Minich JJ, Zhu Q, Janssen S, Hendrickson R, Amir A, Vetter R, et al. KatharoSeq enables high-throughput microbiome analysis from low-biomass samples. mSystems. 2018;3(3). https://doi.org/10.1128/mSystems.00218-17.
Vaishampayan P, Osman S, Andersen G, Venkateswaran K. High-density 16S microarray and clone library-based microbial community composition of the Phoenix spacecraft assembly clean room. Astrobiology. 2010;10(5):499–508. https://doi.org/10.1089/ast.2009.0443.
Article
CAS
PubMed
Google Scholar
La Duc MT, Osman S, Vaishampayan P, Piceno Y, Andersen G, Spry JA, et al. Comprehensive census of bacteria in clean rooms by using DNA microarray and cloning methods. Appl Environ Microbiol. 2009;75(20):6559–67. https://doi.org/10.1128/aem.01073-09.
Article
PubMed
PubMed Central
Google Scholar
Link L, Sawyer J, Venkateswaran K, Nicholson W. Extreme spore UV resistance of Bacillus pumilus isolates obtained from an ultraclean spacecraft assembly facility. Microb Ecol. 2004;47(2):159–63. https://doi.org/10.1007/s00248-003-1029-4.
Article
CAS
PubMed
Google Scholar
Venkateswaran K, Satomi M, Chung S, Kern R, Koukol R, Basic C, et al. Molecular microbial diversity of a spacecraft assembly facility. Syst Appl Microbiol. 2001;24(2):311–20. https://doi.org/10.1078/0723-2020-00018.
Article
CAS
PubMed
Google Scholar
Cooper M, La Duc MT, Probst A, Vaishampayan P, Stam C, Benardini JN, et al. Comparison of innovative molecular approaches and standard spore assays for assessment of surface cleanliness. Appl Environ Microbiol. 2011;77(15):5438–44. https://doi.org/10.1128/aem.00192-11.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mahnert A, Vaishampayan P, Probst AJ, Auerbach A, Moissl-Eichinger C, Venkateswaran K, et al. Cleanroom maintenance significantly reduces abundance but not diversity of indoor microbiomes. PLoS One. 2015;10(8):e0134848. https://doi.org/10.1371/journal.pone.0134848.
Article
CAS
PubMed
PubMed Central
Google Scholar
Vaishampayan P, Probst AJ, La Duc MT, Bargoma E, Benardini JN, Andersen GL, et al. New perspectives on viable microbial communities in low-biomass cleanroom environments. ISME J. 2013;7(2):312–24. https://doi.org/10.1038/ismej.2012.114.
Article
CAS
PubMed
Google Scholar
La Duc MT, Dekas A, Osman S, Moissl C, Newcombe D, Venkateswaran K. Isolation and characterization of bacteria capable of tolerating the extreme conditions of clean room environments. Appl Environ Microbiol. 2007;73(8):2600–11. https://doi.org/10.1128/AEM.03007-06.
Article
CAS
PubMed
PubMed Central
Google Scholar
Favero MS. Microbiologic assay of space hardware. Environ Biol Med. 1971;1(1):27–36.
CAS
PubMed
Google Scholar
Foster TL, Winans L Jr. Psychrophilic microorganisms from areas associated with the Viking spacecraft. Appl Microbiol. 1975;30(4):546–50. https://doi.org/10.1128/am.30.4.546-550.1975.
Article
CAS
PubMed
PubMed Central
Google Scholar
Puleo JR, Fields ND, Bergstrom SL, Oxborrow GS, Stabekis PD, Koukol R. Microbiological profiles of the Viking spacecraft. Appl Environ Microbiol. 1977;33(2):379–84. https://doi.org/10.1128/aem.33.2.379-384.1977.
Article
CAS
PubMed
PubMed Central
Google Scholar
Puleo JR, Oxborrow GS, Fields ND, Hall HE. Quantitative and qualitative microbiological profiles of the Apollo 10 and 11 spacecraft. Appl Microbiol. 1970;20(3):384–9. https://doi.org/10.1128/am.20.3.384-389.1970.
Article
CAS
PubMed
PubMed Central
Google Scholar
Puleo JR, Fields ND, Moore B, Graves RC. Microbial contamination associated with the Apollo 6 spacecraft during final assembly and testing. Space Life Sci. 1970;2(1):48–56. https://doi.org/10.1007/BF00928955.
Article
CAS
PubMed
Google Scholar
Puleo JR, Oxborrow GS, Fields ND, Herring CM, Smith LS. Microbiological profiles of four Apollo spacecraft. Appl Microbiol. 1973;26(6):838–45. https://doi.org/10.1128/am.26.6.838-845.1973.
Article
CAS
PubMed
PubMed Central
Google Scholar
Venkateswaran K, Kempf M, Chen F, Satomi M, Nicholson W, Kern R. Bacillus nealsonii sp. nov., isolated from a spacecraft-assembly facility, whose spores are gamma-radiation resistant. Int J Syst Evol Microbiol. 2003;53(Pt 1):165–72. https://doi.org/10.1099/ijs.0.02311-0.
Article
CAS
PubMed
Google Scholar
Ghosh S, Osman S, Vaishampayan P, Venkateswaran K. Recurrent isolation of extremotolerant bacteria from the clean room where phoenix spacecraft components were assembled. Astrobiology. 2010;10(2):325–35. https://doi.org/10.1089/ast.2009.0396.
Article
CAS
PubMed
Google Scholar
Benardini JN, La Duc MT, Ballou D, Koukol R. Implementing Planetary Protection on the Atlas V fairing and ground systems used to launch the Mars Science Laboratory. Astrobiology. 2014;14(1):33–41. https://doi.org/10.1089/ast.2013.1011.
Article
PubMed
Google Scholar
La Duc MT, Nicholson W, Kern R, Venkateswaran K. Microbial characterization of the Mars Odyssey spacecraft and its encapsulation facility. Environ Microbiol. 2003;5(10):977–85. https://doi.org/10.1046/j.1462-2920.2003.00496.x.
Article
CAS
PubMed
Google Scholar
Moissl-Eichinger C, Auerbach AK, Probst AJ, Mahnert A, Tom L, Piceno Y, et al. Quo vadis? Microbial profiling revealed strong effects of cleanroom maintenance and routes of contamination in indoor environments. Sci Rep. 2015;5(1). https://doi.org/10.1038/srep09156.
Lax S, Smith DP, Hampton-Marcell J, Owens SM, Handley KM, Scott NM, et al. Longitudinal analysis of microbial interaction between humans and the indoor environment. Science. 2014;345(6200):1048–52. https://doi.org/10.1126/science.1254529.
Article
CAS
PubMed
PubMed Central
Google Scholar
NRC. Preventing the Forward Contamination of Europa. Washington, D.C.: Task Group on the Forward Contamination of Europa, Space Studies Board, National Research Council, National Academies Press; 2006. p. 1–41.
Google Scholar
Hendrickson R, Lundgren P, Mohan G, Urbaniak C, Benardini J, Venkateswaran K. Comprehensive measurement of microbial burden in nutrient-deprived cleanrooms 47th International Conference on Environmental Systems. 2017;ICES-2017-177.
Google Scholar
Urbaniak C, Wong S, Tighe S, Kumar A, Liu B, Parker C, et al. Validating an automated nucleic acid extraction device for omics in space using whole cell microbial reference standards. Front Microbiol. 2020;11:1909. https://doi.org/10.3389/fmicb.2020.01909.
Article
PubMed
PubMed Central
Google Scholar
Singh NK, Wood JM, Karouia F, Venkateswaran K. Succession and persistence of microbial communities and antimicrobial resistance genes associated with International Space Station environmental surfaces. Microbiome. 2018;6(1):214. https://doi.org/10.1186/s40168-018-0609-y.
Article
PubMed
PubMed Central
Google Scholar
Moissl C, Bruckner JC, Venkateswaran K. Archaeal diversity analysis of spacecraft assembly clean rooms. ISME J. 2008;2(1):115–9 http://www.nature.com/ismej/journal/v2/n1/suppinfo/ismej200798s1.html.
Article
CAS
Google Scholar
La Duc MT, Vaishampayan P, Nilsson HR, Torok T, Venkateswaran K. Pyrosequencing-derived bacterial, archaeal, and fungal diversity of spacecraft hardware destined for Mars. Appl Environ Microbiol. 2012;78(16):5912–22; AEM.01435-12 [pii]. https://doi.org/10.1128/AEM.01435-12.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hendrickson R, Lundgren P, Malli-Mohan GB, Urbaniak C, Benardini JN, Venkateswaran K. Comprehensive measurement of microbial burden in nutrient-deprived cleanrooms. In: 47th International Conference on Environmental Systems; ICES-2017-177. Charleston: ICES; 2017.
Google Scholar
NASA. Handbook for the Microbiological Examination of Space Hardware, NASA-HDBK-6022. Washington, DC: National Aeronautics and Space Administration; 2010.
Google Scholar
Venkateswaran K, La Duc MT, Vaishampayan P. Genetic inventory task: final report, JPL Publication 12-12. In., vol. 1 and 2. Pasadena: Jet Propulsion Laboratory, California Institute of Technology; 2012. p. 1–117.
Google Scholar
Lane DJ. 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M, editors. Nucleic acid techniques in bacterial systematics. New York: Wiley; 1991. p. 115–63.
Google Scholar
Turner S, Pryer KM, Miao VP, Palmer JD. Investigating deep phylogenetic relationships among cyanobacteria and plastids by small subunit rRNA sequence analysis. J Eukaryotic Microbiol. 1999;46(4):327–38.
Article
CAS
Google Scholar
Edgar RC. MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics. 2004;19(5):113. https://doi.org/10.1186/1471-2105-5-113.
Article
CAS
Google Scholar
Price MN, Dehal PS, Arkin AP. FastTree 2--approximately maximum-likelihood trees for large alignments. PLoS One. 2010;5(3):e9490. https://doi.org/10.1371/journal.pone.0009490.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yarza P, Yilmaz P, Pruesse E, Glöckner FO, Ludwig W, Schleifer K-H, et al. Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences. Nat Rev Microbiol. 2014;12(9):635–45. https://doi.org/10.1038/nrmicro3330. https://www.nature.com/articles/nrmicro3330#supplementary-information.
Article
CAS
PubMed
Google Scholar
Nocker A, Camper AK. Novel approaches toward preferential detection of viable cells using nucleic acid amplification techniques. FEMS Microbiol Lett. 2009;291(2):137–42. https://doi.org/10.1111/j.1574-6968.2008.01429.x.
Article
CAS
PubMed
Google Scholar
Nocker A, Richter-Heitmann T, Montijn R, Schuren F, Kort R. Discrimination between live and dead cellsin bacterial communities from environmental water samples analyzed by 454 pyrosequencing. Int Microbiol. 2010;13(2):59–65. https://doi.org/10.2436/20.1501.01.111.
Article
CAS
PubMed
Google Scholar
Rawsthorne H, Dock CN, Jaykus LA. PCR-based method using propidium monoazide to distinguish viable from nonviable Bacillus subtilis spores. Appl Environ Microbiol. 2009;75(9):2936–9. https://doi.org/10.1128/AEM.02524-08.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nocker A, Sossa-Fernandez P, Burr MD, Camper AK. Use of propidium monoazide for live/dead distinction in microbial ecology. Appl Environ Microbiol. 2007;73(16):5111–7. https://doi.org/10.1128/AEM.02987-06.
Article
CAS
PubMed
PubMed Central
Google Scholar
Venkateswaran K, Vaishampayan P, Benardini JN 3rd, Rooney AP, Spry JA. Deposition of extreme-tolerant bacterial strains isolated during different phases of Phoenix spacecraft assembly in a public culture collection. Astrobiology. 2014;14(1):24–6. https://doi.org/10.1089/ast.2013.0978.
Article
PubMed
Google Scholar
Thompson LR, Sanders JG, McDonald D, Amir A, Ladau J, Locey KJ, et al. A communal catalogue reveals Earth's multiscale microbial diversity. Nature. 2017;551(7681):457–63. https://doi.org/10.1038/nature24621.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cruz G, Christoff A, Vakter de Oliveira L. Equivolumetric protocol generates library sizes proportional to total microbial load in 16s amplicon sequencing. Front Microbiol. 2021;12(425). https://doi.org/10.3389/fmicb.2021.638231.
Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA, et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol. 2019;37(8):852–7. https://doi.org/10.1038/s41587-019-0209-9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Amir A, McDonald D, Navas-Molina JA, Kopylova E, Morton JT, Xu Z, et al. Deblur rapidly resolves single-nucleotide community sequence patterns. mSystems. 2017;2(2):e00191–16. https://doi.org/10.1128/mSystems.00191-16.
Article
PubMed
PubMed Central
Google Scholar
Janssen S, McDonald D, Gonzalez A, Navas-Molina JA, Jiang L, Xu ZZ, et al. Phylogenetic placement of exact amplicon sequences improves associations with clinical information. mSystems. 2018;3(3):e00021–18. https://doi.org/10.1128/mSystems.00021-18.
Article
CAS
PubMed
PubMed Central
Google Scholar
Minich JJ, Sanders JG, Amir A, Humphrey G, Gilbert JA, Knight R. Quantifying and understanding well-to-well contamination in microbiome research. mSystems. 2019;4(4):e00186–19.
Article
Google Scholar
Kruskal WH, Wallis WA. Use of ranks in one-criterion variance analysis. J Am Stat Assoc. 1952;47(260):583–621. https://doi.org/10.1080/01621459.1952.10483441.
Article
Google Scholar
Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J Royal Stat Soc Series B. 1995;57(1):289–300. https://doi.org/10.1111/j.2517-6161.1995.tb02031.x.
Article
Google Scholar
Lozupone C, Knight R. UniFrac: a new phylogenetic method for comparing microbial communities. Appl Environ Microbiol. 2005;71(12):8228–35. https://doi.org/10.1128/AEM.71.12.8228-8235.2005.
Article
CAS
PubMed
PubMed Central
Google Scholar
Louzupone C, Lladser ME, Knights D, Stombaugh J, Knight R. UniFrac: an effective distance metric for microbial community comparison. ISME J. 2010;5(2):169–72. https://doi.org/10.1038/ismej.2010.133.
Article
Google Scholar
Martino C, Morton JT, Marotz CA, Thompson LR, Tripathi A, Knight R, et al. A novel sparse compositional technique reveals microbial perturbations. mSystems. 2019;4(1):e00016–9. https://doi.org/10.1128/mSystems.00016-19.
Article
PubMed
PubMed Central
Google Scholar
Anderson MJ. A new method for non-parametric multivariate analysis of variance. Aust Ecol. 2008;26(1):32–46. https://doi.org/10.1046/j.1442-9993.2001.01070.x.
Article
Google Scholar
Xu ZZ, Amir A, Sanders J, Zhu Q, Morton JT, Bletz MC, et al. Calour: an interactive, microbe-centric analysis tool. mSystems. 2019;4(1):e00269–18. https://doi.org/10.1128/mSystems.00269-18.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jiang L, Amir A, Morton J, Heller R, Arias-Castro E, Knight R, et al. Discrete false-discovery rate improves identification of differentially abundant microbes. mSystems. 2017;2(6):e00092-17. https://doi.org/10.1128/mSystems.00092-17.
Martino C, Shenhav L, Marotz CA, Armstrong G, McDonald D, Vázquez-Baeza Y, et al. Context-aware dimensionality reduction deconvolutes gut microbial community dynamics. Nat Biotechnol. 2020;39(2):165–8. https://doi.org/10.1038/s41587-020-0660-7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fedarko MW, Martino C, Morton JT, González A, Rahman G, Marotz CA, et al. Visualizing ’omic feature rankings and log-ratios using Qurro. bioRxiv. 2019:2019.12.17.880047. https://doi.org/10.1101/2019.12.17.880047.
Virtanen P, Gommers R, Oliphant TE, Haberland M, Reddy T, Cournapeau D, et al. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat Methods. 2020;17(3):261–72. https://doi.org/10.1038/s41592-019-0686-2.
Article
CAS
PubMed
PubMed Central
Google Scholar
Oksanen J, Guillaume Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, et al. vegan: Community Ecology Package. R package version 2.5-6. https://CRAN.R-project.org/package=vegan. 2019.
Google Scholar
Falony G, Joossens M, Vieira-Silva S, Wang J, Darzi Y, Faust K, et al. Population-level analysis of gut microbiome variation. Science. 2016;352(6285):560–4. https://doi.org/10.1126/science.aad3503.
Article
CAS
PubMed
Google Scholar
Reimer LC, Vetcininova A, Carbasse JS, Söhngen C, Gleim D, Ebeling C, et al. BacDive in 2019: bacterial phenotypic data for high-throughput biodiversity analysis. Nucleic Acids Res. 2019;47(D1):D631–D6. https://doi.org/10.1093/nar/gky879.
Article
CAS
PubMed
Google Scholar
McDonald D, Price MN, Goodrich J, Nawrocki EP, DeSantis TZ, Probst A, et al. An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea. ISME J. 2012;6(3):610–8. https://doi.org/10.1038/ismej.2011.139.
Article
CAS
PubMed
Google Scholar
Louca S, Doebeli M. Efficient comparative phylogenetics on large trees. Bioinformatics. 2017;34(6):1053–5. https://doi.org/10.1093/bioinformatics/btx701.
Article
CAS
Google Scholar
McDonald D, Hyde E, Debelius JW, Morton JT, Gonzalez A, Ackermann G, et al. American gut: an open platform for citizen science microbiome research. mSystems. 2018;3(3):e00031–18. https://doi.org/10.1128/mSystems.00031-18.
Article
CAS
PubMed
PubMed Central
Google Scholar
McDonald D, Kaehler B, Gonzalez A, DeReus J, Ackermann G, Marotz C, et al. redbiom: a rapid sample discovery and feature characterization system. mSystems. 2019;4(4):e00215–9. https://doi.org/10.1128/mSystems.00215-19.
Article
PubMed
PubMed Central
Google Scholar
Knights D, Kuczynski J, Charlson ES, Zaneveld J, Mozer MC, Collman RG, et al. Bayesian community-wide culture-independent microbial source tracking. Nat Methods. 2011;8(9):761–3. https://doi.org/10.1038/nmeth.1650.
Article
CAS
PubMed
PubMed Central
Google Scholar
Stepanauskas R, Fergusson EA, Brown J, Poulton NJ, Tupper B, Labonté JM, et al. Improved genome recovery from individual, uncultured microbial cells and viral particles. 2017.
Google Scholar
La Duc MT, Satomi M, Agata N, Venkateswaran K. gyrB as a phylogenetic discriminator for members of the Bacillus anthracis-cereus-thuringiensis group. J Microbiol Meth. 2004;56(3):383–94. https://doi.org/10.1016/j.mimet.2003.11.004.
Article
CAS
Google Scholar
Rebeil R, Sun Y, Chooback L, Pedraza-Reyes M, Kinsland C, Begley TP, et al. Spore photoproduct lyase from Bacillus subtilis spores is a novel iron-sulfur DNA repair enzyme which shares features with proteins such as class III anaerobic ribonucleotide reductases and pyruvate-formate lyases. J Bacteriol. 1998;180(18):4879–85. https://doi.org/10.1128/JB.180.18.4879-4885.1998.
Article
CAS
PubMed
PubMed Central
Google Scholar
Galperin MY, Mekhedov SL, Puigbo P, Smirnov S, Wolf YI, Rigden DJ. Genomic determinants of sporulation in Bacilli and Clostridia: towards the minimal set of sporulation-specific genes. Environ Microbiol. 2012;14(11):2870–90. https://doi.org/10.1111/j.1462-2920.2012.02841.x.
Article
CAS
PubMed
PubMed Central
Google Scholar
Moissl-Eichinger C, Pukall R, Probst AJ, Stieglmeier M, Schwender P, Mora M, et al. Lessons learned from the microbial analysis of the Herschel spacecraft during assembly, integration, and test operations. Astrobiology. 2013;13(12):1125–39. https://doi.org/10.1089/ast.2013.1024.
Article
PubMed
Google Scholar
Smith SA, Benardini JN, Anderl D, Ford M, Wear E, Schrader M, et al. Identification and characterization of early mission phase microorganisms residing on the Mars Science Laboratory and assessment of their potential to survive mars-like conditions. Astrobiology. 2017;17(3):253–65. https://doi.org/10.1089/ast.2015.1417.
Article
CAS
PubMed
PubMed Central
Google Scholar
Moissl C, Osman S, La Duc MT, Dekas A, Brodie E, DeSantis T, et al. Molecular bacterial community analysis of clean rooms where spacecraft are assembled. FEMS Microbiol Ecol. 2007;61(3):509–21. https://doi.org/10.1111/j.1574-6941.2007.00360.x.
Article
CAS
PubMed
Google Scholar
Vaishampayan P, Miyashita M, Ohnishi A, Satomi M, Rooney A, La Duc MT, et al. Description of Rummeliibacillus stabekisii gen. nov., sp. nov. and reclassification of Bacillus pycnus Nakamura et al. 2002 as Rummeliibacillus pycnus comb. nov. Int J Syst Evol Microbiol. 2009;59(Pt 5):1094–9. https://doi.org/10.1099/ijs.0.006098-0.
Article
CAS
PubMed
Google Scholar