
CAS
Google Scholar
Salzer P, Hubner B, Sirrenberg A, Hager A. Differential effect of purified spruce chitinases and [beta]-1, 3-glucanases on the activity of elicitors from ectomycorrhizal fungi. Plant Physiol. 1997;114:957–68.
Article
CAS
PubMed
PubMed Central
Google Scholar
Albrecht C, Burgess T, Dell B, Lapeyrie F. Chitinase and peroxidase activities are induced in eucalyptus roots according to aggressiveness of Australian ectomycorrhizal strains of Pisolithus sp. New Phytol. 1994;127:217–22.
Article
CAS
Google Scholar
Stefani FO, Tanguay P, Pelletier G, Piché Y, Hamelin RC. Impact of endochitinase-transformed white spruce on soil fungal biomass and ectendomycorrhizal symbiosis. Appl Environ Microbiol. 2010;76:2607–14.
Article
CAS
PubMed
PubMed Central
Google Scholar
Le Quéré A, Wright DP, Söderström B, Tunlid A, Johansson T. Global patterns of gene regulation associated with the development of ectomycorrhiza between birch (Betula pendula Roth.) and Paxillus involutus (Batsch) Fr. Mol Plant-Microbe Interact. 2005;18:659–73.
Article
PubMed
CAS
Google Scholar
Chisholm ST, Coaker G, Day B, Staskawicz BJ. Host-microbe interactions: shaping the evolution of the plant immune response. Cell. 2006;124:803–14.
Article
CAS
PubMed
Google Scholar
Plett JM, Daguerre Y, Wittulsky S, Vayssières A, Deveau A, Melton SJ, Kohler A, Morrell-Falvey JL, Brun A, Veneault-Fourrey C. Effector MiSSP7 of the mutualistic fungus Laccaria bicolor stabilizes the Populus JAZ6 protein and represses jasmonic acid (JA) responsive genes. Proc Natl Acad Sci. 2014;111:8299–304.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bonito GM, Gryganskyi AP, Trappe JM, Vilgalys R. A global meta-analysis of Tuber ITS rDNA sequences: species diversity, host associations and long-distance dispersal. Mol Ecol. 2010;19:4994–5008.
Article
CAS
PubMed
Google Scholar
Leonardi M, Iotti M, Oddis M, Lalli G, Pacioni G, Leonardi P, Maccherini S, Perini C, Salerni E, Zambonelli A. Assessment of ectomycorrhizal fungal communities in the natural habitats of Tuber magnatum (Ascomycota, Pezizales). Mycorrhiza. 2013;23:349–58.
Article
CAS
PubMed
Google Scholar
Sundaram S, Kim S, Suzuki H, Mcquattie C, Hiremath S, Podila G. Isolation and characterization of a symbiosis-regulated ras from the ectomycorrhizal fungus Laccaria bicolor. Mol Plant-Microbe Interact. 2001;14:618–28.
Article
CAS
PubMed
Google Scholar
Matheny PB, Curtis JM, Hofstetter V, Aime MC, Moncalvo J-M, Ge Z-W, Yang Z-L, Slot JC, Ammirati JF, Baroni TJ. Major clades of Agaricales: a multilocus phylogenetic overview. Mycologia. 2006;98:982–95.
Article
PubMed
Google Scholar
Hou W, Lian B, Dong H, Jiang H, Wu X. Distinguishing ectomycorrhizal and saprophytic fungi using carbon and nitrogen isotopic compositions. Geosci Front. 2012;3:351–6.
Article
Google Scholar
Pertsemlidis A, Fondon JW. Having a BLAST with bioinformatics (and avoiding BLASTphemy). Genome Biol. 2001;2:reviews2002.2001–10.
Article
Google Scholar
Koide RT, Sharda JN, Herr JR, Malcolm GM. Ectomycorrhizal fungi and the biotrophy–saprotrophy continuum. New Phytol. 2008;178:230–3.
Article
PubMed
Google Scholar
Pellegrin C, Morin E, Martin FM, Veneault-Fourrey C. Comparative analysis of secretomes from ectomycorrhizal fungi with an emphasis on small-secreted proteins. Front Microbiol. 2015;6:1278.
Article
PubMed
PubMed Central
Google Scholar
Kohler A, Kuo A, Nagy LG, Morin E, Barry KW, Buscot F, Canbäck B, Choi C, Cichocki N, Clum A. Convergent losses of decay mechanisms and rapid turnover of symbiosis genes in mycorrhizal mutualists. Nat Genet. 2015;47:410–5.
Article
CAS
PubMed
Google Scholar
Shah F, Nicolás C, Bentzer J, Ellström M, Smits M, Rineau F, Canbäck B, Floudas D, Carleer R, Lackner G. Ectomycorrhizal fungi decompose soil organic matter using oxidative mechanisms adapted from saprotrophic ancestors. New Phytol. 2016;209:1705–19.
Article
CAS
PubMed
Google Scholar
Navarre C, Goffeau A. Membrane hyperpolarization and salt sensitivity induced by deletion of PMP3, a highly conserved small protein of yeast plasma membrane. EMBO J. 2000;19:2515–24.
Article
CAS
PubMed
PubMed Central
Google Scholar
De Block J, Szopinska A, Guerriat B, Dodzian J, Villers J, Hochstenbach J-F, Morsomme P. Yeast Pmp3p has an important role in plasma membrane organization. J Cell Sci. 2015;128:3646–59.
Article
CAS
PubMed
Google Scholar
Peng R-H, Xiong A-S, Xue Y, Fu X-Y, Gao F, Zhao W, Tian Y-S, Yao Q-H. Microbial biodegradation of polyaromatic hydrocarbons. FEMS Microbiol Rev. 2008;32:927–55.
Article
CAS
PubMed
Google Scholar
Chikere CB, Okpokwasili GC, Chikere BO. Monitoring of microbial hydrocarbon remediation in the soil. Biotech. 2011;1:117–38.
Google Scholar
Sipilä TP, Keskinen A-K, Åkerman M-L, Fortelius C, Haahtela K, Yrjälä K. High aromatic ring-cleavage diversity in birch rhizosphere: PAH treatment-specific changes of IE 3 group extradiol dioxygenases and 16S rRNA bacterial communities in soil. ISME j. 2008;2:968–81.
Article
PubMed
CAS
Google Scholar
Carmel-Harel O, Storz G. Roles of the glutathione-and thioredoxin-dependent reduction systems in the Escherichia coli and Saccharomyces cerevisiae responses to oxidative stress. Annu Rev Microbiol. 2000;54:439–61.
Article
CAS
PubMed
Google Scholar
Nehls U, Grunze N, Willmann M, Reich M, Kuester H. Sugar for my honey: carbohydrate partitioning in ectomycorrhizal symbiosis. Phytochemistry. 2007;68:82–91.
Article
CAS
PubMed
Google Scholar
Nehls U, Wiese J, Guttenberger M, Hampp R. Carbon allocation in ectomycorrhizas: identification and expression analysis of an Amanita muscaria monosaccharide transporter. Mol Plant-Microbe Interact. 1998;11:167–76.
Article
CAS
PubMed
Google Scholar
Fajardo López M, Dietz S, Grunze N, Bloschies J, Weiß M, Nehls U. The sugar porter gene family of Laccaria bicolor: function in ectomycorrhizal symbiosis and soil-growing hyphae. New Phytol. 2008;180:365–78.
Article
CAS
Google Scholar
Hynson NA, Weiss M, Preiss K, Gebauer G, Treseder KK. Fungal host specificity is not a bottleneck for the germination of Pyroleae species (Ericaceae) in a Bavarian forest. Mol Ecol. 2013;22:1473–81.
Article
PubMed
Google Scholar
Deshmukh S, Hückelhoven R, Schäfer P, Imani J, Sharma M, Weiss M, Waller F, Kogel K-H. The root endophytic fungus Piriformospora indica requires host cell death for proliferation during mutualistic symbiosis with barley. Proc Natl Acad Sci. 2006;103:18450–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zuccaro A, Lahrmann U, Güldener U, Langen G, Pfiffi S, Biedenkopf D, Wong P, Samans B, Grimm C, Basiewicz M. Endophytic life strategies decoded by genome and transcriptome analyses of the mutualistic root symbiont Piriformospora indica. PLoS Pathog. 2011;7:e1002290.
Article
CAS
PubMed
PubMed Central
Google Scholar
Roy A, Hashmi S, Li Z, Dement AD, Cho KH, Kim J-H. The glucose metabolite methylglyoxal inhibits expression of the glucose transporter genes by inactivating the cell surface glucose sensors Rgt2 and Snf3 in yeast. Mol Biol Cell. 2016;27:862–71.
Article
PubMed
PubMed Central
CAS
Google Scholar
Martin F, Aerts A, Ahrén D, Brun A, Danchin E, Duchaussoy F, Gibon J, Kohler A, Lindquist E, Pereda V. The genome of Laccaria bicolor provides insights into mycorrhizal symbiosis. Nature. 2008;452:88–92.
Article
CAS
PubMed
Google Scholar
Nikolaidis N, Doran N, Cosgrove DJ. Plant expansins in bacteria and fungi: evolution by horizontal gene transfer and independent domain fusion. Mol Biol Evol. 2014;31:376–86.
Article
CAS
PubMed
Google Scholar
Rytioja J, Hildén K, Yuzon J, Hatakka A, de Vries RP, Mäkelä MR. Plant-polysaccharide-degrading enzymes from basidiomycetes. Microbiol Mol Biol Rev. 2014;78:614–49.
Article
PubMed
PubMed Central
Google Scholar
Sillo F, Fangel JU, Henrissat B, Faccio A, Bonfante P, Martin F, Willats WG, Balestrini R. Understanding plant cell-wall remodelling during the symbiotic interaction between Tuber melanosporum and Corylus avellana using a carbohydrate microarray. Planta. 2016;244(2):347–59.
Article
CAS
PubMed
Google Scholar
Veneault-Fourrey C, Kohler A, Morin E, Balestrini R, Plett J, Danchin E, Coutinho P, Wiebenga A, De Vries RP, Henrissat B. Genomic and transcriptomic analysis of Laccaria bicolor CAZome reveals insights into polysaccharides remodelling during symbiosis establishment. Fungal Genet Biol. 2014;72:168–81.
Article
CAS
PubMed
Google Scholar
Peter M, Kohler A, Ohm RA, Kuo A, Krützmann J, Morin E, Arend M, Barry KW, Binder M, Choi C, et al. Ectomycorrhizal ecology is imprinted in the genome of the dominant symbiotic fungus Cenococcum geophilum. Nat Commun. 2016;7:12662.
Article
PubMed
PubMed Central
Google Scholar
Avigad G, Amaral D, Asensio C, Horecker B. The D-galactose oxidase of Polyporus circinatus. J Biol Chem. 1962;237:2736–43.
CAS
PubMed
Google Scholar
Donaldson LA, Knox JP. Localization of cell wall polysaccharides in normal and compression wood of radiata pine: relationships with lignification and microfibril orientation. Plant Physiol. 2012;158:642–53.
Article
CAS
PubMed
Google Scholar
Massicotte H, Ackerley C, Peterson R. Localization of three sugar residues in the interface of ectomycorrhizae synthesized between Alnus crispa and Alpova diplophloeus as demonstrated by lectin binding. Can J Bot. 1987;65:1127–32.
Article
CAS
Google Scholar
Giollant M, Guillot J, Damez M, Dusser M, Didier P, Didier E. Characterization of a lectin from Lactarius deterrimus (research on the possible involvement of the fungal lectin in recognition between mushroom and spruce during the early stages of mycorrhizae formation). Plant Physiol. 1993;101:513–22.
Article
CAS
PubMed
PubMed Central
Google Scholar
FUJIMOTO Z. Structure and function of carbohydrate-binding module families 13 and 42 of glycoside hydrolases, comprising a β-trefoil fold. Biosci Biotechnol Biochem. 2013;77:1363–71.
Article
CAS
PubMed
Google Scholar
Martin F, Ramstedt M, Söderhäll K. Carbon and nitrogen metabolism in ectomycorrhizal fungi and ectomycorrhizas. Biochimie. 1987;69:569–81.
Article
CAS
PubMed
Google Scholar
Deveau A, Kohler A, Frey-Klett P, Martin F. The major pathways of carbohydrate metabolism in the ectomycorrhizal basidiomycete Laccaria bicolor S238N. New Phytol. 2008;180:379–90.
Article
CAS
PubMed
Google Scholar
Ceccaroli P, Buffalini M, Saltarelli R, Barbieri E, Polidori E, Ottonello S, Kohler A, Tisserant E, Martin F, Stocchi V. Genomic profiling of carbohydrate metabolism in the ectomycorrhizal fungus Tuber melanosporum. New Phytol. 2011;189:751–64.
Article
CAS
PubMed
Google Scholar
Shah F, Rineau F, Canbäck B, Johansson T, Tunlid A. The molecular components of the extracellular protein-degradation pathways of the ectomycorrhizal fungus Paxillus involutus. New Phytol. 2013;200:875–87.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lucic E, Fourrey C, Kohler A, Martin F, Chalot M, Brun-Jacob A. A gene repertoire for nitrogen transporters in Laccaria bicolor. New Phytol. 2008;180:343–64.
Article
CAS
PubMed
Google Scholar
Sundaram S, Brand JH, Hymes MJ, Hiremath S, Podila GK. Isolation and analysis of a symbiosis-regulated and Ras-interacting vesicular assembly protein gene from the ectomycorrhizal fungus Laccaria bicolor. New Phytol. 2004;161:529–38.
Article
CAS
Google Scholar
Rajashekar B, Kohler A, Johansson T, Martin F, Tunlid A, Ahrén D. Expansion of signal pathways in the ectomycorrhizal fungus Laccaria bicolor–evolution of nucleotide sequences and expression patterns in families of protein kinases and RAS small GTPases. New Phytol. 2009;183:365–79.
Article
CAS
PubMed
Google Scholar
De Camilli P, Emr SD, McPherson PS, Novick P. Phosphoinositides as regulators in membrane traffic. Science. 1996;271:1533.
Article
CAS
PubMed
Google Scholar
Kim S-J, Hiremath ST, Podila GK. Cloning and identification of symbiosis-regulated genes from the ectomycorrhizal Laccaria bicolor. Mycol Res. 1999;103:168–72.
Article
CAS
Google Scholar
de Freitas PM, Betancourth BML, Teixeira JA, Zubieta MP, de Queiroz MV, Kasuya MCM, Costa MD, de Araújo EF. In vitro Scleroderma laeve and Eucalyptus grandis mycorrhization and analysis of atp6, 17S rDNA, and ras gene expression during ectomycorrhizal formation. J Basic Microbiol. 2014;54:1358–66.
Article
CAS
Google Scholar
Inada N, Ueda T. Membrane trafficking pathways and their roles in plant–microbe interactions. Plant Cell Physiol. 2014;55:672–86.
Article
CAS
PubMed
Google Scholar
Sarkar N. Polyadenylation of mRNA in bacteria. Microbiol-Uk. 1996;142:3125–33.
Article
CAS
Google Scholar
Nakazato H, Venkatesan S, Edmonds M. Polyadenylic acid sequences in E. coli messenger RNA. Nature. 1975;256:144–6.
Article
CAS
PubMed
Google Scholar
Hajnsdorf E, Braun F, Haugel-Nielsen J, Regnier P. Polyadenylylation destabilizes the rpsO mRNA of Escherichia coli. Proc Natl Acad Sci U S A. 1995;92:3973–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
O'Hara EB, Chekanova JA, Ingle CA, Kushner ZR, Peters E, Kushner SR. Polyadenylylation helps regulate mRNA decay in Escherichia coli. Proc Natl Acad Sci U S A. 1995;92:1807–11.
Article
PubMed
PubMed Central
Google Scholar
Li Z, Reimers S, Pandit S, Deutscher MP. RNA quality control: degradation of defective transfer RNA. EMBO J. 2002;21:1132–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mohanty BK, Kushner SR. Bacterial/archaeal/organellar polyadenylation. Wiley Interdiscip Rev-Rna. 2011;2:256–76.
Article
CAS
PubMed
Google Scholar
Kushner SR. Polyadenylation in E. coli: a 20 year odyssey. RNA. 2015;21:673–4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Srinivasan PR, Ramanarayanan M, Rabbani E. Presence of polyriboadenylate sequences in pulse-labeled RNA of Escherichia coli. Proc Natl Acad Sci U S A. 1975;72:2910–4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sarkar N, Langley D, Paulus H. Isolation and characterization of polyadenylate-containing RNA from Bacillus brevis. Biochemistry. 1978;17:3468–74.
Article
CAS
PubMed
Google Scholar
Mohanty BK, Kushner SR. The majority of Escherichia coli mRNAs undergo post-transcriptional modification in exponentially growing cells. Nucleic Acids Res. 2006;34:5695–704.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jasiecki J, Wegrzyn G. Growth-rate dependent RNA polyadenylation in Escherichia coli. EMBO Rep. 2003;4:172–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Maes A, Gracia C, Brechemier D, Hamman P, Chatre E, Lemelle L, Bertin PN, Hajnsdorf E. Role of polyadenylation in regulation of the flagella cascade and motility in Escherichia coli. Biochimie. 2013;95:410–8.
Article
CAS
PubMed
Google Scholar
Mohanty BK, Kushner SR. Analysis of the function of Escherichia coli poly(A) polymerase I in RNA metabolism. Mol Microbiol. 1999;34:1094–108.
Article
CAS
PubMed
Google Scholar
Brouwer RW, Kuipers OP, van Hijum SA. The relative value of operon predictions. Brief Bioinform. 2008;9:367–75.
Article
CAS
PubMed
Google Scholar
Mao XZ, Ma Q, Liu BQ, Chen X, Zhang HY, Xu Y. Revisiting operons: an analysis of the landscape of transcriptional units in E. coli. Bmc Bioinformatics. 2015;16:356.
Article
PubMed
PubMed Central
Google Scholar
Heitkamp MA, Freeman JP, Miller DW, Cerniglia CE. Pyrene degradation by a Mycobacterium sp.—identification of ring oxidation and ring fission-products. Appl Environ Microbiol. 1988;54:2556–65.
CAS
PubMed
PubMed Central
Google Scholar
Yung PY, Lo Grasso L, Mohidin AF, Acerbi E, Hinks J, Seviour T, Marsili E, Lauro FM. Global transcriptomic responses of Escherichia coli K-12 to volatile organic compounds. Sci Rep. 2016;6:19899.
Article
CAS
PubMed
PubMed Central
Google Scholar
Malinverni JC, Silhavy TJ. An ABC transport system that maintains lipid asymmetry in the Gram-negative outer membrane. Proc Natl Acad Sci U S A. 2009;106:8009–14.
Article
CAS
PubMed
PubMed Central
Google Scholar
Duan J, Jiang W, Cheng Z, Heikkila JJ, Glick BR. The complete genome sequence of the plant growth-promoting bacterium Pseudomonas sp. UW4. PLoS One. 2013;8:e58640.
Article
CAS
PubMed
PubMed Central
Google Scholar
van der Ploeg JR, Cummings NJ, Leisinger T, Connerton IF. Bacillus subtilis genes for the utilization of sulfur from aliphatic sulfonates. Microbiol-Uk. 1998;144:2555–61.
Article
CAS
Google Scholar
Kane SR, Chakicherla AY, Chain PS, Schmidt R, Shin MW, Legler TC, Scow KM, Larimer FW, Lucas SM, Richardson PM. Whole-genome analysis of the methyl tert-butyl ether-degrading beta-proteobacterium Methylibium petroleiphilum PM1. J Bacteriol. 2007;189:1931–45.
Article
CAS
PubMed
Google Scholar
Pohnlein M, Hausmann R, Lang S, Syldatk C. Enzymatic synthesis and modification of surface-active glycolipids. Eur J Lipid Sci Technol. 2015;117:145–55.
Article
CAS
Google Scholar
Müller MM, Kügler JH, Henkel M, Gerlitzki M, Hörmann B, Pöhnlein M, Syldatk C, Hausmann R. Rhamnolipids—next generation surfactants? J Biotechnol. 2012;162:366–80.
Article
PubMed
CAS
Google Scholar
Gutknecht R, Beutler R, Garcia-Alles LF, Baumann U, Erni B. The dihydroxyacetone kinase of Escherichia coli utilizes a phosphoprotein instead of ATP as phosphoryl donor. EMBO J. 2001;20:2480–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li H, Su H, Kim SB, Chang YK, Hong S-K, Seo Y-G, Kim C-J. Enhanced production of trehalose in Escherichia coli by homologous expression of otsBA in the presence of the trehalase inhibitor, validamycin A, at high osmolarity. J Biosci Bioeng. 2012;113:224–32.
Article
CAS
PubMed
Google Scholar
Cabrera-Valladares N, Richardson A-P, Olvera C, Treviño LG, Déziel E, Lépine F, Soberón-Chávez G. Monorhamnolipids and 3-(3-hydroxyalkanoyloxy) alkanoic acids (HAAs) production using Escherichia coli as a heterologous host. Appl Microbiol Biotechnol. 2006;73:187–94.
Article
CAS
PubMed
Google Scholar
Henkel M, Müller MM, Kügler JH, Lovaglio RB, Contiero J, Syldatk C, Hausmann R. Rhamnolipids as biosurfactants from renewable resources: concepts for next-generation rhamnolipid production. Process Biochem. 2012;47:1207–19.
Article
CAS
Google Scholar
Zhu K, Rock CO. RhlA converts beta-hydroxyacyl-acyl carrier protein intermediates in fatty acid synthesis to the beta-hydroxydecanoyl-beta-hydroxydecanoate component of rhamnolipids in Pseudomonas aeruginosa. J Bacteriol. 2008;190:3147–54.
Article
CAS
PubMed
PubMed Central
Google Scholar
Abdel-Mawgoud AM, Lepine F, Deziel E. A stereospecific pathway diverts beta-oxidation intermediates to the biosynthesis of rhamnolipid biosurfactants. Chem Biol. 2014;21:156–64.
Article
CAS
PubMed
Google Scholar
Campos-Garcia J, Caro AD, Najera R, Miller-Maier RM, Al-Tahhan RA, Soberon-Chavez G. The Pseudomonas aeruginosa rhlG gene encodes an NADPH-dependent beta-ketoacyl reductase which is specifically involved in rhamnolipid synthesis. J Bacteriol. 1998;180:4442–51.
CAS
PubMed
PubMed Central
Google Scholar
Reis RS, Pereira AG, Neves BC, Freire DMG. Gene regulation of rhamnolipid production in Pseudomonas aeruginosa—a review. Bioresour Technol. 2011;102:6377–84.
Article
CAS
PubMed
Google Scholar
Campbell JW, Morgan-Kiss RM, Cronan JE. A new Escherichia coli metabolic competency: growth on fatty acids by a novel anaerobic beta-oxidation pathway. Mol Microbiol. 2003;47:793–805.
Article
CAS
PubMed
Google Scholar
Korea CG, Badouraly R, Prevost MC, Ghigo JM, Beloin C. Escherichia coli K-12 possesses multiple cryptic but functional chaperone-usher fimbriae with distinct surface specificities. Environ Microbiol. 2010;12:1957–77.
Article
CAS
PubMed
Google Scholar
Warmink J, Nazir R, Van Elsas J. Universal and species-specific bacterial ‘fungiphiles’ in the mycospheres of different basidiomycetous fungi. Environ Microbiol. 2009;11:300–12.
Article
CAS
PubMed
Google Scholar
Dutton MV, Evans CS. Oxalate production by fungi: its role in pathogenicity and ecology in the soil environment. Can J Microbiol. 1996;42:881–95.
Article
CAS
Google Scholar
Nishino K, Inazumi Y, Yamaguchi A. Global analysis of genes regulated by EvgA of the two-component regulatory system in Escherichia coli. J Bacteriol. 2003;185:2667–72.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fontenot EM, Ezelle KE, Gabreski LN, Giglio ER, McAfee JM, Mills AC, Qureshi MN, Salmon KM, Toyota CG. YfdW and YfdU are required for oxalate-induced acid tolerance in Escherichia coli K-12. J Bacteriol. 2013;195:1446–55.
Article
CAS
PubMed
PubMed Central
Google Scholar
Takanao S, Honma S, Miura T, Ogawa C, Sugimoto H, Suzuki K, Watanabe T. Construction and basic characterization of deletion mutants of the genes involved in chitin utilization by Serratia marcescens 2170. Biosci Biotechnol Biochem. 2014;78:524–32.
Article
CAS
PubMed
Google Scholar
Figueroa-Bossi N, Valentini M, Malleret L, Bossi L. Caught at its own game: regulatory small RNA inactivated by an inducible transcript mimicking its target. Genes Dev. 2009;23:2004–15.
Article
CAS
PubMed
PubMed Central
Google Scholar
Toratani T, Shoji T, Ikehara T, Suzuki K, Watanabe T. The importance of chitobiase and N-acetylglucosamine (GlcNAc) uptake in N, N′-diacetylchitobiose [(GlcNAc) 2] utilization by Serratia marcescens 2170. Microbiology. 2008;154:1326–32.
Article
CAS
PubMed
Google Scholar
Plumbridge J, Pellegrini O. Expression of the chitobiose operon of Escherichia coli is regulated by three transcription factors: NagC, ChbR and CAP. Mol Microbiol. 2004;52:437–49.
Article
CAS
PubMed
Google Scholar
Francetic O, Belin D, Badaut C, Pugsley AP. Expression of the endogenous type II secretion pathway in Escherichia coli leads to chitinase secretion. EMBO J. 2000;19:6697–703.
Article
CAS
PubMed
PubMed Central
Google Scholar
Citterio B, Malatesta M, Battistelli S, Marcheggiani F, Baffone W, Saltarelli R, Stocchi V, Gazzanelli G. Possible involvement of Pseudomonas fluorescens and Bacillaceae in structural modifications of Tuber borchii fruit bodies. Can J Microbiol. 2001;47:264–8.
Article
CAS
PubMed
Google Scholar
De Boer W, Gunnewiek PJK, Kowalchuk GA, Van Veen JA. Growth of chitinolytic dune soil β-subclass Proteobacteria in response to invading fungal hyphae. Appl Environ Microbiol. 2001;67:3358–62.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bending GD, Poole EJ, Whipps JM, Read DJ. Characterisation of bacteria from Pinus sylvestris-Suillus luteus mycorrhizas and their effects on root-fungus interactions and plant growth. FEMS Microbiol Ecol. 2002;39:219–27.
CAS
PubMed
Google Scholar
Uroz S, Courty PE, Pierrat JC, Peter M, Buee M, Turpault MP, Garbaye J, Frey-Klett P. Functional profiling and distribution of the forest soil bacterial communities along the soil mycorrhizosphere continuum. Microb Ecol. 2013;66:404–15.
Article
CAS
PubMed
Google Scholar
Van Houdt R, Michiels CW. Role of bacterial cell surface structures in Escherichia coli biofilm formation. Res Microbiol. 2005;156:626–33.
Article
CAS
PubMed
Google Scholar
Kohlmeier S, Smits TH, Ford RM, Keel C, Harms H, Wick LY. Taking the fungal highway: mobilization of pollutant-degrading bacteria by fungi. Environ sci technol. 2005;39:4640–6.
Article
CAS
PubMed
Google Scholar
Sarand I, Timonen S, Nurmiaho-Lassila E-L, Koivula T, Haahtela K, Romantschuk M, Sen R. Microbial biofilms and catabolic plasmid harbouring degradative fluorescent pseudomonads in Scots pine mycorrhizospheres developed on petroleum contaminated soil. FEMS Microbiol Ecol. 1998;27:115–26.
Article
CAS
Google Scholar
Tenorio E, Saeki T, Fujita K, Kitakawa M, Baba T, Mori H, Isono K. Systematic characterization of Escherichia coli genes/ORFs affecting biofilm formation. FEMS Microbiol Lett. 2003;225:107–14.
Article
CAS
PubMed
Google Scholar
Pion M, Bshary R, Bindschedler S, Filippidou S, Wick LY, Job D, Junier P. Gains of bacterial flagellar motility in a fungal world. Appl Environ Microbiol. 2013;79:6862–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Samadder P, Xicohtencatl-Cortes J, Saldana Z, Jordan D, Tarr PI, Kaper JB, Giron JA. The Escherichia coli ycbQRST operon encodes fimbriae with laminin-binding and epithelial cell adherence properties in Shiga-toxigenic E. coli O157:H7. Environ Microbiol. 2009;11:1815–26.
Article
CAS
PubMed
PubMed Central
Google Scholar
Overhage J, Lewenza S, Marr AK, Hancock RE. Identification of genes involved in swarming motility using a Pseudomonas aeruginosa PAO1 mini-Tn5-lux mutant library. J Bacteriol. 2007;189:2164–9.
Article
CAS
PubMed
Google Scholar
Costa TR, Felisberto-Rodrigues C, Meir A, Prevost MS, Redzej A, Trokter M, Waksman G. Secretion systems in Gram-negative bacteria: structural and mechanistic insights. Nat Rev Microbiol. 2015;13:343–59.
Article
CAS
PubMed
Google Scholar
Gerlach RG, Hensel M. Protein secretion systems and adhesins: the molecular armory of Gram-negative pathogens. Int J Med Microbiol. 2007;297:401–15.
Article
CAS
PubMed
Google Scholar
Garnett JA, Martínez-Santos VI, Saldaña Z, Pape T, Hawthorne W, Chan J, Simpson PJ, Cota E, Puente JL, Girón JA. Structural insights into the biogenesis and biofilm formation by the Escherichia coli common pilus. Proc Natl Acad Sci. 2012;109:3950–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lehti TA, Bauchart P, Heikkinen J, Hacker J, Korhonen TK, Dobrindt U, Westerlund-Wikström B. Mat fimbriae promote biofilm formation by meningitis-associated Escherichia coli. Microbiology. 2010;156:2408–17.
Article
CAS
PubMed
Google Scholar
Otrelo-Cardoso AR, da Silva Correia MA, Schwuchow V, Svergun DI, Romão MJ, Leimkühler S, Santos-Silva T. Structural data on the periplasmic aldehyde oxidoreductase PaoABC from Escherichia coli: SAXS and preliminary X-ray crystallography analysis. Int J Mol Sci. 2014;15:2223–36.
Article
PubMed
PubMed Central
CAS
Google Scholar
Lee PA, Tullman-Ercek D, Georgiou G. The bacterial twin-arginine translocation pathway. Annu Rev Microbiol. 2006;60:373–95.
Article
PubMed
PubMed Central
CAS
Google Scholar
Hatzixanthis K, Palmer T, Sargent F. A subset of bacterial inner membrane proteins integrated by the twin-arginine translocase. Mol Microbiol. 2003;49:1377–90.
Article
CAS
PubMed
Google Scholar
Barnhart MM, Chapman MR. Curli biogenesis and function. Annu Rev Microbiol. 2006;60:131–47.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ogasawara H, Yamamoto K, Ishihama A. Role of the biofilm master regulator CsgD in cross-regulation between biofilm formation and flagellar synthesis. J Bacteriol. 2011;193:2587–97.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kjærgaard K, Schembri MA, Ramos C, Molin S, Klemm P. Antigen 43 facilitates formation of multispecies biofilms. Environ Microbiol. 2000;2:695–702.
Article
PubMed
Google Scholar
Edgren T, Nordlund S. Two pathways of electron transport to nitrogenase in Rhodospirillum rubrum: the major pathway is dependent on the fix gene products. FEMS Microbiol Lett. 2006;260:30–5.
Article
CAS
PubMed
Google Scholar
Fischer H-M. Genetic regulation of nitrogen fixation in rhizobia. Microbiol Rev. 1994;58:352–86.
CAS
PubMed
PubMed Central
Google Scholar
Eichler K, Buchet A, Bourgis F, Kleber HP, Mandrand-Berthelot MA. The fix Escherichia coli region contains four genes related to carnitine metabolism. J Basic Microbiol. 1995;35:217–27.
Article
CAS
PubMed
Google Scholar
Walt A, Kahn ML. The fixA and fixB genes are necessary for anaerobic carnitine reduction in Escherichia coli. J Bacteriol. 2002;184:4044–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jia W, Cole J. Nitrate and nitrite transport in Escherichia coli. Biochem Soc Trans. 2005;33:159–61.
Article
CAS
PubMed
Google Scholar
Sparacino-Watkins C, Stolz JF, Basu P. Nitrate and periplasmic nitrate reductases. Chem Soc Rev. 2014;43:676–706.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gardner AM, Helmick RA, Gardner PR. Flavorubredoxin, an inducible catalyst for nitric oxide reduction and detoxification in Escherichia coli. J Biol Chem. 2002;277:8172–7.
Article
CAS
PubMed
Google Scholar
Harborne NR, Griffiths L, Busby SJ, Cole JA. Transcriptional control, translation and function of the products of the five open reading frames of the Escherichia coli nir operon. Mol Microbiol. 1992;6:2805–13.
Article
CAS
PubMed
Google Scholar
Boogerd FC, Ma H, Bruggeman FJ, van Heeswijk WC, García-Contreras R, Molenaar D, Krab K, Westerhoff HV. AmtB-mediated NH3 transport in prokaryotes must be active and as a consequence regulation of transport by GlnK is mandatory to limit futile cycling of NH 4+/NH 3. FEBS Lett. 2011;585:23–8.
Article
CAS
PubMed
Google Scholar
Kobayashi M, Ishimoto M. Aerobic inhibition of nitrate assimilation in Escherichia coli. Zeitschrift für allgemeine Mikrobiologie. 1973;13:405–13.
Article
CAS
PubMed
Google Scholar
Degelmann DM, Kolb S, Dumont M, Murrell JC, Drake HL. Enterobacteriaceae facilitate the anaerobic degradation of glucose by a forest soil. FEMS Microbiol Ecol. 2009;68:312–9.
Article
CAS
PubMed
Google Scholar
Schrey SD, Schellhammer M, Ecke M, Hampp R, Tarkka MT. Mycorrhiza helper bacterium Streptomyces AcH 505 induces differential gene expression in the ectomycorrhizal fungus Amanita muscaria. New Phytol. 2005;168:205–16.
Article
CAS
PubMed
Google Scholar
Sen R, Nurmiaho-Lassila E, Haahtela K, Korhonen K. Specificity and mode of primary attachment of Pseudomonas fluorescens strains to the cell walls of ectomycorrhizal fungi. Mycorrhizas in integrated systems: from genes to plant development ECSC-EC-EAEC. Brussels: ECSC-EC-EAEC Press; 1996. p. 661–4.
Leveau JH, Preston GM. Bacterial mycophagy: definition and diagnosis of a unique bacterial-fungal interaction. New Phytol. 2008;177:859–76.
Article
PubMed
Google Scholar
Lehembre F, Doillon D, David E, Perrotto S, Baude J, Foulon J, Harfouche L, Vallon L, Poulain J, Da Silva C, et al. Soil metatranscriptomics for mining eukaryotic heavy metal resistance genes. Environ Microbiol. 2013;15:2829–40.
CAS
PubMed
Google Scholar
Brosche M, Vinocur B, Alatalo ER, Lamminmaki A, Teichmann T, Ottow EA, Djilianov D, Afif D, Bogeat-Triboulot MB, Altman A, et al. Gene expression and metabolite profiling of Populus euphratica growing in the Negev desert. Genome Biol. 2005;6(12):R101.
Article
PubMed
PubMed Central
Google Scholar
Nanjo T, Sakurai T, Totoki Y, Toyoda A, Nishiguchi M, Kado T, Igasaki T, Futamura N, Seki M, Sakaki Y, et al. Functional annotation of 19,841 Populus nigra full-length enriched cDNA clones. BMC Genomics. 2007;8:448.
Article
PubMed
PubMed Central
Google Scholar
Sterky F, Bhalerao RR, Unneberg P, Segerman B, Nilsson P, Brunner AM, Charbonnel-Campaa L, Lindvall JJ, Tandre K, Strauss SH, et al. A Populus EST resource for plant functional genomics. Proc Natl Acad Sci U S A. 2004;101:13951–6.
Article
PubMed
PubMed Central
Google Scholar
Kohler A, Delaruelle C, Martin D, Encelot N, Martin F. The poplar root transcriptome: analysis of 7000 expressed sequence tags. FEBS Lett. 2003;542:37–41.
Article
PubMed
Google Scholar
Ralph S, Oddy C, Cooper D, Yueh H, Jancsik S, Kolosova N, Philippe RN, Aeschliman D, White R, Huber D. Genomics of hybrid poplar (Populus trichocarpa× deltoides) interacting with forest tent caterpillars (Malacosoma disstria): normalized and full-length cDNA libraries, expressed sequence tags, and a cDNA microarray for the study of insect-induced defences in poplar. Mol Ecol. 2006;15:1275–97.
Article
PubMed
Google Scholar
Varshney RK, Hiremath PJ, Lekha P, Kashiwagi J, Balaji J, Deokar AA, Vadez V, Xiao YL, Srinivasan R, Gaur PM, et al. A comprehensive resource of drought- and salinity-responsive ESTs for gene discovery and marker development in chickpea (Cicer arietinum L.). BMC Genomics. 2009;10:523.
Article
PubMed
PubMed Central
CAS
Google Scholar
Gupta V, Raghuvanshi S, Gupta A, Saini N, Gaur A, Khan MS, Gupta RS, Singh J, Duttamajumder SK, Srivastava S, et al. The water-deficit stress- and red-rot-related genes in sugarcane. Funct Integr Genomics. 2010;10:207–14.
Article
CAS
PubMed
Google Scholar
Li HY, Wang YC, Jiang J, Liu GF, Gao CQ, Yang CP. Identification of genes responsive to salt stress on Tamarix hispida roots. Gene. 2009;433:65–71.
Article
CAS
PubMed
Google Scholar
Lambilliotte R, Cooke R, Samson D, Fizames C, Gaymard F, Plassard C, Tatry MV, Berger C, Laudié M, Legeai F. Large-scale identification of genes in the fungus Hebeloma cylindrosporum paves the way to molecular analyses of ectomycorrhizal symbiosis. New Phytol. 2004;164:505–13.
Article
CAS
Google Scholar
Brown DW, Cheung F, Proctor RH, Butchko RA, Zheng L, Lee Y, Utterback T, Smith S, Feldblyum T, Glenn AE. Comparative analysis of 87,000 expressed sequence tags from the fumonisin-producing fungus Fusarium verticillioides. Fungal Genet Biol. 2005;42:848–61.
Article
CAS
PubMed
Google Scholar
Karim N, Shibuya H, Kikuchi T. Analysis of expressed sequence tags from the wood-decaying fungus Fomitopsis palustris and identification of potential genes involved in the decay process. J Microbiol Biotechnol. 2011;21:347–58.
CAS
PubMed
Google Scholar
Geisler S, Coller J. RNA in unexpected places: long non-coding RNA functions in diverse cellular contexts. Nat Rev Mol Cell Biol. 2013;14:699–712.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ferracin M, Gautheret D, Hubé F, Mani SA, Mattick JS, Andersson Ørom U, Santulli G, Slotkin RK, Szweykowska-Kulinska Z, Taube JH. The non-coding RNA journal club: highlights on recent papers. Non-Coding RNA. 2015;1:87–93.
Article
Google Scholar
Ponting CP, Belgard TG. Transcribed dark matter: meaning or myth? Hum Mol Genet. 2010;19:R162–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Palazzo AF, Lee ES. Non-coding RNA: what is functional and what is junk? Front Genet. 2015;6:2.
Article
PubMed
PubMed Central
CAS
Google Scholar
Mora C, Tittensor DP, Adl S, Simpson AGB, Worm B. How many species are there on earth and in the ocean? PLoS Biol. 2011;9(8):e1001127.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ellegren H. Genome sequencing and population genomics in non-model organisms. Trends Ecol Evol. 2014;29:51–63.
Article
PubMed
Google Scholar
Nesme J, Achouak W, Agathos SN, Bailey M, Baldrian P, Brunel D, Frostegård Å, Heulin T, Jansson JK, Jurkevitch E. Back to the future of soil metagenomics. Front Microbiol. 2016;7:73.
Article
PubMed
PubMed Central
Google Scholar
Spribille T, Tuovinen V, Resl P, Vanderpool D, Wolinski H, Aime MC, Schneider K, Stabentheiner E, Toome-Heller M, Thor G. Basidiomycete yeasts in the cortex of ascomycete macrolichens. Science. 2016;353:488–92.
Article
CAS
PubMed
PubMed Central
Google Scholar