Bardgett RD, Freeman C, Ostle NJ. Microbial contributions to climate change through carbon cycle feedbacks. ISME J. 2008;2(8):805–14.
Article
CAS
Google Scholar
Hu G, Li Y, Ye C, Liu L, Chen X. Engineering microorganisms for enhanced CO2 sequestration. Trends Biotechnol. 2019;37(5):532–47.
Article
CAS
Google Scholar
Jacoby R, Peukert M, Succurro A, Koprivova A, Kopriva S. The role of soil microorganisms in plant mineral nutrition-current knowledge and future directions. Front Plant Sci. 2017;8:1617.
Article
Google Scholar
Naylor D, Sadler N, Bhattacharjee A, Graham EB, Anderton CR, McClure R, Lipton M, Hofmockel KS, Jansson JK. Soil microbiomes under climate change and implications for carbon cycling. Annu Rev Environ Resour. 2020;45(1):29–59.
Article
Google Scholar
Wang L, Mazzola M. Field evaluation of reduced rate Brassicaceae seed meal amendment and rootstock genotype on the microbiome and control of apple replant disease. Phytopathology. 2019;109(8):1378–91.
Article
CAS
Google Scholar
Mazzola M, Hewavitharana SS, Strauss SL. Brassica seed meal soil amendments transform the rhizosphere microbiome and improve apple production through resistance to pathogen reinfestation. Phytopathology. 2015;105(4):460–9.
Article
CAS
Google Scholar
van der Heijden MG, Wagg C. Soil microbial diversity and agro-ecosystem functioning. Plant Soil. 2013;363(1):1–5.
Article
CAS
Google Scholar
Cook RJ. Toward cropping systems that enhance productivity and sustainability. Proc Natl Acad Sci. 2006;103(49):18389–94.
Article
CAS
Google Scholar
Zhao Q, Xiong W, Xing Y, Sun Y, Lin X, Dong Y. Long-term coffee monoculture alters soil chemical properties and microbial communities. Sci Rep. 2018;8(1):1–11.
Google Scholar
Somera TS, Mazzola M. Toward a holistic view of orchard ecosystem dynamics: A comprehensive review of the multiple factors governing development or suppression of apple replant disease. Front Microbiol. 2022;13:949404. https://doi.org/10.3389/fmicb.2022.949404.
van Bruggen AH, Finckh MR. Plant diseases and management approaches in organic farming systems. Annu Rev Phytopathol. 2016;54:25–54.
Article
Google Scholar
Hoitink HA, Stone AG, Grebus ME. Suppression of plant diseases by composts. In The science of composting. Dordrecht: Springer; 1996: 373-381.
Matthiessen JN, Kirkegaard JA. Biofumigation and enhanced biodegradation: opportunity and challenge in soilborne pest and disease management. Crit Rev Plant Sci. 2006;25(3):235–65.
Article
CAS
Google Scholar
Jiao S, Chen W, Wei G. Resilience and assemblage of soil microbiome in response to chemical contamination combined with plant growth. Appl Environ Microbiol. 2019;85(6):e02523-e2518.
Article
CAS
Google Scholar
Bonanomi G, Lorito M, Vinale F, Woo SL. Organic amendments, beneficial microbes, and soil microbiota: toward a unified framework for disease suppression. Annu Rev Phytopathol. 2018;56:1–20.
Article
CAS
Google Scholar
Tao C, Li R, Xiong W, Shen Z, Liu S, Wang B, Ruan Y, Geisen S, Shen Q, Kowalchuk GA. Bio-organic fertilizers stimulate indigenous soil Pseudomonas populations to enhance plant disease suppression. Microbiome. 2020;8(1):1–14.
Article
Google Scholar
Mazzola M. Elucidation of the microbial complex having a causal role in the development of apple replant disease in washington. Phytopathology. 1998;88(9):930–8.
Article
CAS
Google Scholar
Mazzola M. Transformation of soil microbial community structure and Rhizoctonia-suppressive potential in response to apple roots. Phytopathology. 1999;89(10):920–7.
Article
CAS
Google Scholar
DuPont S, Hewavitharana S, Mazzola M. Field scale application of Brassica seed meal and anaerobic soil disinfestation for the control of apple replant disease. Appl Soil Ecol. 2021;166:104076.
Article
Google Scholar
Mazzola M, Brown J. Efficacy of Brassicaceous seed meal formulations for the control of apple replant disease in conventional and organic production systems. Plant Dis. 2010;94(7):835–42.
Article
CAS
Google Scholar
Mazzola M, Manici LM. Apple replant disease: role of microbial ecology in cause and control. Annu Rev Phytopathol. 2012;50:45–65.
Article
CAS
Google Scholar
Mazzola M, Freilich S. Prospects for biological soilborne disease control: application of indigenous versus synthetic microbiomes. Phytopathology. 2017;107(3):256–63.
Article
CAS
Google Scholar
Faust K. Towards a better understanding of microbial community dynamics through high-throughput cultivation and data integration. Msystems. 2019;4(3):e00101-19.
Noecker C, Eng A, Srinivasan S, Theriot CM, Young VB, Jansson JK, Fredricks DN, Borenstein E. Metabolic model-based integration of microbiome taxonomic and metabolomic profiles elucidates mechanistic links between ecological and metabolic variation. MSystems. 2016;1(1):e00013-15.
Widder S, Allen RJ, Pfeiffer T, Curtis TP, Wiuf C, Sloan WT, Cordero OX, Brown SP, Momeni B, Shou W, et al. Challenges in microbial ecology: building predictive understanding of community function and dynamics. ISME J. 2016;10(11):2557–68.
Article
Google Scholar
Ponomarova O, Patil KR. Metabolic interactions in microbial communities: untangling the Gordian knot. Curr Opin Microbiol. 2015;27:37–44.
Article
Google Scholar
Tal O, Selvaraj G, Medina S, Ofaim S, Freilich S. NetMet. A network-based tool for predicting metabolic capacities of microbial species and their interactions. Microorganisms. 2020;8(6):840.
Tal O, Bartuv R, Vetcos M, Medina S, Jiang J, Freilich S. NetCom: a network-based tool for predicting metabolic activities of microbial communities based on interpretation of metagenomics data. Microorganisms. 2021;9(9):1838.
Article
CAS
Google Scholar
Ofaim S, Ofek-Lalzar M, Sela N, Jinag J, Kashi Y, Minz D, Freilich S. Analysis of microbial functions in the rhizosphere using a metabolic-network based framework for metagenomics interpretation. Front Microbiol. 2017;8:1606.
Article
Google Scholar
Selvaraj G, Santos-Garcia D, Mozes-Daube N, Medina S, Zchori-Fein E, Freilich S. An eco-systems biology approach for modeling tritrophic networks reveals the influence of dietary amino acids on symbiont dynamics of Bemisia tabaci. FEMS Microbiology Ecology. 2021;97(9):fiab117.
Xu X, Zarecki R, Medina S, Ofaim S, Liu X, Chen C, Hu S, Brom D, Gat D, Porob S, et al. Modeling microbial communities from atrazine contaminated soils promotes the development of biostimulation solutions. ISME J. 2019;13(2):494–508.
Article
CAS
Google Scholar
Faust K. Microbial consortium design benefits from metabolic modeling. Trends Biotechnol. 2019;37(2):123–5.
Article
CAS
Google Scholar
Opatovsky I, Santos-Garcia D, Ruan Z, Lahav T, Ofaim S, Mouton L, Barbe V, Jiang J, Zchori-Fein E, Freilich S. Modeling trophic dependencies and exchanges among insects’ bacterial symbionts in a host-simulated environment. BMC Genomics. 2018;19(1):402.
Article
Google Scholar
Katsir L, Zhepu R, Santos Garcia D, Piasezky A, Jiang J, Sela N, Freilich S, Bahar O. Genome analysis of haplotype D of candidatus liberibacter solanacearum. Front Microbiol. 2018;9:2933.
Article
Google Scholar
Mazzola M, Brown J, Zhao XW, Izzo AD, Fazio G. Interaction of Brassicaceous seed meal and apple rootstock on recovery of Pythium spp. and Pratylenchus penetrans from roots grown in replant soils. Plant Dis. 2009;93(1):51–7.
Article
Google Scholar
Leisso R, Rudell D, Mazzola M. Metabolic composition of apple rootstock rhizodeposits differs in a genotype-specific manner and affects growth of subsequent plantings. Soil Biol Biochem. 2017;113:201–14.
Article
CAS
Google Scholar
Wissuwa M, Mazzola M, Picard C. Novel approaches in plant breeding for rhizosphere-related traits. Plant Soil. 2009;321(1):409–30.
Article
CAS
Google Scholar
Somera TS, Freilich S, Mazzola M. Comprehensive analysis of the apple rhizobiome as influenced by different Brassica seed meals and rootstocks in the same soil/plant system. Appl Soil Ecol. 2021;157:103766.
Article
Google Scholar
Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30(15):2114–20.
Article
CAS
Google Scholar
Li D, Liu CM, Luo R, Sadakane K, Lam TW. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics. 2015;31(10):1674–6.
Article
CAS
Google Scholar
Hyatt D, Chen GL, Locascio PF, Land ML, Larimer FW, Hauser LJ. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinforma. 2010;11:119.
Article
Google Scholar
Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using DIAMOND. Nat Methods. 2015;12(1):59–60.
Article
CAS
Google Scholar
Huson DH, Auch AF, Qi J, Schuster SC. MEGAN analysis of metagenomic data. Genome Res. 2007;17(3):377–86.
Article
CAS
Google Scholar
Kanehisa M, Araki M, Goto S, Hattori M, Hirakawa M, Itoh M, Katayama T, Kawashima S, Okuda S, Tokimatsu T, et al. KEGG for linking genomes to life and the environment. Nucleic Acids Res. 2008;36(Database issue):D480-484.
CAS
Google Scholar
Li H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv preprint arXiv:13033997. 2013.
Heip CHR, Herman PMJ, Soetaert KER. Indices of diversity and evenness. Océanis. 1998;24:61–87.
Google Scholar
Greenblum S, Chiu HC, Levy R, Carr R, Borenstein E. Towards a predictive systems-level model of the human microbiome: progress, challenges, and opportunities. Curr Opin Biotechnol. 2013;24(4):810–20.
Article
CAS
Google Scholar
Carr R, Borenstein E. NetSeed: a network-based reverse-ecology tool for calculating the metabolic interface of an organism with its environment. Bioinformatics. 2012;28(5):734–5.
Article
CAS
Google Scholar
Ebenhoh O, Handorf T, Heinrich R. Structural analysis of expanding metabolic networks. Genome Inform Int Conf Genome Inform. 2004;15(1):35–45.
Google Scholar
Kinney KS, Austin CE, Morton DS, Sonnenfeld G. Catecholamine enhancement of Aeromonas hydrophila growth. Microb Pathog. 1999;26(2):85–91.
Article
CAS
Google Scholar
Kinney KS, Austin CE, Morton DS, Sonnenfeld G. Norepinephrine as a growth stimulating factor in bacteria–mechanistic studies. Life Sci. 2000;67(25):3075–85.
Article
CAS
Google Scholar
Dong H, Li S, Fang H, Xia M, Zheng P, Zhang D, Sun J. A newly isolated and identified vitamin B12 producing strain: Sinorhizobium meliloti 320. Bioprocess Biosyst Eng. 2016;39(10):1527–37.
Article
CAS
Google Scholar
Martens JH, Barg H, Warren MJ, Jahn D. Microbial production of vitamin B12. Appl Microbiol Biotechnol. 2002;58(3):275–85.
Article
CAS
Google Scholar
Mazzola M, Gu YH. Impact of wheat cultivation on microbial communities from replant soils and apple growth in greenhouse trials. Phytopathology. 2000;90(2):114-9.
Robertson CE, Harris JK, Wagner BD, Granger D, Browne K, Tatem B, Feazel LM, Park K, Pace NR, Frank DN. Explicet: graphical user interface software for metadata-driven management, analysis and visualization of microbiome data. Bioinformatics. 2013;29(23):3100–1.
Article
CAS
Google Scholar
Bodenhausen N, Horton MW, Bergelson J. Bacterial communities associated with the leaves and the roots of Arabidopsis thaliana. PLoS ONE. 2013;8(2):e56329.
Article
CAS
Google Scholar
Correa FB, Saraiva JP, Stadler PF, da Rocha UN. TerrestrialMetagenomeDB: a public repository of curated and standardized metadata for terrestrial metagenomes. Nucleic Acids Res. 2020;48(D1):D626–32.
CAS
Google Scholar
Arikawa K, Ide K, Kogawa M, Saeki T, Yoda T, Endoh T, Matsuhashi A, Takeyama H, Hosokawa M. Recovery of strain-resolved genomes from human microbiome through an integration framework of single-cell genomics and metagenomics. Microbiome. 2021;9(1):202.
Article
CAS
Google Scholar
Radl V, Winkler JB, Kublik S, Yang L, Winkelmann T, Vestergaard G, Schröder P, Schloter M. Reduced microbial potential for the degradation of phenolic compounds in the rhizosphere of apple plantlets grown in soils affected by replant disease. Environ Microbiome. 2019;14(1):8.
Article
Google Scholar
Cohen MF, Yamasaki H, Mazzola M. Brassica napus seed meal soil amendment modifies microbial community structure, nitric oxide production and incidence of Rhizoctonia root rot. Soil Biol Biochem. 2005;37(7):1215–27.
Article
CAS
Google Scholar
Backer R, Rokem JS, Ilangumaran G, Lamont J, Praslickova D, Ricci E, Subramanian S, Smith DL. Plant growth-promoting rhizobacteria: context, mechanisms of action, and roadmap to commercialization of biostimulants for sustainable agriculture. Frontiers in plant science. 2018:1473.
Saharan B, Nehra V. Plant growth promoting rhizobacteria: a critical review. Life Sci Med Res. 2011;21:1–30.
Google Scholar
Finkel OM, Salas-González I, Castrillo G, Conway JM, Law TF, Teixeira PJPL, Wilson ED, Fitzpatrick CR, Jones CD, Dangl JL. A single bacterial genus maintains root growth in a complex microbiome. Nature. 2020;587(7832):103–8.
Article
CAS
Google Scholar
Abuhamed T, Bayraktar E, Mehmetoğlu T, Mehmetoğlu Ü. Kinetics model for growth of Pseudomonas putida F1 during benzene, toluene and phenol biodegradation. Process Biochem. 2004;39(8):983–8.
Article
CAS
Google Scholar
Selmer D. Biosynthesis of cyanogenic glycosides, glucosinolates and non-protein amino acids. Ann Plant Rev Online. 2018;40:92–181.
Article
Google Scholar
Jahangir M, Abdel-Farid IB, Kim HK, Choi YH, Verpoorte R. Healthy and unhealthy plants: The effect of stress on the metabolism of Brassicaceae. Environ Exp Bot. 2009;67(1):23–33.
Article
CAS
Google Scholar
Neugart S, Baldermann S, Hanschen FS, Klopsch R, Wiesner-Reinhold M, Schreiner M. The intrinsic quality of brassicaceous vegetables: How secondary plant metabolites are affected by genetic, environmental, and agronomic factors. Sci Hortic-Amsterdam. 2018;233:460–78.
Article
CAS
Google Scholar
Freilich S, Kreimer A, Borenstein E, Gophna U, Sharan R, Ruppin E. Decoupling environment-dependent and independent genetic robustness across bacterial species. PLoS Comput Biol. 2010;6(2):e1000690.
Article
Google Scholar
Marei G, Rasoul M, Abdelgaleil S. Comparative antifungal activities and biochemical effects of monoterpenes on plant pathogenic fungi. Pestic Biochem Physiol. 2012;103:56–61.
Article
CAS
Google Scholar
Lira MHPd, Andrade Júnior FPd, Moraes GFQ, Macena GdS, Pereira FdO, Lima IO. Antimicrobial activity of geraniol: an integrative review. J Essent Oil Res. 2020;32(3):187–97.
Article
CAS
Google Scholar
Freilich S, Spriggs RV, George RA, Al-Lazikani B, Swindells M, Thornton JM. The complement of enzymatic sets in different species. J Mol Biol. 2005;349(4):745–63.
Article
CAS
Google Scholar
Graham ED, Heidelberg JF, Tully BJ. Potential for primary productivity in a globally-distributed bacterial phototroph. ISME J. 2018;12(7):1861–6.
Article
CAS
Google Scholar
Zhao B, Lin X, Lei L, Lamb DC, Kelly SL, Waterman MR, Cane DE. Biosynthesis of the sesquiterpene antibiotic albaflavenone in Streptomyces coelicolor A3(2). J Biol Chem. 2008;283(13):8183–9.
Article
CAS
Google Scholar
Wang W, Wang H, Feng Y, Wang L, Xiao X, Xi Y, Luo X, Sun R, Ye X, Huang Y, et al. Consistent responses of the microbial community structure to organic farming along the middle and lower reaches of the Yangtze River. Sci Rep. 2016;6(1):35046.
Article
CAS
Google Scholar
Asker D, Beppu T, Ueda K. Sphingomonas jaspsi sp. nov., a novel carotenoid-producing bacterium isolated from Misasa, Tottori, Japan. Int J Syst Evol Microbiol. 2007;57(Pt 7):1435–41.
Article
CAS
Google Scholar
Siddaramappa S, Viswanathan V, Thiyagarajan S, Narjala A. Genomewide characterisation of the genetic diversity of carotenogenesis in bacteria of the order Sphingomonadales. LID - https://doi.org/10.1099/mgen.0.000172 [doi] LID - e000172. 2018(2057–5858 (Electronic)).
Wei J, Gao H, Yang Y, Liu H, Yu H, Chen Z, Dong B. Seasonal dynamics and starvation impact on the gut microbiome of urochordate ascidian Halocynthia roretzi. Animal Microbiome. 2020;2(1):30.
Article
Google Scholar
Subbarao GV, Nakahara K, Ishikawa T, Yoshihashi T, Ito O, Ono H, Ohnishi-Kameyama M, Yoshida M, Kawano N, Berry WL. Free fatty acids from the pasture grass Brachiaria humidicola and one of their methyl esters as inhibitors of nitrification. Plant Soil. 2008;313(1):89–99.
Article
CAS
Google Scholar
Xu L-Q, Liu Y-J, Yao K, Liu H-H, Tao X-Y, Wang F-Q, Wei D-Z. Unraveling and engineering the production of 23,24-bisnorcholenic steroids in sterol metabolism. Sci Rep. 2016;6(1):21928.
Article
CAS
Google Scholar
Wang H, Zeng Y, Guo C, Bao Y, Lu G, Reinfelder J, Dang Z. Bacterial, archaeal, and fungal community responses to acid mine drainage-laden pollution in a rice paddy soil ecosystem. Sci Total Environ. 2017;616–617:107–16.
Google Scholar
Hausmann B, Pelikan C, Herbold CW, Köstlbacher S, Albertsen M, Eichorst SA, Glavina del Rio T, Huemer M, Nielsen PH, Rattei T, et al. Peatland Acidobacteria with a dissimilatory sulfur metabolism. ISME J. 2018;12(7):1729–42.
Article
CAS
Google Scholar
Freilich S, Zarecki R, Eilam O, Segal ES, Henry CS, Kupiec M, Gophna U, Sharan R, Ruppin E. Competitive and cooperative metabolic interactions in bacterial communities. Nat Commun. 2011;2:589.
Article
Google Scholar
Pacheco AR, Moel M, Segre D. Costless metabolic secretions as drivers of interspecies interactions in microbial ecosystems. Nat Commun. 2019;10(1):103.
Article
Google Scholar
Kulma A, Szopa J. Catecholamines are active compounds in plants. Plant Sci. 2007;172(3):433–40.
Article
CAS
Google Scholar
Lyte M, Ernst S. Catecholamine induced growth of gram negative bacteria. Life Sci. 1992;50(3):203–12.
Article
CAS
Google Scholar
Selim HMM. Application of endophytic bacteria for the biocontrol of Rhizoctonia solani (Cantharellales: ceratobasidiaceae) damping-off disease in cotton seedlings. Biocontrol Sci Technol. 2017; 27(1): 81-95-2017 v.2027 no.2011.
Zhao Y, Qian G, Chen Y, Du L, Liu F. Transcriptional and antagonistic responses of biocontrol strain Lysobacter enzymogenes OH11 to the plant pathogenic oomycete Pythium aphanidermatum. Frontiers in microbiology. 2017;8:1025.
Simon M, Scheuner C, Meier-Kolthoff JP, Brinkhoff T, Wagner-Dobler I, Ulbrich M, Klenk HP, Schomburg D, Petersen J, Goker M. Phylogenomics of Rhodobacteraceae reveals evolutionary adaptation to marine and non-marine habitats. ISME J. 2017;11(6):1483–99.
Article
Google Scholar
Iguchi H, Yurimoto H, Sakai Y. Stimulation of methanotrophic growth in cocultures by cobalamin excreted by rhizobia. Appl Environ Microbiol. 2011;77(24):8509–15.
Article
CAS
Google Scholar
Lu X, Heal KR, Ingalls AE, Doxey AC, Neufeld JD. Metagenomic and chemical characterization of soil cobalamin production. ISME J. 2020;14(1):53–66.
Article
CAS
Google Scholar
Naushad S, Adeolu M, Wong S, Sohail M, Schellhorn HE, Gupta RS. A phylogenomic and molecular marker based taxonomic framework for the order Xanthomonadales: proposal to transfer the families Algiphilaceae and Solimonadaceae to the order Nevskiales ord. nov. and to create a new family within the order Xanthomonadales, the family Rhodanobacteraceae fam. nov., containing the genus Rhodanobacter and its closest relatives. Antonie van Leeuwenhoek. 2015;107(2):467–85.
Article
Google Scholar
Ofaim S, Zarecki R, Porob S, Gat D, Lahav T, Kashi Y, Aly R, Eizenberg H, Ronen Z, Freilich S. Genome-scale reconstruction of Paenarthrobacter aurescens TC1 metabolic model towards the study of atrazine bioremediation. Sci Rep. 2020;10(1):13019.
Article
CAS
Google Scholar
Douglas AE. The microbial exometabolome: ecological resource and architect of microbial communities. Philos Trans R Soc Lond B Biol Sci. 2020;375(1798):20190250.
Article
CAS
Google Scholar
Thommes M, Wang T, Zhao Q, Paschalidis IC, Segrè D. Designing metabolic division of labor in microbial communities. MSystems. 2019;4(2):e00263-18.
Beddington JR, Asaduzzaman M, Bremauntz FA, Clark ME, Guillou M, Jahn MM, Erda L, Mamo T, Van Bo N, Nobre CA, Scholes RJ. Achieving food security in the face of climate change: Final report from the Commission on Sustainable Agriculture and Climate Change.
Toju H, Peay KG, Yamamichi M, Narisawa K, Hiruma K, Naito K, Fukuda S, Ushio M, Nakaoka S, Onoda Y, et al. Core microbiomes for sustainable agroecosystems. Nature plants. 2018;4(5):247–57.
Article
Google Scholar