Al-Chalabi A, Hardiman O. The epidemiology of ALS: a conspiracy of genes, environment and time. Nat Rev Neurol. 2013;9:617–28. https://doi.org/10.1038/nrneurol.2013.203.
Article
CAS
PubMed
Google Scholar
Stephenson J, Amor S. Modelling amyotrophic lateral sclerosis in mice. Drug Discov Today Dis Models. 2017;25-26:35–44. https://doi.org/10.1016/j.ddmod.2018.10.001.
Article
Google Scholar
Lynch SV, Pedersen O. The human intestinal microbiome in health and disease. N Engl J Med. 2016;375:2369–79. https://doi.org/10.1056/NEJMra1600266.
Article
CAS
PubMed
Google Scholar
Cox LM, Weiner HL. Microbiota signaling pathways that influence neurologic disease. Neurotherapeutics. 2018;15:135–45. https://doi.org/10.1007/s13311-017-0598-8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Brenner D, et al. The fecal microbiome of ALS patients. Neurobiol Aging. 2018;61:132–7. https://doi.org/10.1016/j.neurobiolaging.2017.09.023.
Article
PubMed
Google Scholar
Blacher E, et al. Potential roles of gut microbiome and metabolites in modulating ALS in mice. Nature. 2019;572:474–80. https://doi.org/10.1038/s41586-019-1443-5.
Article
CAS
PubMed
Google Scholar
Nicholson K, et al. The human gut microbiota in people with amyotrophic lateral sclerosis. Amyotroph Lateral Scler Frontotemporal Degener. 2021;22:186–94. https://doi.org/10.1080/21678421.2020.1828475.
Article
CAS
PubMed
Google Scholar
Rowin J, Xia Y, Jung B, Sun J. Gut inflammation and dysbiosis in human motor neuron disease. Physiol Rep. 2017;5. https://doi.org/10.14814/phy2.13443.
Berer K, et al. Commensal microbiota and myelin autoantigen cooperate to trigger autoimmune demyelination. Nature. 2011;479:538–41. https://doi.org/10.1038/nature10554.
Article
CAS
PubMed
Google Scholar
Minter MR, et al. Antibiotic-induced perturbations in microbial diversity during post-natal development alters amyloid pathology in an aged APPSWE/PS1DeltaE9 murine model of Alzheimer's disease. Sci Rep. 2017;7:10411. https://doi.org/10.1038/s41598-017-11047-w.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sampson TR, et al. Gut microbiota regulate motor deficits and neuroinflammation in a model of Parkinson’s disease. Cell. 2016;167:1469–1480.e1412. https://doi.org/10.1016/j.cell.2016.11.018.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lee YK, Menezes JS, Umesaki Y, Mazmanian SK. Proinflammatory T-cell responses to gut microbiota promote experimental autoimmune encephalomyelitis. Proc Natl Acad Sci U S A. 2011;108(Suppl 1):4615–22. https://doi.org/10.1073/pnas.1000082107.
Article
PubMed
Google Scholar
Miller PG, Bonn MB, Franklin CL, Ericsson AC, McKarns SC. TNFR2 deficiency acts in concert with gut microbiota to precipitate spontaneous sex-biased central nervous system demyelinating autoimmune disease. J Immunol. 2015;195:4668–84. https://doi.org/10.4049/jimmunol.1501664.
Article
CAS
PubMed
Google Scholar
Ochoa-Reparaz J, Mielcarz DW, Haque-Begum S, Kasper LH. Induction of a regulatory B cell population in experimental allergic encephalomyelitis by alteration of the gut commensal microflora. Gut Microbes. 2010;1:103–8. https://doi.org/10.4161/gmic.1.2.11515.
Article
PubMed
PubMed Central
Google Scholar
Sun J, et al. Antibiotics use and risk of amyotrophic lateral sclerosis in Sweden. Eur J Neurol. 2019;26:1355–61. https://doi.org/10.1111/ene.13986.
Article
CAS
PubMed
Google Scholar
Krasemann S, et al. The TREM2-APOE pathway drives the transcriptional phenotype of dysfunctional microglia in neurodegenerative diseases. Immunity. 2017;47:566–581.e569. https://doi.org/10.1016/j.immuni.2017.08.008.
Article
CAS
PubMed
PubMed Central
Google Scholar
Appel SH, Zhao W, Beers DR, Henkel JS. The microglial-motoneuron dialogue in ALS. Acta Myol. 2011;30:4–8.
CAS
PubMed
PubMed Central
Google Scholar
Boillee S, et al. Onset and progression in inherited ALS determined by motor neurons and microglia. Science. 2006;312:1389–92.
Article
CAS
PubMed
Google Scholar
Brettschneider J, et al. Microglial activation correlates with disease progression and upper motor neuron clinical symptoms in amyotrophic lateral sclerosis. PLoS One. 2012;7:e39216. https://doi.org/10.1371/journal.pone.0039216.
Article
CAS
PubMed
PubMed Central
Google Scholar
Butovsky O, et al. Targeting miR-155 restores abnormal microglia and attenuates disease in SOD1 mice. Ann Neurol. 2015;77:75–99. https://doi.org/10.1002/ana.24304.
Article
CAS
PubMed
Google Scholar
Butovsky O, et al. Modulating inflammatory monocytes with a unique microRNA gene signature ameliorates murine ALS. J Clin Invest. 2012;122:3063–87. https://doi.org/10.1172/JCI62636.
Article
CAS
PubMed
PubMed Central
Google Scholar
Turner MR, et al. Evidence of widespread cerebral microglial activation in amyotrophic lateral sclerosis: an [11C](R)-PK11195 positron emission tomography study. Neurobiol Dis. 2004;15:601–9. https://doi.org/10.1016/j.nbd.2003.12.012.
Article
CAS
PubMed
Google Scholar
Henkel JS, et al. Presence of dendritic cells, MCP-1, and activated microglia/macrophages in amyotrophic lateral sclerosis spinal cord tissue. Ann Neurol. 2004;55:221–35.
Article
CAS
PubMed
Google Scholar
Kuhle J, et al. Increased levels of inflammatory chemokines in amyotrophic lateral sclerosis. Eur J Neurol. 2009;16:771–4. https://doi.org/10.1111/j.1468-1331.2009.02560.x.
Article
CAS
PubMed
Google Scholar
Ryberg H, et al. Discovery and verification of amyotrophic lateral sclerosis biomarkers by proteomics. Muscle Nerve. 2010;42:104–11. https://doi.org/10.1002/mus.21683.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yamanaka K, et al. Mutant SOD1 in cell types other than motor neurons and oligodendrocytes accelerates onset of disease in ALS mice. Proc Natl Acad Sci U S A. 2008;105:7594–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Erny D, et al. Host microbiota constantly control maturation and function of microglia in the CNS. Nat Neurosci. 2015;18:965–77. https://doi.org/10.1038/nn.4030.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dodiya HB, et al. Sex-specific effects of microbiome perturbations on cerebral Abeta amyloidosis and microglia phenotypes. J Exp Med. 2019;216:1542–60. https://doi.org/10.1084/jem.20182386.
Article
CAS
PubMed
PubMed Central
Google Scholar
Burberry A, et al. C9orf72 suppresses systemic and neural inflammation induced by gut bacteria. Nature. 2020;582:89–94. https://doi.org/10.1038/s41586-020-2288-7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Minter MR, et al. Antibiotic-induced perturbations in gut microbial diversity influences neuro-inflammation and amyloidosis in a murine model of Alzheimer’s disease. Sci Rep. 2016;6:30028. https://doi.org/10.1038/srep30028.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang X, et al. Sodium oligomannate therapeutically remodels gut microbiota and suppresses gut bacterial amino acids-shaped neuroinflammation to inhibit Alzheimer’s disease progression. Cell Res. 2019;29:787–803. https://doi.org/10.1038/s41422-019-0216-x.
Article
CAS
PubMed
PubMed Central
Google Scholar
Benakis C, et al. Commensal microbiota affects ischemic stroke outcome by regulating intestinal gammadelta T cells. Nat Med. 2016;22:516–23. https://doi.org/10.1038/nm.4068.
Article
CAS
PubMed
PubMed Central
Google Scholar
Regen T, et al. IL-17 controls central nervous system autoimmunity through the intestinal microbiome. Sci Immunol. 2021;6. https://doi.org/10.1126/sciimmunol.aaz6563.
Zhang Y, et al. Gut microbiota from NLRP3-deficient mice ameliorates depressive-like behaviors by regulating astrocyte dysfunction via circHIPK2. Microbiome. 2019;7:116. https://doi.org/10.1186/s40168-019-0733-3.
Article
PubMed
PubMed Central
Google Scholar
Scott S, et al. Design, power, and interpretation of studies in the standard murine model of ALS. Amyotroph Lateral Scler. 2008;9:4–15. https://doi.org/10.1080/17482960701856300.
Article
CAS
PubMed
Google Scholar
Hatzipetros T, et al. A quick phenotypic neurological scoring system for evaluating disease progression in the SOD1-G93A mouse model of ALS. J Vis Exp. 2015. https://doi.org/10.3791/53257.
Butovsky O, et al. Identification of a unique TGF-beta-dependent molecular and functional signature in microglia. Nat Neurosci. 2014;17:131–43. https://doi.org/10.1038/nn.3599.
Article
CAS
PubMed
Google Scholar
Richner M, Jager SB, Siupka P, Vaegter CB. Hydraulic extrusion of the spinal cord and isolation of dorsal root ganglia in rodents. J Vis Exp. 2017;55226. https://doi.org/10.3791/55226.
Picelli S, et al. Smart-seq2 for sensitive full-length transcriptome profiling in single cells. Nat Methods. 2013;10:1096–8. https://doi.org/10.1038/nmeth.2639.
Article
CAS
PubMed
Google Scholar
Trapnell C, et al. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nature protocols. 2012;7:562–78. https://doi.org/10.1038/nprot.2012.016.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kramer A, Green J, Pollard J Jr, Tugendreich S. Causal analysis approaches in ingenuity pathway analysis. Bioinformatics. 2014;30:523–30. https://doi.org/10.1093/bioinformatics/btt703.
Article
CAS
PubMed
Google Scholar
Caporaso JG, et al. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J. 2012;6:1621–4. https://doi.org/10.1038/ismej.2012.8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cox LM, et al. Gut microbiome in progressive multiple sclerosis. Ann Neurol. 2021;89:1195–211. https://doi.org/10.1002/ana.26084.
Article
CAS
PubMed
PubMed Central
Google Scholar
Caporaso JG, et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods. 2010;7:335–6. https://doi.org/10.1038/nmeth.f.303.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yilmaz P, et al. The SILVA and “All-species Living Tree Project (LTP)” taxonomic frameworks. Nucleic Acids Res. 2014;42:D643–8. https://doi.org/10.1093/nar/gkt1209.
Article
CAS
PubMed
Google Scholar
Segata N, et al. Metagenomic biomarker discovery and explanation. Genome Biol. 2011;12:R60. https://doi.org/10.1186/gb-2011-12-6-r60.
Article
PubMed
PubMed Central
Google Scholar
Bokulich NA, et al. q2-longitudinal: longitudinal and paired-sample analyses of microbiome data. mSystems. 2018;3. https://doi.org/10.1128/mSystems.00219-18.
Cox LM, et al. Altering the intestinal microbiota during a critical developmental window has lasting metabolic consequences. Cell. 2014;158:705–21. https://doi.org/10.1016/j.cell.2014.05.052.
Article
CAS
PubMed
PubMed Central
Google Scholar
Abriouel H, et al. The controversial nature of the Weissella genus: technological and functional aspects versus whole genome analysis-based pathogenic potential for their application in food and health. Front Microbiol. 2015;6. https://doi.org/10.3389/fmicb.2015.01197.
Perez Visñuk D, Savoy de Giori G, LeBlanc JG, de Moreno de LeBlanc A. Neuroprotective effects associated with immune modulation by selected lactic acid bacteria in a Parkinson’s disease model. Nutrition. 2020;79-80:110995. https://doi.org/10.1016/j.nut.2020.110995.
Article
CAS
PubMed
Google Scholar
Gres V, Kolter J, Erny D, Henneke P. The role of CNS macrophages in streptococcal meningoencephalitis. J Leukoc Biol. 2019;106:209–18. https://doi.org/10.1002/jlb.4mr1118-419r.
Article
CAS
PubMed
Google Scholar
Vasek MJ, et al. A complement-microglial axis drives synapse loss during virus-induced memory impairment. Nature. 2016;534:538–43. https://doi.org/10.1038/nature18283.
Article
CAS
PubMed
PubMed Central
Google Scholar
Philips T, et al. Microglial upregulation of progranulin as a marker of motor neuron degeneration. J Neuropathol Exp Neurol. 2010;69:1191–200. https://doi.org/10.1097/NEN.0b013e3181fc9aea.
Article
CAS
PubMed
Google Scholar
Herdewyn S, De Muynck L, Van Den Bosch L, Robberecht W, Van Damme P. Progranulin does not affect motor neuron degeneration in mutant SOD1 mice and rats. Neurobiol Aging. 2013;34:2302–3. https://doi.org/10.1016/j.neurobiolaging.2013.03.027.
Article
CAS
PubMed
Google Scholar
Martens LH, et al. Progranulin deficiency promotes neuroinflammation and neuron loss following toxin-induced injury. J Clin Invest. 2012;122:3955–9. https://doi.org/10.1172/JCI63113.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jinn S, et al. TMEM175 deficiency impairs lysosomal and mitochondrial function and increases α-synuclein aggregation. Proc Natl Acad Sci U S A. 2017;114:2389–94. https://doi.org/10.1073/pnas.1616332114.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chiu IM, et al. A neurodegeneration-specific gene-expression signature of acutely isolated microglia from an amyotrophic lateral sclerosis mouse model. Cell Rep. 2013;4:385–401. https://doi.org/10.1016/j.celrep.2013.06.018.
Article
CAS
PubMed
PubMed Central
Google Scholar
Blacher E, Levy M, Tatirovsky E, Elinav E. Microbiome-modulated metabolites at the interface of host immunity. J Immunol. 2017;198:572–80. https://doi.org/10.4049/jimmunol.1601247.
Article
CAS
PubMed
Google Scholar
Olson CA, et al. The gut microbiota mediates the anti-seizure effects of the ketogenic diet. Cell. 2018;174:497. https://doi.org/10.1016/j.cell.2018.06.051.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ou Z, et al. Protective effects of Akkermansia muciniphila on cognitive deficits and amyloid pathology in a mouse model of Alzheimer’s disease. Nutr Diabetes. 2020;10:12. https://doi.org/10.1038/s41387-020-0115-8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang YG, et al. Target intestinal microbiota to alleviate disease progression in amyotrophic lateral sclerosis. Clin Ther. 2017;39:322–36. https://doi.org/10.1016/j.clinthera.2016.12.014.
Article
CAS
PubMed
PubMed Central
Google Scholar
Berard M, et al. Ralstonia pickettii-induced ataxia in immunodeficient mice. Comp Med. 2009;59:187–91.
CAS
PubMed
PubMed Central
Google Scholar
Gordon PH, et al. Efficacy of minocycline in patients with amyotrophic lateral sclerosis: a phase III randomised trial. Lancet Neurol. 2007;6:1045–53. https://doi.org/10.1016/S1474-4422(07)70270-3.
Article
CAS
PubMed
Google Scholar