Laxminarayan R, Amabile-Cuevas CF, Cars O, Evans T, Heymann DL, et al. UN High-Level Meeting on antimicrobials—what do we need? Lancet. 2016;388:218–20.
Article
PubMed
Google Scholar
Kumarasamy KK, Toleman MA, Walsh TR, Bagaria J, Butt F, et al. Emergence of a new antibiotic resistance mechanism in India, Pakistan, and the UK: a molecular, biological, and epidemiological study. Lancet Infect Dis. 2010;10:597–602.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hornsey M, Phee L, Wareham DW. A novel variant, NDM-5, of the New Delhi metallo-beta-lactamase in a multidrug-resistant Escherichia coli ST648 isolate recovered from a patient in the United Kingdom. Antimicrob Agents Chemother. 2011;55:5952–4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schwarz S, Johnson AP. Transferable resistance to colistin: a new but old threat. J Antimicrob Chemother. 2016;71:2066–70.
Article
PubMed
Google Scholar
Baron S, Hadjadj L, Rolain JM, Olaitan AO. Molecular mechanisms of polymyxin resistance: knowns and unknowns. Int J Antimicrob Agents. 2016. doi:10.1016/j.ijantimicag.2016.06.023. [Epub ahead of print].
Liu YY, Wang Y, Walsh TR, Yi LX, Zhang R, et al. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study. Lancet Infect Dis. 2016;16:161–8.
Article
PubMed
Google Scholar
Gao R, Hu Y, Li Z, Sun J, Wang Q, et al. Dissemination and mechanism for the MCR-1 colistin resistance. PLoS Pathog. 2016;12:e1005957. doi:10.1371/journal.ppat.1005957. eCollection 2016 Nov.
Article
PubMed
PubMed Central
Google Scholar
Hankins JV, Madsen JA, Giles DK, Brodbelt JS, Trent MS. Amino acid addition to Vibrio cholerae LPS establishes a link between surface remodeling in gram-positive and gram-negative bacteria. Proc Natl Acad Sci U S A. 2012;109:8722–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Petrou VI, Herrera CM, Schultz KM, Clarke OB, Vendome J, et al. Structures of aminoarabinose transferase ArnT suggest a molecular basis for lipid A glycosylation. Science. 2016;351:608–12.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sun J, Xu Y, Gao R, Lin J, Wei W, et al. Deciphering MCR-2 colistin resistance. MBio. 2017;8. doi: 10.1128/mBio.00625-17.
Cannatelli A, D’Andrea MM, Giani T, Di Pilato V, Arena F, et al. In vivo emergence of colistin resistance in Klebsiella pneumoniae producing KPC-type carbapenemases mediated by insertional inactivation of the PhoQ/PhoP mgrB regulator. Antimicrob Agents Chemother. 2013;57:5521–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Llewellyn AC, Zhao J, Song F, Parvathareddy J, Xu Q, et al. NaxD is a deacetylase required for lipid A modification and Francisella pathogenesis. Mol Microbiol. 2012;86:611–27.
Article
CAS
PubMed
Google Scholar
Chin CY, Gregg KA, Napier BA, Ernst RK, Weiss DS. A PmrB-regulated deacetylase required for lipid A modification and polymyxin resistance in Acinetobacter baumannii. Antimicrob Agents Chemother. 2015;59:7911–4.
Article
CAS
PubMed
PubMed Central
Google Scholar
McPhee JB, Lewenza S, Hancock RE. Cationic antimicrobial peptides activate a two-component regulatory system, PmrA-PmrB, that regulates resistance to polymyxin B and cationic antimicrobial peptides in Pseudomonas aeruginosa. Mol Microbiol. 2003;50:205–17.
Article
CAS
PubMed
Google Scholar
Beceiro A, Llobet E, Aranda J, Bengoechea JA, Doumith M, et al. Phosphoethanolamine modification of lipid A in colistin-resistant variants of Acinetobacter baumannii mediated by the pmrAB two-component regulatory system. Antimicrob Agents Chemother. 2011;55:3370–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tamayo R, Ryan SS, McCoy AJ, Gunn JS. Identification and genetic characterization of PmrA-regulated genes and genes involved in polymyxin B resistance in Salmonella enterica serovar typhimurium. Infect Immun. 2002;70:6770–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Stojanoski V, Sankaran B, Prasad BV, Poirel L, Nordmann P, et al. Structure of the catalytic domain of the colistin resistance enzyme MCR-1. BMC Biol. 2016;14:81.
Article
PubMed
PubMed Central
Google Scholar
Ma G, Zhu Y, Yu Z, Ahmad A, Zhang H. High resolution crystal structure of the catalytic domain of MCR-1. Sci Rep. 2016;6:39540.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hu M, Guo J, Cheng Q, Yang Z, Chan EW, et al. Crystal structure of Escherichia coli originated MCR-1, a phosphoethanolamine transferase for colistin resistance. Sci Rep. 2016;6:38793.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang Q, Li Z, Lin J, Wang X, Deng X, et al. Complex dissemination of the diversified mcr-1-harbouring plasmids in Escherichia coli of different sequence types. Oncotarget. 2016;7:82112–22.
PubMed
PubMed Central
Google Scholar
Li Z, Tan C, Lin J, Feng Y. Diversified variants of the mcr-1-carrying plasmid reservoir in the swine lung microbiota. Sci China Life Sci. 2016;59:971–3.
Article
PubMed
Google Scholar
Ye H, Li Y, Li Z, Gao R, Zhang H, et al. Diversified mcr-1-harbouring plasmid reservoirs confer resistance to colistin in human gut microbiota. MBio. 2016;7:e00177. doi:10.1128/mBio.00177-16.
Article
CAS
PubMed
PubMed Central
Google Scholar
Doumith M, Godbole G, Ashton P, Larkin L, Dallman T, et al. Detection of the plasmid-mediated mcr-1 gene conferring colistin resistance in human and food isolates of Salmonella enterica and Escherichia coli in England and Wales. J Antimicrob Chemother. 2016;71:2300–5.
Article
CAS
PubMed
Google Scholar
Li XP, Fang LX, Song JQ, Xia J, Huo W, et al. Clonal spread of mcr-1 in PMQR-carrying ST34 Salmonella isolates from animals in China. Sci Rep. 2016;6:38511.
Article
CAS
PubMed
PubMed Central
Google Scholar
Stoesser N, Mathers AJ, Moore CE, Day NPJ, Crook DW. Colistin resistance gene mcr-1 and pHNSHP45 plasmid in human isolates of Escherichia coli and Klebsiella pneumoniae. Lancet Infect Dis. 2016;16:285–6.
Article
CAS
PubMed
Google Scholar
Zhao F, Feng Y, Lu X, McNally A, Zong Z. An IncP plasmid carrying the colistin resistance gene mcr-1 in Klebsiella pneumoniae from hospital sewage. Antimicrob Agents Chemother. 2016;61(2). doi: 10.1128/AAC.02229-16.
Zeng KJ, Doi Y, Patil S, Huang X, Tian GB. Emergence of plasmid-mediated mcr-1 gene in colistin-resistant Enterobacter aerogenes and Enterobacter cloacae. Antimicrob Agents Chemother. 2016;60:3862–3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhao F, Zong Z. Kluyvera ascorbata strain from hospital sewage carrying the mcr-1 colistin resistance gene. Antimicrob Agents Chemother. 2016;60:7498–501.
CAS
PubMed
PubMed Central
Google Scholar
Li XP, Fang LX, Jiang P, Pan D, Xia J, et al. Emergence of the colistin resistance gene mcr-1 in Citrobacter freundii. Int J Antimicrob Agents. 2017;49:786–7.
Article
CAS
PubMed
Google Scholar
Sennati S, Di Pilato V, Riccobono E, Di Maggio T, Villagran AL, et al. Citrobacter braakii carrying plasmid-borne mcr-1 colistin resistance gene from ready-to-eat food from a market in the Chaco region of Bolivia. J Antimicrob Chemother. 2017. doi:10.1093/jac/dkx078.
PubMed
Google Scholar
El Garch F, Sauget M, Hocquet D, LeChaudee D, Woehrle F, et al. mcr-1 is borne by highly diverse Escherichia coli isolates since 2004 in food-producing animals in Europe. Clin Microbiol Infect. 2016;23(1):51.e1–4. doi:10.1016/j.cmi.2016.08.033. Epub 2016 Sep 8.
Article
Google Scholar
Delgado-Blas JF, Ovejero CM, Abadia Patino L, Gonzalez-Zorn B. Coexistence of mcr-1 and blaNDM-1 in Escherichia coli from Venezuela. Antimicrob Agents Chemother. 2016;60:6356–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zheng B, Dong H, Xu H, Lv J, Zhang J, et al. Coexistence of MCR-1 and NDM-1 in clinical Escherichia coli isolates. Clin Infect Dis. 2016;63:1393–5.
Article
PubMed
Google Scholar
Mediavilla JR, Patrawalla A, Chen L, Chavda KD, Mathema B, et al. Colistin- and carbapenem-resistant Escherichia coli harboring mcr-1 and blaNDM-5, causing a complicated urinary tract infection in a patient from the United States. MBio. 2016;7(4). doi:10.1128/mBio.01191-16.
Yang RS, Feng Y, Lv XY, Duan JH, Chen J, et al. Emergence of NDM-5 and MCR-1-producing Escherichia coli clone ST648 and ST156 from a single Muscovy duck (Cairina moschata). Antimicrob Agents Chemother. 2016;60(11):6899–902.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yao X, Doi Y, Zeng L, Lv L, Liu JH. Carbapenem-resistant and colistin-resistant Escherichia coli co-producing NDM-9 and MCR-1. Lancet Infect Dis. 2016;16:288–9.
Article
CAS
PubMed
Google Scholar
Zhang H, Seward CH, Wu Z, Ye H, Feng Y. Genomic insights into the ESBL and MCR-1-producing ST648 Escherichia coli with multi-drug resistance. Sci Bull (Beijing). 2016;61:875–8.
Article
CAS
Google Scholar
Yang YQ, Zhang AY, Ma SZ, Kong LH, Li YX, et al. Co-occurrence of mcr-1 and ESBL on a single plasmid in Salmonella enterica. J Antimicrob Chemother. 2016;71:2336–8.
Article
CAS
PubMed
Google Scholar
Li A, Yang Y, Miao M, Chavda KD, Mediavilla JR, et al. Complete sequences of mcr-1-harboring plasmids from extended-spectrum-beta-lactamase- and carbapenemase-producing Enterobacteriaceae. Antimicrob Agents Chemother. 2016;60:4351–4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sun J, Li XP, Yang RS, Fang LX, Huo W, et al. Complete nucleotide sequence of an IncI2 plasmid coharboring blaCTX-M-55 and mcr-1. Antimicrob Agents Chemother. 2016;60:5014–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gao R, Wang Q, Li P, Li Z, Feng Y. Genome sequence and characteristics of plasmid pWH12, a variant of the mcr-1-harbouring plasmid pHNSHP45, from the multi-drug resistant E. coli. Virulence. 2016;7:732–5.
Article
PubMed
PubMed Central
Google Scholar
Guo Q, Su J, McElheny CL, Stoesser N, Doi Y, et al. IncX2 and IncX1-X2 hybrid plasmids coexisting in FosA6-producing Escherichia coli. Antimicrob Agents Chemother. 2017. doi: 10.1128/AAC.00536-17. [Epub ahead of print].
Sun J, Yang RS, Zhang Q, Feng Y, Fang LX, et al. Co-transfer of bla
NDM-5 and mcr-1 by an IncX3-X4 hybrid plasmid in Escherichia coli. Nat Microbiol. 2016;1:16176.
Article
CAS
PubMed
Google Scholar
Fernandes MR, McCulloch JA, Vianello MA, Moura Q, Perez-Chaparro PJ, et al. First report of the globally disseminated IncX4 plasmid carrying the mcr-1 gene in a colistin-resistant Escherichia coli sequence type 101 isolate from a human infection in Brazil. Antimicrob Agents Chemother. 2016;60:6415–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sun J, Fang LX, Wu Z, Deng H, Yang RS, et al. Genetic analysis of the IncX4 plasmids: implications for a unique pattern in the mcr-1 acquisition. Sci Rep. 2017;7:424.
Article
PubMed
PubMed Central
Google Scholar
Zhi C, Lv L, Yu LF, Doi Y, Liu JH. Dissemination of the mcr-1 colistin resistance gene. Lancet Infect Dis. 2016;16:292–3.
Article
PubMed
Google Scholar
McGann P, Snesrud E, Maybank R, Corey B, Ong AC, et al. Escherichia coli harboring mcr-1 and blaCTX-M on a novel IncF plasmid: first report of mcr-1 in the United States. Antimicrob Agents Chemother. 2016;60:4420–1.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xavier BB, Lammens C, Butaye P, Goossens H, Malhotra-Kumar S. Complete sequence of an IncFII plasmid harbouring the colistin resistance gene mcr-1 isolated from Belgian pig farms. J Antimicrob Chemother. 2016;71:2342–4.
Article
CAS
PubMed
Google Scholar
Zurfluh K, Klumpp J, Nuesch-Inderbinen M, Stephan R. Full-length nucleotide sequences of mcr-1-harboring plasmids isolated from extended-spectrum-beta-lactamase-producing Escherichia coli isolates of different origins. Antimicrob Agents Chemother. 2016;60:5589–91.
Article
CAS
PubMed
PubMed Central
Google Scholar
Luo H, Zhang CT, Gao F. Ori-Finder 2, an integrated tool to predict replication origins in the archaeal genomes. Front Microbiol. 2014;5:482.
PubMed
PubMed Central
Google Scholar
Laslett D, Canback B. ARAGORN, a program to detect tRNA genes and tmRNA genes in nucleotide sequences. Nucleic Acids Res. 2004;32:11–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lagesen K, Hallin P, Rodland EA, Staerfeldt HH, Rognes T, et al. RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res. 2007;35:3100–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ou HY, He X, Harrison EM, Kulasekara BR, Thani AB, et al. MobilomeFINDER: web-based tools for in silico and experimental discovery of bacterial genomic islands. Nucleic Acids Res. 2007;35:W97–104.
Article
PubMed
PubMed Central
Google Scholar
Carattoli A, Zankari E, Garcia-Fernandez A, Voldby Larsen M, Lund O, et al. In silico detection and typing of plasmids using PlasmidFinder and plasmid multilocus sequence typing. Antimicrob Agents Chemother. 2014;58:3895–903.
Article
PubMed
PubMed Central
Google Scholar
Varani AM, Siguier P, Gourbeyre E, Charneau V, Chandler M. ISsaga is an ensemble of web-based methods for high throughput identification and semi-automatic annotation of insertion sequences in prokaryotic genomes. Genome Biol. 2011;12:R30.
Article
CAS
PubMed
PubMed Central
Google Scholar
Siguier P, Perochon J, Lestrade L, Mahillon J, Chandler M. ISfinder: the reference centre for bacterial insertion sequences. Nucleic Acids Res. 2006;34:D32–6.
Article
CAS
PubMed
Google Scholar
Arndt D, Grant JR, Marcu A, Sajed T, Pon A, et al. PHASTER: a better, faster version of the PHAST phage search tool. Nucleic Acids Res. 2016;44:W16–21.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fouts DE. Phage_Finder: automated identification and classification of prophage regions in complete bacterial genome sequences. Nucleic Acids Res. 2006;34:5839–51.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu B, Pop M. ARDB—antibiotic resistance genes database. Nucleic Acids Res. 2009;37:D443–7.
Article
CAS
PubMed
Google Scholar
McArthur AG, Waglechner N, Nizam F, Yan A, Azad MA, et al. The comprehensive antibiotic resistance database. Antimicrob Agents Chemother. 2013;57:3348–57.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kleinheinz KA, Joensen KG, Larsen MV. Applying the ResFinder and VirulenceFinder web-services for easy identification of acquired antibiotic resistance and E. coli virulence genes in bacteriophage and prophage nucleotide sequences. Bacteriophage. 2014;4:e27943.
Article
PubMed
PubMed Central
Google Scholar
Sekizuka T, Kawanishi M, Ohnishi M, Shima A, Kato K, et al. Elucidation of quantitative structural diversity of remarkable rearrangement regions, shufflons, in IncI2 plasmids. Sci Rep. 2017;7:928.
Article
PubMed
PubMed Central
Google Scholar
Wang Q, Sun J, Ding Y, Li XP, Liu YH, et al. Genomic insights into mcr-1-positive plasmids carried by the colistin-resistant Escherichia coli from the inpatients. Antimicrob Agents Chemother. 2017;61(7). doi:10.1128/AAC.00361-17. [Epub ahead of print].