Raghoebarsing AA, Smolders AJ, Schmid MC, Rijpstra WIC, Wolters-Arts M, Derksen J, et al. Methanotrophic symbionts provide carbon for photosynthesis in peat bogs. Nature. 2005;436:1153–6.
Article
CAS
PubMed
Google Scholar
Hopple A, Wilson R, Kolton M, Zalman CA, Chanton JP, Kostka J, et al. Massive peatland carbon banks vulnerable to rising temperatures. Nat Commun. 2020;11:1–7.
Article
CAS
Google Scholar
Dise NB. Peatland response to global change. Science. 2009;326:810–1.
Article
CAS
PubMed
Google Scholar
Kostka JE, Weston DJ, Glass JB, Lilleskov EA, Shaw AJ, Turetsky MR. The Sphagnum microbiome: new insights from an ancient plant lineage. New Phytol. 2016;211:57–64.
Article
CAS
PubMed
Google Scholar
Groeneveld EV, Masse A, Rochefort L. Polytrichum strictum as a nurse-plant in peatland restoration. Restor Ecol. 2007;15:709–19.
Article
Google Scholar
Malmer N, Svensson BM, Wallén B. Interactions between Sphagnum mosses and field layer vascular plants in the development of peat-forming systems. Folia Geobot Phytotaxon. 1994;29:483–96.
Article
Google Scholar
Pouliot R, Rochefort L, Karofeld E, Mercier C. Initiation of Sphagnum moss hummocks in bogs and the presence of vascular plants: is there a link? Acta Oecologica. 2011;37:346–54.
Article
Google Scholar
Bragina A, Oberauner-Wappis L, Zachow C, Halwachs B, Thallinger GG, Müller H, et al. The Sphagnum microbiome supports bog ecosystem functioning under extreme conditions. Mol Ecol. 2014;23:4498–510.
Article
CAS
PubMed
Google Scholar
Larmola T, Leppänen SM, Tuittila E-S, Aarva M, Merilä P, Fritze H, et al. Methanotrophy induces nitrogen fixation during peatland development. Proc Natl Acad Sci. 2014;111:734–9.
Article
CAS
PubMed
Google Scholar
Hausmann B, Knorr K-H, Schreck K, Tringe SG, Del Rio TG, Loy A, et al. Consortia of low-abundance bacteria drive sulfate reduction-dependent degradation of fermentation products in peat soil microcosms. ISME J. 2016;10:2365–75.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bragina A, Berg C, Berg G. The core microbiome bonds the Alpine bog vegetation to a transkingdom metacommunity. Mol Ecol. 2015;24:4795–807.
Article
PubMed
Google Scholar
Opelt K, Chobot V, Hadacek F, Schönmann S, Eberl L, Berg G. Investigations of the structure and function of bacterial communities associated with Sphagnum mosses. Environ Microbiol. 2007;9:2795–809.
Article
CAS
PubMed
Google Scholar
Woodcroft BJ, Singleton CM, Boyd JA, Evans PN, Emerson JB, Zayed AA, et al. Genome-centric view of carbon processing in thawing permafrost. Nature. 2018;560:49–54.
Article
CAS
PubMed
Google Scholar
Obermeier MM, Wicaksono WA, Taffner J, Bergna A, Poehlein A, Cernava T, et al. Plant resistome profiling in evolutionary old bog vegetation provides new clues to understand emergence of multi-resistance. ISME J. 2021;15:921–37.
Article
CAS
PubMed
Google Scholar
Berg G, Rybakova D, Grube M, Köberl M. The plant microbiome explored: implications for experimental botany. J Exp Bot. 2016;67:995–1002.
Article
CAS
PubMed
Google Scholar
Bulgarelli D, Schlaeppi K, Spaepen S, Van Themaat EVL, Schulze-Lefert P. Structure and functions of the bacterial microbiota of plants. Annu Rev Plant Biol. 2013;64:807–38.
Article
CAS
PubMed
Google Scholar
Cordovez V, Dini-Andreote F, Carrión VJ, Raaijmakers JM. Ecology and evolution of plant microbiomes. Annu Rev Microbiol. 2019;73:69–88.
Article
CAS
PubMed
Google Scholar
Bragina A, Maier S, Berg C, Müller H, Chobot V, Hadacek F, et al. Similar diversity of Alphaproteobacteria and nitrogenase gene amplicons on two related Sphagnum mosses. Front Microbiol. 2012;2:275.
Article
PubMed
PubMed Central
CAS
Google Scholar
Opelt K, Berg C, Schönmann S, Eberl L, Berg G. High specificity but contrasting biodiversity of Sphagnum-associated bacterial and plant communities in bog ecosystems independent of the geographical region. ISME J. 2007;1:502–16.
Article
CAS
PubMed
Google Scholar
Shcherbakov A, Bragina A, Kuzmina EY, Berg C, Muntyan A, Makarova N, et al. Endophytic bacteria of Sphagnum mosses as promising objects of agricultural microbiology. Microbiology. 2013;82:306–15.
Article
CAS
Google Scholar
Pankratov TA, Ivanova AO, Dedysh SN, Liesack W. Bacterial populations and environmental factors controlling cellulose degradation in an acidic Sphagnum peat. Environ Microbiol. 2011;13:1800–14.
Article
CAS
PubMed
Google Scholar
Dedysh SN, Ivanova AA. Planctomycetes in boreal and subarctic wetlands: diversity patterns and potential ecological functions. FEMS Microbiol Ecol. 2019;95:fiy227.
Article
CAS
Google Scholar
Bragina A, Berg C, Cardinale M, Shcherbakov A, Chebotar V, Berg G. Sphagnum mosses harbour highly specific bacterial diversity during their whole lifecycle. ISME J. 2012;6:802–13.
Article
CAS
PubMed
Google Scholar
Baltrus DA. Adaptation, specialization, and coevolution within phytobiomes. Curr Opin Plant Biol. 2017;38:109–16.
Article
PubMed
Google Scholar
Ponce de León I, Montesano M. Activation of defense mechanisms against pathogens in mosses and flowering plants. Int J Mol Sci. 2013;14:3178–200.
Article
PubMed
CAS
Google Scholar
Fricker AM, Podlesny D, Fricke WF. What is new and relevant for sequencing-based microbiome research? A mini-review. J Adv Res. 2019;19:105–12.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bragina A, Berg C, Müller H, Moser D, Berg G. Insights into functional bacterial diversity and its effects on Alpine bog ecosystem functioning. Sci Rep. 2013;3:1–8.
Article
Google Scholar
Taffner J, Erlacher A, Bragina A, Berg C, Moissl-Eichinger C, Berg G. What is the role of Archaea in plants? New insights from the vegetation of alpine bogs. MSphere. 2018;3(3):e00122-18.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lu J, Breitwieser FP, Thielen P, Salzberg SL. Bracken: estimating species abundance in metagenomics data. PeerJ Comput Sci. 2017;3:e104.
Article
Google Scholar
Wood DE, Lu J, Langmead B. Improved metagenomic analysis with Kraken 2. Genome Biol. 2019;20:257.
Article
CAS
PubMed
PubMed Central
Google Scholar
Paulson JN, Stine OC, Bravo HC, Pop M. Differential abundance analysis for microbial marker-gene surveys. Nat Methods. 2013;10:1200–2.
Article
CAS
PubMed
PubMed Central
Google Scholar
Allaire J. RStudio: integrated development environment for R. Boston MA. 2012;770:394.
Google Scholar
Chong J, Liu P, Zhou G, Xia J. Using MicrobiomeAnalyst for comprehensive statistical, functional, and meta-analysis of microbiome data. Nat Protoc. 2020;15:799–821.
Core Team R. R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing; 2013.
Google Scholar
Dhariwal A, Chong J, Habib S, King IL, Agellon LB, Xia J. MicrobiomeAnalyst: a web-based tool for comprehensive statistical, visual and meta-analysis of microbiome data. Nucleic Acids Res. 2017;45:W180–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
McMurdie PJ, Holmes S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One. 2013;8(4):e61217.
Article
CAS
PubMed
PubMed Central
Google Scholar
Oksanen J, Kindt R, Legendre P, O’Hara B, Stevens MHH, Oksanen MJ, et al. The vegan package. Community Ecol Package. 2007;10:631–7.
Google Scholar
Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS, et al. Metagenomic biomarker discovery and explanation. Genome Biol. 2011;12:1–18.
Article
Google Scholar
Andrews S. FastQC: a quality control tool for high throughput sequence data. 2010.
Google Scholar
Li D, Liu C-M, Luo R, Sadakane K, Lam T-W. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics. 2015;31:1674–6.
Article
CAS
PubMed
Google Scholar
Hyatt D, Chen G-L, LoCascio PF, Land ML, Larimer FW, Hauser LJ. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics. 2010;11:119.
Article
PubMed
PubMed Central
CAS
Google Scholar
Li W, Godzik A. Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics. 2006;22:1658–9.
Article
CAS
PubMed
Google Scholar
Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using DIAMOND. Nat Methods. 2015;12:59.
Article
CAS
PubMed
Google Scholar
Huerta-Cepas J, Forslund K, Coelho LP, Szklarczyk D, Jensen LJ, Von Mering C, et al. Fast genome-wide functional annotation through orthology assignment by eggNOG-mapper. Mol Biol Evol. 2017;34:2115–22.
Article
CAS
PubMed
PubMed Central
Google Scholar
Huerta-Cepas J, Szklarczyk D, Heller D, Hernández-Plaza A, Forslund SK, Cook H, et al. eggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Res. 2019;47:D309-14.
Article
CAS
PubMed
Google Scholar
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The sequence alignment/map format and SAMtools. Bioinformatics. 2009;25:2078–9.
Article
PubMed
PubMed Central
CAS
Google Scholar
Li H, Durbin R. Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics. 2010;26:589–95.
Article
PubMed
PubMed Central
CAS
Google Scholar
Jonsson V, Österlund T, Nerman O, Kristiansson E. Statistical evaluation of methods for identification of differentially abundant genes in comparative metagenomics. BMC Genomics. 2016;17:78.
Article
PubMed
PubMed Central
CAS
Google Scholar
Robinson MD, McCarthy DJ, Smyth GK. edgeR: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26:139–40.
Article
CAS
PubMed
Google Scholar
Kanehisa M, Sato Y. KEGG Mapper for inferring cellular functions from protein sequences. Protein Sci. 2020;29:28–35.
Article
CAS
PubMed
Google Scholar
Tu Q, Lin L, Cheng L, Deng Y, He Z. NCycDB: a curated integrative database for fast and accurate metagenomic profiling of nitrogen cycling genes. Bioinformatics. 2019;35:1040–8.
Article
CAS
PubMed
Google Scholar
Zhang J, Buhe C, Yu D, Zhong H, Wei Y. Ammonia stress reduces antibiotic efflux but enriches horizontal gene transfer of antibiotic resistance genes in anaerobic digestion. Bioresour Technol. 2020;295:122191.
Article
CAS
PubMed
Google Scholar
Alneberg J, Bjarnason BS, De Bruijn I, Schirmer M, Quick J, Ijaz UZ, et al. Binning metagenomic contigs by coverage and composition. Nat Methods. 2014;11:1144–6.
Article
CAS
PubMed
Google Scholar
Kang DD, Li F, Kirton E, Thomas A, Egan R, An H, et al. MetaBAT 2: an adaptive binning algorithm for robust and efficient genome reconstruction from metagenome assemblies. PeerJ. 2019;7:e7359.
Article
PubMed
PubMed Central
Google Scholar
Wu Y-W, Simmons BA, Singer SW. MaxBin 2.0: an automated binning algorithm to recover genomes from multiple metagenomic datasets. Bioinformatics. 2016;32:605–7.
Article
CAS
PubMed
Google Scholar
Wicaksono WA, Cernava T, Berg C, Berg G. Reconstruction of bacterial metagenome-assembled genome sequences from Alpine bog vegetation. Microbiol Resour Announc. 2020;9(35):e00821-20.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sieber CM, Probst AJ, Sharrar A, Thomas BC, Hess M, Tringe SG, et al. Recovery of genomes from metagenomes via a dereplication, aggregation and scoring strategy. Nat Microbiol. 2018;3:836–43.
Article
CAS
PubMed
PubMed Central
Google Scholar
Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 2015;25:1043–55.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bowers RM, Kyrpides NC, Stepanauskas R, Harmon-Smith M, Doud D, Reddy T, et al. Minimum information about a single amplified genome (MISAG) and a metagenome-assembled genome (MIMAG) of bacteria and archaea. Nat Biotechnol. 2017;35:725–31.
Article
CAS
PubMed
PubMed Central
Google Scholar
von Meijenfeldt FB, Arkhipova K, Cambuy DD, Coutinho FH, Dutilh BE. Robust taxonomic classification of uncharted microbial sequences and bins with CAT and BAT. Genome Biol. 2019;20:217.
Article
CAS
Google Scholar
Chen L, Zheng D, Liu B, Yang J, Jin Q. VFDB 2016: hierarchical and refined dataset for big data analysis—10 years on. Nucleic Acids Res. 2016;44:D694–7.
Article
CAS
PubMed
Google Scholar
Zhang H, Zhang Q, Song J, Zhang Z, Chen S, Long Z, et al. Tracking resistomes, virulence genes, and bacterial pathogens in long-term manure-amended greenhouse soils. J Hazard Mater. 2020;396:122618.
Article
CAS
PubMed
Google Scholar
Asnicar F, Thomas AM, Beghini F, Mengoni C, Manara S, Manghi P, et al. Precise phylogenetic analysis of microbial isolates and genomes from metagenomes using PhyloPhlAn 3.0. Nat Commun. 2020;11:1–10.
Article
CAS
Google Scholar
Heberle H, Meirelles GV, da Silva FR, Telles GP, Minghim R. InteractiVenn: a web-based tool for the analysis of sets through Venn diagrams. BMC Bioinformatics. 2015;16:1–7.
Article
Google Scholar
Opelt K, Berg C, Berg G. The bryophyte genus Sphagnum is a reservoir for powerful and extraordinary antagonists and potentially facultative human pathogens. FEMS Microbiol Ecol. 2007;61:38–53.
Article
CAS
PubMed
Google Scholar
Durazzi F, Sala C, Castellani G, Manfreda G, Remondini D, De Cesare A. Comparison between 16S rRNA and shotgun sequencing data for the taxonomic characterization of the gut microbiota. Sci Rep. 2021;11:1–10.
Article
CAS
Google Scholar
Taffner J, Cernava T, Erlacher A, Berg G. Novel insights into plant-associated archaea and their functioning in arugula (Eruca sativa Mill.). J Adv Res. 2019;19:39–48.
Article
CAS
PubMed
PubMed Central
Google Scholar
Regalado J, Lundberg DS, Deusch O, Kersten S, Karasov T, Poersch K, et al. Combining whole-genome shotgun sequencing and rRNA gene amplicon analyses to improve detection of microbe–microbe interaction networks in plant leaves. ISME J. 2020;14:2116–30.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pedrotti E, Rydin H, Ingmar T, Hytteborn H, Turunen P, Granath G. Fine-scale dynamics and community stability in boreal peatlands: revisiting a fen and a bog in Sweden after 50 years. Ecosphere. 2014;5:1–24.
Article
Google Scholar
Chaudhary N, Miller PA, Smith B. Biotic and abiotic drivers of peatland growth and microtopography: a model demonstration. Ecosystems. 2018;21:1196–214.
Article
Google Scholar
Robroek BJ, Jassey VE, Payne RJ, Martí M, Bragazza L, Bleeker A, et al. Taxonomic and functional turnover are decoupled in European peat bogs. Nat Commun. 2017;8:1–9.
Article
CAS
Google Scholar
Carrell AA, Kolton M, Glass JB, Pelletier DA, Warren MJ, Kostka JE, et al. Experimental warming alters the community composition, diversity, and N2 fixation activity of peat moss (Sphagnum fallax) microbiomes. Glob Change Biol. 2019;25:2993–3004.
Article
Google Scholar
Compant S, Clément C, Sessitsch A. Plant growth-promoting bacteria in the rhizo-and endosphere of plants: their role, colonization, mechanisms involved and prospects for utilization. Soil Biol Biochem. 2010;42:669–78.
Article
CAS
Google Scholar
Alcaraz LD, Peimbert M, Barajas HR, Dorantes-Acosta AE, Bowman JL, Arteaga-Vázquez MA. Marchantia liverworts as a proxy to plants’ basal microbiomes. Sci Rep. 2018;8:1–12.
Article
CAS
Google Scholar
Lebeis SL, Paredes SH, Lundberg DS, Breakfield N, Gehring J, McDonald M, et al. Salicylic acid modulates colonization of the root microbiome by specific bacterial taxa. Science. 2015;349:860–4.
Article
CAS
PubMed
Google Scholar
Turner TR, Ramakrishnan K, Walshaw J, Heavens D, Alston M, Swarbreck D, et al. Comparative metatranscriptomics reveals kingdom level changes in the rhizosphere microbiome of plants. ISME J. 2013;7:2248–58.
Article
CAS
PubMed
PubMed Central
Google Scholar
Belova S, Pankratov T, Dedysh S. Bacteria of the genus Burkholderia as a typical component of the microbial community of Sphagnum peat bogs. Microbiology. 2006;75:90–6.
Article
CAS
Google Scholar
Kracht O, Gleixner G. Isotope analysis of pyrolysis products from Sphagnum peat and dissolved organic matter from bog water. Org Geochem. 2000;31:645–54.
Article
CAS
Google Scholar
Malmer N. Mineral nutrients in vegetation and surface layers of Sphagnum-dominated peat-forming systems. Adv Bryol. 1993;5:223–48.
Google Scholar
Kraiser T, Gras DE, Gutiérrez AG, González B, Gutiérrez RA. A holistic view of nitrogen acquisition in plants. J Exp Bot. 2011;62:1455–66.
Article
CAS
PubMed
PubMed Central
Google Scholar
Moreau D, Bardgett RD, Finlay RD, Jones DL, Philippot L. A plant perspective on nitrogen cycling in the rhizosphere. Funct Ecol. 2019;33:540–52.
Article
Google Scholar
Berendsen RL, Pieterse CM, Bakker PA. The rhizosphere microbiome and plant health. Trends Plant Sci. 2012;17:478–86.
Article
CAS
PubMed
Google Scholar
Berg G, Smalla K. Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere. FEMS Microbiol Ecol. 2009;68:1–13.
Article
CAS
PubMed
Google Scholar
Hügler M, Sievert SM. Beyond the Calvin cycle: autotrophic carbon fixation in the ocean. Annu Rev Mar Sci. 2011;3:261–89.
Article
Google Scholar
Lynn TM, Ge T, Yuan H, Wei X, Wu X, Xiao K, et al. Soil carbon-fixation rates and associated bacterial diversity and abundance in three natural ecosystems. Microb Ecol. 2017;73:645–57.
Article
CAS
PubMed
Google Scholar
Yuan H, Ge T, Chen C, O’Donnell AG, Wu J. Significant role for microbial autotrophy in the sequestration of soil carbon. Appl Environ Microbiol. 2012;78:2328–36.
Article
CAS
PubMed
PubMed Central
Google Scholar
Holland-Moritz H, Stuart J, Lewis LR, Miller S, Mack MC, McDaniel SF, et al. Novel bacterial lineages associated with boreal moss species. Environ Microbiol. 2018;20:2625–38.
Article
CAS
PubMed
Google Scholar
Singleton CM, McCalley CK, Woodcroft BJ, Boyd JA, Evans PN, Hodgkins SB, et al. Methanotrophy across a natural permafrost thaw environment. ISME J. 2018;12:2544–58.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fritz C, Lamers LP, Riaz M, van den Berg LJ, Elzenga TJ. Sphagnum mosses-masters of efficient N-uptake while avoiding intoxication. PLoS One. 2014;9:e79991.
Article
PubMed
PubMed Central
CAS
Google Scholar
Liu X, Koba K, Makabe A, Li X, Yoh M, Liu C. Ammonium first: natural mosses prefer atmospheric ammonium but vary utilization of dissolved organic nitrogen depending on habitat and nitrogen deposition. New Phytol. 2013;199:407–19.
Article
CAS
PubMed
Google Scholar
Frigaard N-U, Dahl C. Sulfur metabolism in phototrophic sulfur bacteria. Adv Microb Physiol. 2008;54:103–200.
Article
CAS
Google Scholar
Widdel F. Growth of methanogenic bacteria in pure culture with 2-propanol and other alcohols as hydrogen donors. Appl Environ Microbiol. 1986;51:1056–62.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhu X, Campanaro S, Treu L, Seshadri R, Ivanova N, Kougias PG, et al. Metabolic dependencies govern microbial syntrophies during methanogenesis in an anaerobic digestion ecosystem. Microbiome. 2020;8:1–14.
Article
Google Scholar
Cenci U, Qiu H, Pillonel T, Cardol P, Remacle C, Colleoni C, et al. Host-pathogen biotic interactions shaped vitamin K metabolism in Archaeplastida. Sci Rep. 2018;8:1–14.
Article
CAS
Google Scholar
Hale MB, Blankenship RE, Fuller RC. Menaquinone is the sole quinone in the facultatively aerobic green photosynthetic bacterium Chloroflexus aurantiacus. Biochim Biophys Acta BBA-Bioenerg. 1983;723:376–82.
Article
CAS
Google Scholar
Krewing M, Stepanek JJ, Cremers C, Lackmann J-W, Schubert B, Müller A, et al. The molecular chaperone Hsp33 is activated by atmospheric-pressure plasma protecting proteins from aggregation. J R Soc Interface. 2019;16:20180966.
Article
PubMed
PubMed Central
CAS
Google Scholar
LeThanh H, Neubauer P, Hoffmann F. The small heat-shock proteins IbpA and IbpB reduce the stress load of recombinant Escherichia coli and delay degradation of inclusion bodies. Microb Cell Factories. 2005;4:6.
Article
CAS
Google Scholar
Berg G, Eberl L, Hartmann A. The rhizosphere as a reservoir for opportunistic human pathogenic bacteria. Environ Microbiol. 2005;7:1673–85.
Article
CAS
PubMed
Google Scholar
Pinski A, Betekhtin A, Hupert-Kocurek K, Mur LA, Hasterok R. Defining the genetic basis of plant–endophytic bacteria interactions. Int J Mol Sci. 2019;20:1947.
Article
CAS
PubMed Central
Google Scholar
Casadevall A. The pathogenic potential of a microbe. Msphere. 2017;2(1):e00015-17.
Article
PubMed
PubMed Central
Google Scholar
Lira F, Berg G, Martínez JL. Double-face meets the bacterial world: the opportunistic pathogen Stenotrophomonas maltophilia. Front Microbiol. 2017;8:2190.
Article
PubMed
PubMed Central
Google Scholar
Reinhold-Hurek B, Bünger W, Burbano CS, Sabale M, Hurek T. Roots shaping their microbiome: global hotspots for microbial activity. Annu Rev Phytopathol. 2015;53:403–24.
Article
CAS
PubMed
Google Scholar