Law KL. Plastics in the marine environment. Ann Rev Mar Sci. 2017;9(1):205–29. https://doi.org/10.1146/annurev-marine-010816-060409.
Article
PubMed
Google Scholar
PlasticsEurope. Plastics – the Facts 2018. 2018.
Google Scholar
Geyer R, Jambeck JR, Law KL. Production, use, and fate of all plastics ever made. Sci Adv. 2017;3(7):e1700782. https://doi.org/10.1126/sciadv.1700782.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gilman E. Status of international monitoring and management of abandoned, lost and discarded fishing gear and ghost fishing. Mar Policy. 2015;60:225–39. https://doi.org/10.1016/j.marpol.2015.06.016.
Article
Google Scholar
Napper IE, Thompson RC. Release of synthetic microplastic plastic fibres from domestic washing machines: effects of fabric type and washing conditions. Mar Pollut Bull. 2016;112(1-2):39–45. https://doi.org/10.1016/j.marpolbul.2016.09.025.
Article
CAS
PubMed
Google Scholar
Napper IE, Bakir A, Rowland SJ, Thompson RC. Characterisation, quantity and sorptive properties of microplastics extracted from cosmetics. Mar Pollut Bull. 2015;99(1-2):178–85. https://doi.org/10.1016/j.marpolbul.2015.07.029.
Article
CAS
PubMed
Google Scholar
Borrelle SB, Ringama J, Law KL, Monnahan CC, Lebreton L, McGivern A, et al. Predicted growth in plastic waste exceeds efforts to mitigate plastic pollution. Science (80- ). 2020;1518:1515–8.
Article
CAS
Google Scholar
Ward CP, Reddy CM. Opinion: we need better data about the environmental persistence of plastic goods. Proc Natl Acad Sci. 2020;117:202008009.
Article
CAS
Google Scholar
Avio CG, Gorbi S, Regoli F. Plastics and microplastics in the oceans: from emerging pollutants to emerged threat. Mar Environ Res. 2016;128:2–11.
Article
CAS
PubMed
Google Scholar
Gerritse J, Leslie HA, de Tender CA, Devriese LI, Vethaak AD. Fragmentation of plastic objects in a laboratory seawater microcosm. Sci Rep. 2020;10:1–16.
Article
CAS
Google Scholar
Andrady AL. The plastic in microplastics: a review. Mar Pollut Bull. 2017;119(1):12–22. https://doi.org/10.1016/j.marpolbul.2017.01.082.
Article
CAS
PubMed
Google Scholar
Wright RJ, Erni-Cassola G, Zadjelovic V, Latva M, Christie-Oleza J. Marine plastic debris – a new surface for microbial colonization. Environ Sci Technol. 2020;4(19):11657–72.
Danso D, Chow J, Streit WR. Plastics: Microbial Degradation, Environmental and Biotechnological Perspectives. Appl Environ Microbiol. 2019;85(19):e01095-19.
Tanasupawat S, Takehana T, Yoshida S, Hiraga K, Oda K. Ideonella sakaiensis sp. nov., isolated from a microbial consortium that degrades PET. Int J Syst Evol Microbiol. 2016;66(8):2813–8. https://doi.org/10.1099/ijsem.0.001058.
Article
CAS
PubMed
Google Scholar
Yoshida S, Hiraga K, Takehana T, Taniguchi I, Yamaji H, Maeda Y, et al. A bacterium that degrades and assimilates poly(ethylene terephthalate). Science (80- ). 2016;351:1196–9.
Article
CAS
Google Scholar
Han X, Liu W, Huang J, Ma J, Zheng Y, Ko T, et al. Structural insight into catalytic mechanism of PET. Nat Commun. 2017;8:1–6.
Article
CAS
Google Scholar
Joo S, Cho IJ, Seo H, Son HF, Sagong H-Y, Shin TJ, et al. Structural insight into molecular mechanism of poly(ethylene terephthalate) degradation. Nat Commun. 2018;9:1–12.
Article
CAS
Google Scholar
Austin HP, Allen MD, Donohoe BS, Rorrer NA, Kearns FL, Silveira RL, et al. Characterization and engineering of a plastic-degrading aromatic polyesterase. Proc Natl Acad Sci. 2018;115(19):E4350–7. https://doi.org/10.1073/pnas.1718804115.
Article
CAS
PubMed
PubMed Central
Google Scholar
Danso D, Schmeisser C, Chow J, Zimmermann W, Wei R, Leggewie C, et al. New insights into the function and global distribution of polyethylene terephthalate (PET) degrading bacteria and enzymes in marine and terrestrial metagenomes. Appl Environ Microbiol. 2018;84:e02773–17.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zettler ER, Mincer TJ, Amaral-Zettler LA. Life in the “Plastisphere”: microbial communities on plastic marine debris. Environ Sci Technol. 2013;47(13):7137–46. https://doi.org/10.1021/es401288x.
Article
CAS
PubMed
Google Scholar
Bryant JA, Clemente TM, Viviani DA, Fong AA, Thomas KA, Kemp P, et al. Diversity and activity of communities inhabiting plastic debris in the North Pacific Gyre. mSystems. 2016;1:e00024–16.
Article
PubMed
PubMed Central
Google Scholar
Oberbeckmann S, Kreikemeyer B, Labrenz M. Environmental factors support the formation of specific bacterial assemblages on microplastics. Front Microbiol. 2018;8:1–12.
Article
Google Scholar
Frère L, Maignien L, Chalopin M, Huvet A, Rinnert E, Morrison H, et al. Microplastic bacterial communities in the Bay of Brest: influence of polymer type and size. Environ Pollut. 2018;242(Pt A):614–25. https://doi.org/10.1016/j.envpol.2018.07.023.
Article
CAS
PubMed
Google Scholar
Kirstein IV, Wichels A, Gullans E, Krohne G, Gerdts G. The plastisphere – uncovering tightly attached plastic “specific” microorganisms. PLoS One. 2019;14:1–17.
Article
CAS
Google Scholar
Kirstein IV, Wichels A, Krohne G, Gerdts G. Mature biofilm communities on synthetic polymers in seawater - specific or general? Mar Environ Res. 2018;142:147–54. https://doi.org/10.1016/j.marenvres.2018.09.028.
Article
CAS
PubMed
Google Scholar
Carson HS, Nerheim MS, Carroll KA, Eriksen M. The plastic-associated microorganisms of the North Pacific Gyre. Mar Pollut Bull. 2013;75(1-2):126–32. https://doi.org/10.1016/j.marpolbul.2013.07.054.
Article
CAS
PubMed
Google Scholar
Jiang P, Zhao S, Zhu L, Li D. Microplastic-associated bacterial assemblages in the intertidal zone of the Yangtze Estuary. Sci Total Environ. 2018;624:48–54. https://doi.org/10.1016/j.scitotenv.2017.12.105.
Article
CAS
PubMed
Google Scholar
Kettner MT, Rojas-Jimenez K, Oberbeckmann S, Labrenz M, Grossart H-P. Microplastics alter composition of fungal communities in aquatic ecosystems. Environ Microbiol. 2017;19(11):4447–59. https://doi.org/10.1111/1462-2920.13891.
Article
CAS
PubMed
Google Scholar
Muthukrishnan T, Khaburi M Al, Abed RMM. Fouling microbial communities on plastics compared with wood and steel: Are they substrate- or location-specific? Microb Ecol. 2019;78:361–74.
Oberbeckmann S, Loeder MGJ, Gerdts G, Osborn AM. Spatial and seasonal variation in diversity and structure of microbial biofilms on marine plastics in Northern European waters. FEMS Microbiol Ecol. 2014;90(2):478–92. https://doi.org/10.1111/1574-6941.12409.
Article
CAS
PubMed
Google Scholar
Oberbeckmann S, Osborn AM, Duhaime MB. Microbes on a bottle: substrate, season and geography influence community composition of microbes colonizing marine plastic debris. PLoS One. 2016;11:1–24.
Article
CAS
Google Scholar
Amaral-Zettler LA, Zettler ER, Slikas B, Boyd GD, Melvin DW, Morrall CE, et al. The biogeography of the plastisphere: implications for policy. Front Ecol Environ. 2015;13(10):541–6. https://doi.org/10.1890/150017.
Article
Google Scholar
Wright RJ, Langille MGI, Walker TR. Food or just a free ride? A meta-analysis reveals the global diversity of the Plastisphere. ISME J. 2021;15:789–806.
Pollet T, Berdjeb L, Garnier CC, Durrieu GG, Le Poupon C, Misson B, et al. Prokaryotic community successions and interactions in marine biofilms: the key role of Flavobacteriia. FEMS Microb Ecol. 2018;94:1–13.
Google Scholar
Datta MS, Sliwerska E, Gore J, Polz MF, Cordero OX. Microbial interactions lead to rapid micro-scale successions on model marine particles. Nat Commun. 2016;7:1–7.
Article
CAS
Google Scholar
Wright RJ, Gibson MI, Christie-Oleza JA. Understanding microbial community dynamics to improve optimal microbiome selection. Microbiome. 2019;7:1–14.
Article
Google Scholar
Woodall LC, Jungblut AD, Hopkins K, Id AH, Robinson F, Gwinnett C, et al. Deep-sea anthropogenic macrodebris harbours rich and diverse communities of bacteria and archaea. PLoS One. 2018;13(11):e0206220.
De Tender CA, Devriese LI, Haegeman A, Maes S, Ruttink T, Dawyndt P. Bacterial community profiling of plastic litter in the Belgian part of the North Sea. Environ Sci Technol. 2015;49(16):9629–38. https://doi.org/10.1021/acs.est.5b01093.
Article
CAS
PubMed
Google Scholar
Dang H, Li T, Chen M, Huang G. Cross-ocean distribution of Rhodobacterales bacteria as primary surface colonizers in temperate coastal marine waters. Appl Environ Microbiol. 2008;74(1):52–60. https://doi.org/10.1128/AEM.01400-07.
Article
CAS
PubMed
Google Scholar
Erni-Cassola G, Wright RJ, Gibson MI, Christie-Oleza JA. Early colonization of weathered polyethylene by distinct bacteria in marine coastal seawater. Microb Ecol. Microbial Ecol. 2019;79:517–26.
Article
CAS
Google Scholar
van den Brink PJ, den Besten PJ. bij de Vaate A, ter Braak CJF. Principal response curves technique for the analysis of multivariate biomonitoring time series. Environ Monit Assess. 2009;152(1-4):271–81. https://doi.org/10.1007/s10661-008-0314-6.
Article
CAS
PubMed
Google Scholar
Romera-Castillo C, Pinto M, Langer TM, Álvarez-Salgado XA, Herndl GJ. Dissolved organic carbon leaching from plastics stimulates microbial activity in the ocean. Nat Commun. 2018;9:1–7.
Article
CAS
Google Scholar
Sunagawa S, Coelho LP, Chaffron S, Kultima JR, Labadie K, Salazar G, et al. Structure and function of the global ocean microbiome. Science (80- ). 2015;348:1–10.
Article
CAS
Google Scholar
Logares R, Sunagawa S, Salazar G, Cornejo-Castillo FM, Ferrera I, Sarmento H, et al. Metagenomic 16S rDNA Illumina tags are a powerful alternative to amplicon sequencing to explore diversity and structure of microbial communities. Environ Microbiol. 2014;16(9):2659–71. https://doi.org/10.1111/1462-2920.12250.
Article
CAS
PubMed
Google Scholar
Tully BJ, Graham ED, Heidelberg JF. The reconstruction of 2,631 draft metagenome-assembled genomes from the global oceans. Sci Data. 2018;5:1–8.
Article
CAS
Google Scholar
Wiegant WM, de Bont JA. A new route for ethylene glycol metabolism in Mycobacterium E44. J Gen Microbiol. 1980;120:325–31.
CAS
Google Scholar
Trifunovic D, Schuchmann K, Muller V. Ethylene glycol metabolism in the acetogen Acetobacterium woodii. J Bacteriol. 2016;198(7):1058–65. https://doi.org/10.1128/JB.00942-15.
Article
CAS
PubMed
PubMed Central
Google Scholar
de Lara MS, Abdulmutalib U, Gonzalez J, Kim J, Smith AA, Faulon J-L, et al. Genes for a circular and sustainable bio-PET economy. Genes (Basel). 2019;10:1–15.
Google Scholar
Hara H, Eltis LD, Davies JE, Mohn WW. Transcriptomic analysis reveals a bifurcated terephthalate degradation pathway in Rhodococcus sp. strain RHA1. J Bacteriol. 2007;189(5):1641–7. https://doi.org/10.1128/JB.01322-06.
Article
CAS
PubMed
Google Scholar
Teufel R, Mascaraque V, Ismail W, Voss M, Perera J, Eisenreich W, et al. Bacterial phenylalanine and phenylacetate catabolic pathway revealed. Proc Natl Acad Sci U S A. 2010;107(32):14390–5. https://doi.org/10.1073/pnas.1005399107.
Article
PubMed
PubMed Central
Google Scholar
Arias-Barrau E, Olivera ER, Luengo JM, Fernández C, Galán B, García JL, et al. The homogentisate pathway: a central catabolic pathway involved in the degradation of L-phenylalanine, L-tyrosine, and 3-hydroxyphenylacetate in Pseudomonas putida. J Bacteriol. 2004;186(15):5062–77. https://doi.org/10.1128/JB.186.15.5062-5077.2004.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kanehisa M, Sato Y, Morishima K. BlastKOALA and GhostKOALA: KEGG tools for functional characterization of genome and metagenome sequences. J Mol Biol. 2016;428(4):726–31. https://doi.org/10.1016/j.jmb.2015.11.006.
Article
CAS
PubMed
Google Scholar
Douglas GM, Maffei VJ, Zaneveld JR, Yurgel SN, Brown JR, Taylor CM, et al. PICRUSt2 for prediction of metagenome functions. Nat Biotechnol. 2020;38:685–8.
Chen IMA, Chu K, Palaniappan K, Pillay M, Ratner A, Huang J, et al. IMG/M v.5.0: an integrated data management and comparative analysis system for microbial genomes and microbiomes. Nucleic Acids Res. 2019;47(D1):D666–77. https://doi.org/10.1093/nar/gky901.
Article
CAS
PubMed
Google Scholar
Langille MGI, Zaneveld J, Caporaso JG, McDonald D, Knights D, Reyes JA, et al. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat Biotechnol. 2013;31:1814–21.
Article
CAS
Google Scholar
Marchler-Bauer A, Derbyshire MK, Gonzales NR, Lu S, Chitsaz F, Geer LY, et al. CDD: NCBI’s conserved domain database. Nucleic Acids Res. 2015;43:222–6.
Article
CAS
Google Scholar
Knott BC, Erickson E, Allen MD, Gado JE, Graham R, Kearns FL, et al. Characterization and engineering of a two-enzyme system for plastics depolymerization. Proc Natl Acad Sci. 2020;117:202006753.
Article
CAS
Google Scholar
Tanasupawat S, Takehana T, Yoshida S, Hiraga K, Oda K. Ideonella sakaiensis sp. nov., isolated from a microbial consortium that degrades poly(ethylene terephthalate). Int J Syst Evol Microbiol. 2016;66(8):2813–8. https://doi.org/10.1099/ijsem.0.001058.
Article
CAS
PubMed
Google Scholar
Wright RJ, Bosch R, Gibson MI, Christie-Oleza JA. Plasticizer degradation by marine bacterial isolates: a proteogenomic and metabolomic characterization. Environ Sci Technol. 2020;54(4):2244–56. https://doi.org/10.1021/acs.est.9b05228.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gok A. Degradation of poly(ethylene-terephthalate) under accelerated weathering exposures. Case West Reserv Univ. 2015. https://etd.ohiolink.edu/apexprod/rws_olink/r/1501/10?p10_etd_subid=110243&clear=10.
Donelli I, Freddi G, Nierstrasz VA, Taddei P. Surface structure and properties of poly-(ethylene terephthalate) hydrolyzed by alkali and cutinase. Polym Degrad Stab. 2010;95(9):1542–50. https://doi.org/10.1016/j.polymdegradstab.2010.06.011.
Article
CAS
Google Scholar
Quero GM, Luna GM. Surfing and dining on the “plastisphere”: microbial life on plastic marine debris. Adv Oceanogr Limnol. 2017;8:199–207.
Article
CAS
Google Scholar
Didier D, Anne M, Alexandra TH. Plastics in the North Atlantic garbage patch: a boat-microbe for hitchhikers and plastic degraders. Sci Total Environ. 2017;599–600:1222–32.
Google Scholar
Dussud C, Meistertzheim AL, Conan P, Pujo-pay M, George M, Fabre P, et al. Evidence of niche partitioning among bacteria living on plastics, organic particles and surrounding seawaters. Environ Pollut. 2018;236:807–16. https://doi.org/10.1016/j.envpol.2017.12.027.
Article
CAS
PubMed
Google Scholar
Wackett LP. Broad specificity microbial enzymes. Microb Biotechnol. 2015;8(1):188–9. https://doi.org/10.1111/1751-7915.12270.
Article
PubMed Central
Google Scholar
Musumeci MA, Loviso CL, Lozada M, Ferreira FV, Dionisi HM. Substrate specificities of aromatic ring-hydroxylating oxygenases of an uncultured gammaproteobacterium from chronically-polluted subantarctic sediments. Int Biodeterior Biodegrad. 2019;137:127–36. https://doi.org/10.1016/j.ibiod.2018.12.005.
Article
CAS
Google Scholar
Syranidou E, Karkanorachaki K, Amorotti F, Avgeropoulos A, Kolvenbach B, Zhou N, et al. Biodegradation of mixture of plastic films by tailored marine consortia. J Hazard Mater. 2019;375:33–42. https://doi.org/10.1016/j.jhazmat.2019.04.078.
Article
CAS
PubMed
Google Scholar
Syranidou E, Karkanorachaki K, Amorotti F, Repouskou E, Kroll K, Kolvenbach B, et al. Development of tailored indigenous marine consortia for the degradation of naturally weathered polyethylene films. PLoS One. 2017;12:1–21.
Article
CAS
Google Scholar
Syranidou E, Karkanorachaki K, Amorotti F, Franchini M, Repouskou E, Kaliva M, et al. Biodegradation of weathered polystyrene films in seawater microcosms. Sci Rep. 2017;7:1–12.
Article
CAS
Google Scholar
Curren E, Leong SCY. Profiles of bacterial assemblages from microplastics of tropical coastal environments. Sci Total Environ. 2019;655:313–20. https://doi.org/10.1016/j.scitotenv.2018.11.250.
Article
CAS
PubMed
Google Scholar
Wang W, Zhong R, Shan D, Shao Z. Indigenous oil-degrading bacteria in crude oil-contaminated seawater of the Yellow sea, China. Appl Microbiol Biotechnol. 2014;98(16):7253–69. https://doi.org/10.1007/s00253-014-5817-1.
Article
CAS
PubMed
Google Scholar
Nakkabi A, Elmoualij N, Sadiki M, Ibnsouda Koraichi S, Fahim M. Biodegradation of poly (ethylene terephthalate) by Bacillus Subtilis. Int J Recent Adv Multidiscip Res. 2015;2:1060–2.
Google Scholar
Sudhakar M, Doble M, Murthy PS, Venkatesan R. Marine microbe-mediated biodegradation of low- and high-density polyethylenes. Int Biodeterior Biodegradation. 2008;61(3):203–13. https://doi.org/10.1016/j.ibiod.2007.07.011.
Article
CAS
Google Scholar
Gewert B, Plassmann MM, MacLeod M. Pathways for degradation of plastic polymers floating in the marine environment. Environ Sci Process Impacts. 2015;17(9):1513–21. https://doi.org/10.1039/C5EM00207A.
Article
CAS
PubMed
Google Scholar
Gewert B, Plassmann M, Sandblom O, Macleod M. Identification of chain scission products released to water by plastic exposed to ultraviolet light. Environ Sci Technol Lett. Am Chem Soc. 2018;5:272–6.
CAS
Google Scholar
Freire MTDA, Damant AP, Castle L, Reyes FGR. Thermal stability of polyethylene terephthalate (PET): oligomer distribution and formation of volatiles. Packag Technol Sci. 1999;12(1):29–36.
Article
CAS
Google Scholar
Kirstein IV, Kirmizi S, Wichels A, Garin-Fernandez A, Erler R, Löder M, et al. Dangerous hitchhikers? Evidence for potentially pathogenic Vibrio spp. on microplastic particles. Mar Environ Res. 2016;120:1–8. https://doi.org/10.1016/j.marenvres.2016.07.004.
Article
CAS
PubMed
Google Scholar
Quilliam RS, Jamieson J, Oliver DM. Seaweeds and plastic debris can influence the survival of faecal indicator organisms in beach environments. Mar Pollut Bull. 2014;84(1-2):201–7. https://doi.org/10.1016/j.marpolbul.2014.05.011.
Article
CAS
PubMed
Google Scholar
Keswani A, Oliver DM, Gutierrez T, Quilliam RS. Microbial hitchhikers on marine plastic debris: human exposure risks at bathing waters and beach environments. Mar Environ Res. 2016;118:10–9. https://doi.org/10.1016/j.marenvres.2016.04.006.
Article
CAS
PubMed
Google Scholar
Huq A, Small EB, West PA, Huq MI, Rahman R, Colwell RR. Ecological relationships between Vibrio cholerae and planktonic crustacean copepods. Appl Environ Microbiol. 1983;45(1):275–83. https://doi.org/10.1128/AEM.45.1.275-283.1983.
Article
CAS
PubMed
PubMed Central
Google Scholar
Raghul SS, Bhat SG, Chandrasekaran M, Francis V, Thachil ET. Biodegradation of polyvinyl alcohol-low linear density polyethylene-blended plastic film by consortium of marine benthic vibrios. Int J Environ Sci Technol. 2014;11(7):1827–34. https://doi.org/10.1007/s13762-013-0335-8.
Article
CAS
Google Scholar
Noriega-Ortega BE, Wienhausen G, Mentges A, Dittmar T, Simon M, Niggemann J. Does the chemodiversity of bacterial exometabolomes sustain the chemodiversity of marine dissolved organic matter? Front Microbiol. 2019;10:1–13.
Article
Google Scholar
Christie-Oleza JA, Sousoni D, Lloyd M, Armengaud J, Scanlan DJ. Nutrient recycling facilitates long-term stability of marine microbial phototroph-heterotroph interactions. Nat Microbiol. 2017;2:1–10.
Article
CAS
Google Scholar
Zhang WP, Wang Y, Tian RM, Bougouffa S, Yang B, Cao HL, et al. Species sorting during biofilm assembly by artificial substrates deployed in a cold seep system. Sci Rep. 2014;4:1–7.
Google Scholar
Ogonowski M, Motiei A, Ininbergs K, Hell E, Gerdes Z, Udekwu KI, et al. Evidence for selective bacterial community structuring on microplastics. Environ Microbiol. 2018;20(8):2796–808. https://doi.org/10.1111/1462-2920.14120.
Article
CAS
PubMed
Google Scholar
Zumstein MT, Narayan R, Kohler H-PE, McNeill K, Sander M. Dos and do nots when assessing the biodegradation of plastics. Environ Sci Technol. 2019;53(17):9967–9. https://doi.org/10.1021/acs.est.9b04513.
Article
CAS
PubMed
Google Scholar
Bushnell LD, Haas HF. The utilization of certain hydrocarbons by microorganisms. J Bacteriol. 1941;41(5):653–73. https://doi.org/10.1128/JB.41.5.653-673.1941.
Article
CAS
PubMed
PubMed Central
Google Scholar
Parada AE, Needham DM, Fuhrman JA. Every base matters: assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. Environ Microbiol. 2016;18(5):1403–14. https://doi.org/10.1111/1462-2920.13023.
Article
CAS
PubMed
Google Scholar
Callahan BJ, Sankaran K, Fukuyama JA, McMurdie PJ, Holmes SP. Bioconductor workflow for microbiome data analysis: from raw reads to community analyses. F1000Research. 2016;5:1–49.
Article
Google Scholar
Louca S, Doebeli M. Efficient comparative phylogenetics on large trees. Bioinformatics. 2018;34(6):1053–5. https://doi.org/10.1093/bioinformatics/btx701.
Article
CAS
PubMed
Google Scholar
Eddy SR. Accelerated profile HMM searches. PLoS Comput Biol. 2011;7(10):e1002195. https://doi.org/10.1371/journal.pcbi.1002195.
Article
CAS
PubMed
PubMed Central
Google Scholar
Barbera P, Kozlov AM, Czech L, Morel B, Darriba D, Flouri T, et al. EPA-ng: massively parallel evolutionary placement of genetic sequences. Syst Biol. 2019;68(2):365–9. https://doi.org/10.1093/sysbio/syy054.
Article
PubMed
Google Scholar
Czech L, Stamatakis A. Scalable methods for analyzing and visualizing phylogenetic placement of metagenomic samples. PLoS One. 2019;14(5):e0217050.
Wright RJ. JGI PICRUSt2 genomes [Internet]. Figshare. Available from: https://doi.org/10.6084/m9.figshare.12233192.
Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W, et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol. 2011;7(1):539. https://doi.org/10.1038/msb.2011.75.
Article
PubMed
PubMed Central
Google Scholar
Madeira F, Park YM, Lee J, Buso N, Gur T, Madhusoodanan N, et al. The EMBL-EBI search and sequence analysis tools APIs in 2019. Nucleic Acids Res. 2019;47(W1):W636–41. https://doi.org/10.1093/nar/gkz268.
Article
CAS
PubMed
PubMed Central
Google Scholar
Paradis E, Schliep K. Ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics. 2019;35(3):526–8. https://doi.org/10.1093/bioinformatics/bty633.
Article
CAS
PubMed
Google Scholar
Dixon P. VEGAN, a package of R functions for community ecology. J Veg Sci. 2003;14(6):927–30. https://doi.org/10.1111/j.1654-1103.2003.tb02228.x.
Article
Google Scholar
Lane DJ. 16S/23S rRNA Sequencing. In: Stackebrandt E, Goodfellow M, editors. Nucleic Acid Tech Bact Syst; 1991. p. 115–75.
Google Scholar
Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics. 2014;30(14):2068–9. https://doi.org/10.1093/bioinformatics/btu153.
Article
CAS
PubMed
Google Scholar
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215(3):403–10. https://doi.org/10.1016/S0022-2836(05)80360-2.
Article
CAS
PubMed
Google Scholar
Mikheenko A, Prjibelski A, Saveliev V, Antipov D, Gurevich A. Versatile genome assembly evaluation with QUAST-LG. Bioinformatics. 2018;34(13):i142–50. https://doi.org/10.1093/bioinformatics/bty266.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mikheenko A, Saveliev V, Gurevich A. MetaQUAST: Evaluation of metagenome assemblies. Bioinformatics. 2016;32(7):1088–90. https://doi.org/10.1093/bioinformatics/btv697.
Article
CAS
PubMed
Google Scholar
Eren AM. TARA-RAW-ASSEMBLIES-1000nt. [Internet]. Figshare. Available from: https://doi.org/10.6084/m9.figshare.4902920.v1.
Christie-Oleza JA, Armengaud J. In-depth analysis of exoproteomes from marine bacteria by shotgun liquid chromatography-tandem mass spectrometry: the Ruegeria pomeroyi DSS-3 case-study. Mar Drugs. 2010;8(8):2223–39. https://doi.org/10.3390/md8082223.
Article
CAS
PubMed
PubMed Central
Google Scholar
Christie-Oleza JA, Scanlan DJ, Armengaud J. “You produce while I clean up”, a strategy revealed by exoproteomics during Synechococcus-Roseobacter interactions. Proteomics. 2015;15(20):3454–62. https://doi.org/10.1002/pmic.201400562.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cox J, Mann M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol. 2008;26(12):1367–72. https://doi.org/10.1038/nbt.1511.
Article
CAS
PubMed
Google Scholar
Marchler-Bauer A, Bo Y, Han L, He J, Lanczycki CJ, Lu S, et al. CDD/SPARCLE: functional classification of proteins via subfamily domain architectures. Nucleic Acids Res. 2017;45:200–3.
Article
CAS
Google Scholar
Kanehisa M, Furumichi M, Tanabe M, Sato Y, Morishima K. KEGG: New perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res. 2017;45(D1):D353–61. https://doi.org/10.1093/nar/gkw1092.
Article
CAS
PubMed
Google Scholar
Erni-Cassola G, Gibson MI, Thompson RC, Christie-Oleza JA. Lost, but found with Nile Red: a novel method for detecting and quantifying small microplastics (1 mm to 20 μm) in environmental samples. Environ Sci Technol. 2017;51(23):13641–8. https://doi.org/10.1021/acs.est.7b04512.
Article
CAS
PubMed
Google Scholar
Beleites C, Sergo V. hyperSpec: a package to handle hyperspectral data sets in R; 2020.
Google Scholar