Nichols JE, Peteet DM. Rapid expansion of northern peatlands and doubled estimate of carbon storage. Nat Geosci. 2019;12(11):917–21.
Article
CAS
Google Scholar
Koven CD, et al. A simplified, data-constrained approach to estimate the permafrost carbon-climate feedback. Philos Trans A Math Phys Eng Sci. 2015;373(2054):3337–53.
McGuire AD, et al. Dependence of the evolution of carbon dynamics in the northern permafrost region on the trajectory of climate change. Proc Natl Acad Sci U S A. 2018;115(15):3882–7.
Article
PubMed
PubMed Central
CAS
Google Scholar
Schuur EA, et al. Climate change and the permafrost carbon feedback. Nature. 2015;520(7546):171–9.
Article
CAS
PubMed
Google Scholar
Hodgkins SB, et al. Changes in peat chemistry associated with permafrost thaw increase greenhouse gas production. Proc Natl Acad Sci U S A. 2014;111(16):5819–24.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hopple AM, et al. Massive peatland carbon banks vulnerable to rising temperatures. Nat Commun. 2020;11(1):2373.
Article
CAS
PubMed
PubMed Central
Google Scholar
Parazoo NC, et al. Detecting regional patterns of changing CO2 flux in Alaska. Proc Natl Acad Sci U S A. 2016;113(28):7733–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wilson RM, et al. Stability of peatland carbon to rising temperatures. Nat Commun. 2016;7:13723.
Article
CAS
PubMed
PubMed Central
Google Scholar
Waldrop MP, et al. Carbon fluxes and microbial activities from boreal peatlands experiencing permafrost thaw. J Geophys Res Biogeosci. 2021;126(3):e2020JG005869. https://doi.org/10.1029/2020JG005869.
Natali SM, et al. Large loss of CO2 in winter observed across the northern permafrost region. Nat Clim Chang. 2019;9(11):852–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Przybylak R. Diurnal temperature range in the Arctic and its relation to hemispheric and Arctic circulation patterns. Int J Climatol. 2000;20(3 %@ 0899-8418):231–53.
Article
Google Scholar
Bolduc B, et al. The IsoGenie database: an interdisciplinary data management solution for ecosystems biology and environmental research. PeerJ. 2020;8:e9467.
Article
CAS
Google Scholar
Männistö MK, et al. Acidobacteriadominate the active bacterial communities of Arctic tundra with widely divergent winter-time snow accumulation and soil temperatures. FEMS Microbiol Ecol. 2013;84(1):47–59.
Article
PubMed
CAS
Google Scholar
Drotz SH, et al. Both catabolic and anabolic heterotrophic microbial activity proceed in frozen soils. Proc Natl Acad Sci. 2010;107(49):21046–51.
Article
CAS
PubMed
PubMed Central
Google Scholar
Elberling B, Brandt KK. Uncoupling of microbial CO2 production and release in frozen soil and its implications for field studies of arctic C cycling. Soil Biol Biochem. 2003;35(2):263–72.
Article
CAS
Google Scholar
Margesin R, Collins T. Microbial ecology of the cryosphere (glacial and permafrost habitats): current knowledge. Appl Microbiol Biotechnol. 2019;103(6):2537–49.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pavlova K. Phase composition of water and thermo-physical characteristics of frozen peat in the study of infiltration. Soviet Hydrol. 1970;4:361–78.
Google Scholar
Trubl G, et al. Coming-of-age characterization of soil viruses: a user’s guide to virus isolation, detection within metagenomes, and viromics. Soil Syst. 2020;4(2):23.
Article
CAS
Google Scholar
Brum JR, Sullivan MB. Rising to the challenge: accelerated pace of discovery transforms marine virology. Nat Rev Microbiol. 2015;13(3):147–59.
Article
CAS
PubMed
Google Scholar
Wilhelm SW, Suttle CA. Viruses and nutrient cycles in the sea. BioScience. 1999;49(10):781–8.
Article
Google Scholar
Suttle CA. Marine viruses — major players in the global ecosystem. Nat Rev Microbiol. 2007;5(10):801–12.
Article
CAS
PubMed
Google Scholar
Braga LPP, et al. Impact of phages on soil bacterial communities and nitrogen availability under different assembly scenarios. Microbiome. 2020;8(1):1-14.
Liang C, Schimel JP, Jastrow JD. The importance of anabolism in microbial control over soil carbon storage. Nat Microbiol. 2017;2(8):17105.
Article
CAS
PubMed
Google Scholar
Howard-Varona C, et al. Lysogeny in nature: mechanisms, impact and ecology of temperate phages. ISME J. 2017;11(7):1511–20.
Article
PubMed
PubMed Central
Google Scholar
Rosenwasser S, et al. Virocell metabolism: metabolic innovations during host–virus interactions in the ocean. Trends Microbiol. 2016;24(10):821–32.
Article
CAS
PubMed
Google Scholar
Thompson LR, et al. Phage auxiliary metabolic genes and the redirection of cyanobacterial host carbon metabolism. Proc Natl Acad Sci. 2011;108(39):E757–64.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zimmerman AE, et al. Metabolic and biogeochemical consequences of viral infection in aquatic ecosystems. Nat Rev Microbiol. 2020;18(1):21–34.
Article
CAS
PubMed
Google Scholar
Shaffer M, et al. DRAM for distilling microbial metabolism to automate the curation of microbiome function. Nucleic Acids Res. 2020;48(16):8883–900.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pratama AA, et al. Expanding standards in viromics: in silico evaluation of dsDNA viral genome identification, classification, and auxiliary metabolic gene curation. PeerJ. 2021;9:e11447.
Article
PubMed
PubMed Central
Google Scholar
Emerson JB, et al. Host-linked soil viral ecology along a permafrost thaw gradient. Nat Microbiol. 2018;3(8):870–80.
Article
CAS
PubMed
PubMed Central
Google Scholar
Trubl G, et al. Soil viruses are underexplored players in ecosystem carbon processing. mSystems. 2018;3(5):e00076-18.
Barnett SE, Buckley DH. Simulating metagenomic stable isotope probing datasets with MetaSIPSim. BMC Bioinform. 2020;21(1):1-17.
Dumont MG, Hernández García M. Stable isotope probing. In: Methods and protocols. Totowa: Humana Press; 2019.
Google Scholar
Starr EP, et al. Stable isotope informed genome-resolved metagenomics reveals that Saccharibacteria utilize microbially-processed plant-derived carbon. Microbiome. 2018;6(1):1-12.
Haig S-J, et al. Stable-isotope probing and metagenomics reveal predation by protozoa drives E. coli removal in slow sand filters. ISME J. 2015;9(4):797–808.
Article
CAS
PubMed
Google Scholar
Gross A, et al. The role of soil redox conditions in microbial phosphorus cycling in humid tropical forests. Ecology. 2020;101(2):e02928.
Aanderud ZT, Lennon JT. Validation of heavy-water stable isotope probing for the characterization of rapidly responding soil bacteria. Appl Environ Microbiol. 2011;77(13):4589–96.
Article
CAS
PubMed
PubMed Central
Google Scholar
Blazewicz SJ, Schwartz E. Dynamics of 18O incorporation from H 2 18O into soil microbial DNA. Microb Ecol. 2011;61(4):911–6.
Article
CAS
PubMed
Google Scholar
Schwartz E. Characterization of growing microorganisms in soil by stable isotope probing with H218O. Appl Environ Microbiol. 2007;73(8):2541–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Blazewicz SJ, et al. Taxon-specific microbial growth and mortality patterns reveal distinct temporal population responses to rewetting in a California grassland soil. ISME J. 2020;14(6):1520–32.
Article
PubMed
PubMed Central
Google Scholar
Koch BJ, et al. Estimating taxon-specific population dynamics in diverse microbial communities. Ecosphere. 2018;9(1):e02090.
Article
Google Scholar
Papp K, et al. Quantitative stable isotope probing with H218O reveals that most bacterial taxa in soil synthesize new ribosomal RNA. ISME J. 2018;12(12):3043–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schwartz E, et al. Characterization of growing bacterial populations in McMurdo Dry Valley soils through stable isotope probing with18O-water. FEMS Microbiol Ecol. 2014;89(2):415–25.
Article
CAS
PubMed
Google Scholar
Balch W, et al. Methanogens: reevaluation of a unique biological group. Microbiol Rev. 1979;43(2):260–96.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hungate R. The anaerobic mesophilic cellulolytic bacteria. Bacteriol Rev. 1950;14(1):1–49.
Article
CAS
PubMed
PubMed Central
Google Scholar
Russell DW, Sambrook J. Molecular cloning: a laboratory manual, vol. 1: Cold Spring Harbor Laboratory Cold Spring Harbor, NY; 2001.
Google Scholar
Bankevich A, et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol. 2012;19(5):455–77.
Article
CAS
PubMed
PubMed Central
Google Scholar
Roux S, et al. VirSorter: mining viral signal from microbial genomic data. PeerJ. 2015;3:e985.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ren J, et al. Identifying viruses from metagenomic data using deep learning. Quant Biol. 2020;8(1):64–77.
Article
CAS
PubMed
PubMed Central
Google Scholar
Roux S, et al. Minimum information about an uncultivated virus genome (MIUViG). Nat Biotechnol. 2019;37(1):29–37.
Article
CAS
PubMed
Google Scholar
Delcher AL, Salzberg SL, Phillippy AM. Using MUMmer to identify similar regions in large sequence sets. Curr Protoc Bioinformatics. 2003;1:10.3.
Google Scholar
Nayfach S, et al. CheckV assesses the quality and completeness of metagenome-assembled viral genomes. Nat Biotechnol. 2020.
Langmead B, Salzberg SL. Fast gapped-read alignment with bowtie 2. Nat Methods. 2012;9(4):357–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Roux S, et al. Benchmarking viromics: an in silico evaluation of metagenome-enabled estimates of viral community composition and diversity. PeerJ. 2017;5:e3817.
Article
PubMed
PubMed Central
Google Scholar
Hoaglin DC, Iglewicz B. Fine-tuning some resistant rules for outlier labeling. J Am Stat Assoc. 1987;82(400):1147–9.
Article
Google Scholar
Hoaglin DC, Iglewicz B, Tukey JW. Performance of some resistant rules for outlier labeling. J Am Stat Assoc. 1986;81(396):991–9.
Article
Google Scholar
Ecale Zhou CL, et al. multiPhATE: bioinformatics pipeline for functional annotation of phage isolates. Bioinformatics. 2019;35(21):4402–4.
Article
PubMed
PubMed Central
CAS
Google Scholar
Arndt D, et al. PHASTER: a better, faster version of the PHAST phage search tool. Nucleic Acids Res. 2016;44(W1):W16–21.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li D, et al. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics. 2015;31(10):1674–6.
Article
CAS
PubMed
Google Scholar
Alneberg J, et al. Binning metagenomic contigs by coverage and composition. Nat Methods. 2014;11(11):1144–6.
Article
CAS
PubMed
Google Scholar
Wu Y-W, Simmons BA, Singer SW. MaxBin 2.0: an automated binning algorithm to recover genomes from multiple metagenomic datasets. Bioinformatics. 2016;32(4):605–7.
Article
CAS
PubMed
Google Scholar
Kang DD, et al. MetaBAT, an efficient tool for accurately reconstructing single genomes from complex microbial communities. PeerJ. 2015;3:e1165.
Article
PubMed
PubMed Central
CAS
Google Scholar
Uritskiy GV, Diruggiero J, Taylor J. MetaWRAP—a flexible pipeline for genome-resolved metagenomic data analysis. Microbiome. 2018;6(1):1-13.
Parks DH, et al. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 2015;25(7):1043–55.
Article
CAS
PubMed
PubMed Central
Google Scholar
Brown CT, et al. Unusual biology across a group comprising more than 15% of domain bacteria. Nature. 2015;523(7559):208–11.
Article
CAS
PubMed
Google Scholar
Bowers RM, et al. Minimum information about a single amplified genome (MISAG) and a metagenome-assembled genome (MIMAG) of bacteria and archaea. Nat Biotechnol. 2017;35(8):725–31.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bushnell B. BBMap: a fast, accurate, splice-aware aligner. Berkeley: Lawrence Berkeley National Lab.(LBNL); 2014.
Google Scholar
Olm MR, et al. dRep: a tool for fast and accurate genomic comparisons that enables improved genome recovery from metagenomes through de-replication. ISME J. 2017;11(12):2864–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chaumeil P-A, et al. GTDB-Tk: a toolkit to classify genomes with the genome taxonomy database. Bioinformatics. 2019.
Wattam AR, et al. Improvements to PATRIC, the all-bacterial bioinformatics database and analysis resource center. Nucleic Acids Res. 2017;45(D1):D535–42.
Article
CAS
PubMed
Google Scholar
Brettin T, et al. RASTtk: a modular and extensible implementation of the RAST algorithm for building custom annotation pipelines and annotating batches of genomes. Sci Rep. 2015;5(1):8365.
Article
PubMed
PubMed Central
CAS
Google Scholar
Aramaki T, et al. KofamKOALA: KEGG Ortholog assignment based on profile HMM and adaptive score threshold. Bioinformatics. 2020;36(7):2251–2.
Article
CAS
PubMed
Google Scholar
Kanehisa M, et al. KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res. 2016;44(D1):D457–62.
Article
CAS
PubMed
Google Scholar
Kumar MS, et al. Analysis and correction of compositional bias in sparse sequencing count data. BMC Genomics. 2018;19(1):1-23.
Paulson JN, et al. Differential abundance analysis for microbial marker-gene surveys. Nat Methods. 2013;10(12):1200–2.
Article
CAS
PubMed
PubMed Central
Google Scholar
Andersson AF, Banfield JF. Virus population dynamics and acquired virus resistance in natural microbial communities. Science. 2008;320(5879):1047–50.
Article
CAS
PubMed
Google Scholar
Bland C, et al. CRISPR recognition tool (CRT): a tool for automatic detection of clustered regularly interspaced palindromic repeats. BMC Bioinform. 2007;8(1):209.
Article
CAS
Google Scholar
Altschul SF, et al. Basic local alignment search tool. J Mol Biol. 1990;215(3):403–10.
Article
CAS
PubMed
Google Scholar
Edwards RA, et al. Computational approaches to predict bacteriophage–host relationships. FEMS Microbiol Rev. 2016;40(2):258–72.
Article
CAS
PubMed
Google Scholar
Yuan Y, Gao M. Jumbo bacteriophages: an overview. Front Microbiol. 2017;8:403.
PubMed
PubMed Central
Google Scholar
Mccalley CK, et al. Methane dynamics regulated by microbial community response to permafrost thaw. Nature. 2014;514(7523):478–81.
Article
CAS
PubMed
Google Scholar
Hultman J, et al. Multi-omics of permafrost, active layer and thermokarst bog soil microbiomes. Nature. 2015;521(7551):208–12.
Article
CAS
PubMed
Google Scholar
Nikrad MP, Kerkhof LJ, Häggblom MM. The subzero microbiome: microbial activity in frozen and thawing soils. FEMS Microbiol Ecol. 2016;92(6):fiw081.
Article
PubMed
CAS
Google Scholar
Adriaenssens EM, et al. Environmental drivers of viral community composition in Antarctic soils identified by viromics. Microbiome. 2017;5(1):1-14.
Zablocki O, Adriaenssens EM, Cowan D. Diversity and ecology of viruses in hyperarid desert soils. Appl Environ Microbiol. 2016;82(3):770–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Breitbart M, et al. Phage puppet masters of the marine microbial realm. Nat Microbiol. 2018;3(7):754–66.
Article
CAS
PubMed
Google Scholar
Hyman P, Abedon ST. Bacteriophage host range and bacterial resistance. Adv Appl Microbiol. 2010;70:217–48.
Article
CAS
PubMed
Google Scholar
Fermin G. Host range, host–virus interactions, and virus transmission. Viruses. 2018:101–34.
Malki K, et al. Bacteriophages isolated from Lake Michigan demonstrate broad host-range across several bacterial phyla. Virol J. 2015;12(1).
Hernández S, Vives MJ. Phages in anaerobic systems. Viruses. 2020;12(10):1091.
Article
PubMed Central
CAS
Google Scholar
Geslin C, et al. Analysis of the first genome of a hyperthermophilic marine virus-like particle, PAV1, isolated from Pyrococcus abyssi. J Bacteriol. 2007;189(12):4510–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
De Smet J, et al. High coverage metabolomics analysis reveals phage-specific alterations to Pseudomonas aeruginosa physiology during infection. ISME J. 2016;10(8):1823–35.
Article
PubMed
PubMed Central
CAS
Google Scholar
Van Goethem MW, et al. Characteristics of wetting-induced bacteriophage blooms in biological soil crust. mBio. 2019;10(6):e02287-19.
Greiner T, et al. Genes for membrane transport proteins: not so rare in viruses. Viruses. 2018;10(9):456.
Article
PubMed Central
CAS
Google Scholar
Thingstad TF. Elements of a theory for the mechanisms controlling abundance, diversity, and biogeochemical role of lytic bacterial viruses in aquatic systems. Limnol Oceanogr. 2000;45(6):1320–8.
Article
Google Scholar
Li G, et al. When to be temperate: on the fitness benefits of lysis vs. lysogeny. Virus Evol. 2020;6(2):veaa042.
Article
Google Scholar
Zeibich L, Schmidt O, Drake HL. Dietary polysaccharides: fermentation potentials of a primitive gut ecosystem. Environ Microbiol. 2019;21(4):1436–51.
Lapébie P, et al. Bacteroidetes use thousands of enzyme combinations to break down glycans. Nature. Communications. 2019;10(1):1-7.
Larsbrink J, McKee LS. Bacteroidetes bacteria in the soil: glycan acquisition, enzyme secretion, and gliding motility. Adv Appl Microbiol. 2020;110:63–98.
Article
CAS
PubMed
Google Scholar
Utter DR, et al. The saccharibacterium TM7x elicits differential responses across its host range. ISME J. 2020;14(12):3054–67.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jaffe, A.L., et al., Patterns of gene content and co-occurrence constrain the evolutionary path toward animal association in CPR bacteria. bioRxiv, 2021.
Lemos LN, et al. Genomic signatures and co-occurrence patterns of the ultra-small Saccharimonadia (phylum CPR/Patescibacteria) suggest a symbiotic lifestyle. Mol Ecol. 2019;28(18):4259–71.
Article
CAS
PubMed
Google Scholar
Tian R, et al. Small and mighty: adaptation of superphylum Patescibacteria to groundwater environment drives their genome simplicity. Microbiome. 2020;8(1):1-15.
Chen L-X, et al. Candidate phyla radiation roizmanbacteria from hot springs have novel and unexpectedly abundant CRISPR-Cas systems. Front Microbiol. 2019;10:928.
Hungate BA, et al. The functional significance of bacterial predators. Mbio. 2021;12(2):e00466–21.
Article
CAS
PubMed
PubMed Central
Google Scholar
Coutinho FH, et al. Ecogenomics and metabolic potential of the South Atlantic Ocean microbiome. Sci Total Environ. 2021;765:142758.
Article
CAS
PubMed
Google Scholar
Schimel JP, Mikan C. Changing microbial substrate use in Arctic tundra soils through a freeze-thaw cycle. Soil Biol Biochem. 2005;37(8):1411–8.
Article
CAS
Google Scholar
Bashiardes S, Zilberman-Schapira G, Elinav E. Use of metatranscriptomics in microbiome research. Bioinform Biol Insights. 2016;10:BBI.S34610.
Article
Google Scholar
Blazewicz SJ, et al. Evaluating rRNA as an indicator of microbial activity in environmental communities: limitations and uses. ISME J. 2013;7(11):2061–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Vogel C, Marcotte EM. Insights into the regulation of protein abundance from proteomic and transcriptomic analyses. Nat Rev Genet. 2012;13(4):227–32.
Article
CAS
PubMed
PubMed Central
Google Scholar
Joergensen RG, Wichern F. Alive and kicking: why dormant soil microorganisms matter. Soil Biol Biochem. 2018;116:419–30.
Article
CAS
Google Scholar
Stewart FM, Levin BR. The population biology of bacterial viruses: why be temperate. Theor Popul Biol. 1984;26(1):93–117.
Article
CAS
PubMed
Google Scholar
Casjens S. Prophages and bacterial genomics: what have we learned so far? Mol Microbiol. 2003;49(2):277–300.
Article
CAS
PubMed
Google Scholar