Heckman DS. Molecular evidence for the early colonization of land by fungi and plants. Science (80- ) 2001;293:1129–33. https://doi.org/10.1126/science.1061457
Lambers H, Mougel C, Jaillard B, Hinsinger P. Plant-microbe-soil interactions in the rhizosphere: an evolutionary perspective. Plant Soil. 2009;321(1-2):83–115. https://doi.org/10.1007/s11104-009-0042-x.
Article
CAS
Google Scholar
Broeckling CD, Broz AK, Bergelson J, Manter DK, Vivanco JM. Root exudates regulate soil fungal community composition and diversity. Appl Environ Microbiol. 2008;74(3):738–44. https://doi.org/10.1128/AEM.02188-07.
Article
CAS
PubMed
Google Scholar
Zhalnina K, Louie KB, Hao Z, Mansoori N, da Rocha UN, Shi S, et al. Dynamic root exudate chemistry and microbial substrate preferences drive patterns in rhizosphere microbial community assembly. Nat Microbiol. 2018;3(4):470–80. https://doi.org/10.1038/s41564-018-0129-3.
Chaparro JM, Badri DV, Vivanco JM. Rhizosphere microbiome assemblage is affected by plant development. ISME J. 2014;8(4):790–803. https://doi.org/10.1038/ismej.2013.196.
Article
CAS
PubMed
Google Scholar
Borruso L, Bacci G, Mengoni A, de Philippis R, Brusetti L. Rhizosphere effect and salinity competing to shape microbial communities in Phragmites australis (Cav.) Trin. ex-Steud. FEMS Microbiol Lett. 2014;359(2):193–200. https://doi.org/10.1111/1574-6968.12565.
Article
CAS
PubMed
Google Scholar
Pett-Ridge J, Shi S, Estera-Molina K, et al. Rhizosphere carbon turnover from cradle to grave: the role of microbe–plant interactions. In: Sharma AK, editor. Gupta VV. Interactions Between Microbes and Plants. Springer: Rhizosphere Biology; 2021. p. 51–73.
Google Scholar
Shi S, Nuccio EE, Shi ZJ, He Z, Zhou J, Firestone MK. The interconnected rhizosphere: High network complexity dominates rhizosphere assemblages. Ecol Lett. 2016;19(8):926–36. https://doi.org/10.1111/ele.12630.
Article
PubMed
Google Scholar
Tsurumaru H, Okubo T, Okazaki K, Hashimoto M, Kakizaki K, Hanzawa E, et al. Metagenomic analysis of the bacterial community associated with the taproot of sugar Beet. Microbes Environ. 2015;30(1):63–9. https://doi.org/10.1264/jsme2.ME14109.
Chhabra S, Brazil D, Morrissey J, Burke JI, O'Gara F, N. Dowling D. Characterization of mineral phosphate solubilization traits from a barley rhizosphere soil functional metagenome. Microbiologyopen n/a-n/a. 2013;2(5):717–24. https://doi.org/10.1002/mbo3.110.
Article
CAS
Google Scholar
Majeed A, Abbasi MK, Hameed S, Imran A, Rahim N. Isolation and characterization of plant growth-promoting rhizobacteria from wheat rhizosphere and their effect on plant growth promotion. Front Microbiol. 2015;6. https://doi.org/10.3389/fmicb.2015.00198.
Massart S, Martinez-Medina M, Jijakli MH. Biological control in the microbiome era: Challenges and opportunities. Biol Control. 2015;89:98–108. https://doi.org/10.1016/j.biocontrol.2015.06.003.
Article
Google Scholar
Bonkowski M, Dumack K, Fiore-Donno AM (2019) The protists in soil—a token of untold eukaryotic diversity. In: van Elsas JD, Trevors JT, Soares Rosado A, Nannipieri P (eds) Modern Soil Microbiology, Third. CRC Press, pp 125–140, The Protists in Soil—A Token of Untold Eukaryotic Diversity
Warren A, Esteban GF (2019) Protozoa. In: Thorp and Covich’s Freshwater Invertebrates, 4th ed. Elsevier, pp 7–42
Oliverio AM, Geisen S, Delgado-Baquerizo M, et al (2020) The global-scale distributions of soil protists and their contributions to belowground systems. Sci Adv 6:eaax8787. https://doi.org/10.1126/sciadv.aax8787
Mahé F, de Vargas C, Bass D, Czech L, Stamatakis A, Lara E, et al. Parasites dominate hyperdiverse soil protist communities in Neotropical rainforests. Nat Ecol Evol. 2017;1(4):0091. https://doi.org/10.1038/s41559-017-0091.
Adl SM, Bass D, Lane CE, Lukeš J, Schoch CL, Smirnov A, et al. Revisions to the classification, nomenclature, and diversity of eukaryotes. J Eukaryot Microbiol. 2019;66(1):4–119. https://doi.org/10.1111/jeu.12691.
Jones H. A classification of mixotrophic protists based on their behaviour. Freshw Biol. 1997;37(1):35–43. https://doi.org/10.1046/j.1365-2427.1997.00138.x.
Article
Google Scholar
Murase J, Frenzel P. Selective grazing of methanotrophs by protozoa in a rice field soil. FEMS Microbiol Ecol. 2008;65(3):408–14. https://doi.org/10.1111/j.1574-6941.2008.00511.x.
Article
CAS
PubMed
Google Scholar
Saleem M, Fetzer I, Dormann CF, Harms H, Chatzinotas A. Predator richness increases the effect of prey diversity on prey yield. Nat Commun. 2012;3(1):1305. https://doi.org/10.1038/ncomms2287.
Article
CAS
PubMed
Google Scholar
Bates ST, Clemente JC, Flores GE, Walters WA, Parfrey LW, Knight R, et al. Global biogeography of highly diverse protistan communities in soil. ISME J. 2013;7(3):652–9. https://doi.org/10.1038/ismej.2012.147.
Clarholm M. Interactions of bacteria, protozoa and plants leading to mineralization of soil nitrogen. Soil Biol Biochem. 1985;17(2):181–7. https://doi.org/10.1016/0038-0717(85)90113-0.
Article
CAS
Google Scholar
Clarholm M. Effects of plant-bacterial-amoebal interactions on plant uptake of nitrogen under field conditions. Biol Fertil Soils. 1989;8(4). https://doi.org/10.1007/BF00263171.
Krome K, Rosenberg K, Bonkowski M, Scheu S. Grazing of protozoa on rhizosphere bacteria alters growth and reproduction of Arabidopsis thaliana. Soil Biol Biochem. 2009;41(9):1866–73. https://doi.org/10.1016/j.soilbio.2009.06.008.
Article
CAS
Google Scholar
Bonkowski M. Protozoa and plant growth: the microbial loop in soil revisited. New Phytol. 2004;162(3):617–31. https://doi.org/10.1111/j.1469-8137.2004.01066.x.
Article
PubMed
Google Scholar
Trap J, Bonkowski M, Plassard C, Villenave C, Blanchart E. Ecological importance of soil bacterivores for ecosystem functions. Plant Soil. 2016;398(1-2):1–24. https://doi.org/10.1007/s11104-015-2671-6.
Article
CAS
Google Scholar
Koller R, Rodriguez A, Robin C, Scheu S, Bonkowski M. Protozoa enhance foraging efficiency of arbuscular mycorrhizal fungi for mineral nitrogen from organic matter in soil to the benefit of host plants. New Phytol. 2013;199(1):203–11. https://doi.org/10.1111/nph.12249.
Article
CAS
PubMed
Google Scholar
Henkes GJ, Kandeler E, Marhan S, Scheu S, Bonkowski M. Interactions of Mycorrhiza and protists in the rhizosphere systemically alter microbial community composition, plant shoot-to-root ratio and within-root system nitrogen allocation. Front Environ Sci. 2018;6. https://doi.org/10.3389/fenvs.2018.00117.
Örmälä-Odegrip A-M, Ojala V, Hiltunen T, Zhang J, Bamford JKH, Laakso J. Protist predation can select for bacteria with lowered susceptibility to infection by lytic phages. BMC Evol Biol. 2015;15(1):81. https://doi.org/10.1186/s12862-015-0341-1.
Article
PubMed
PubMed Central
Google Scholar
Johnke J, Baron M, de Leeuw M, Kushmaro A, Jurkevitch E, Harms H, et al. A generalist protist predator enables coexistence in multitrophic predator-prey systems containing a phage and the bacterial predator Bdellovibrio. Front Ecol Evol. 2017;5. https://doi.org/10.3389/fevo.2017.00124.
Gao Z, Karlsson I, Geisen S, Kowalchuk G, Jousset A. Protists: Puppet Masters of the Rhizosphere Microbiome. Trends Plant Sci. 2019;24(2):165–76. https://doi.org/10.1016/j.tplants.2018.10.011.
Article
CAS
PubMed
Google Scholar
Caron DA, Worden AZ, Countway PD, Demir E, Heidelberg KB. Protists are microbes too: a perspective. ISME J. 2009;3(1):4–12. https://doi.org/10.1038/ismej.2008.101.
Article
CAS
PubMed
Google Scholar
Adl SM, Habura A, Eglit Y. Amplification primers of SSU rDNA for soil protists. Soil Biol Biochem. 2013;69:328–42. https://doi.org/10.1016/j.soilbio.2013.10.024.
Article
CAS
Google Scholar
Guillou L, Bachar D, Audic S, Bass D, Berney C, Bittner L, et al. The Protist Ribosomal Reference database (PR2): a catalog of unicellular eukaryote Small Sub-Unit rRNA sequences with curated taxonomy. Nucleic Acids Res. 2012;41(D1):D597–604. https://doi.org/10.1093/nar/gks1160.
Dumack K, Fiore‐Donno AM, Bass D, Bonkowski M. Making sense of environmental sequencing data: Ecologically important functional traits of the protistan groups Cercozoa and Endomyxa (Rhizaria). Mol Ecol Resour. 2020;20:398–403. https://doi.org/10.1111/1755-0998.13112.
Venter PC, Nitsche F, Domonell A, Heger P, Arndt H. The protistan microbiome of grassland soil: diversity in the mesoscale. Protist. 2017;168(5):546–64. https://doi.org/10.1016/j.protis.2017.03.005.
Geisen S, Tveit AT, Clark IM, Richter A, Svenning MM, Bonkowski M, et al. Metatranscriptomic census of active protists in soils. ISME J. 2015;9(10):2178–90. https://doi.org/10.1038/ismej.2015.30.
Fiore-Donno AM, Richter-Heitmann T, Degrune F, Dumack K, Regan KM, Marhan S, et al. Functional Traits and Spatio-Temporal Structure of a Major Group of Soil Protists (Rhizaria: Cercozoa) in a Temperate Grassland. Front Microbiol. 2019;10. https://doi.org/10.3389/fmicb.2019.01332.
Guo S, Xiong W, Xu H, Hang X, Liu H, Xun W, et al. Continuous application of different fertilizers induces distinct bulk and rhizosphere soil protist communities. Eur J Soil Biol. 2018;88:8–14. https://doi.org/10.1016/j.ejsobi.2018.05.007.
Sigrid Dassen, Roeland Cortois, Henk Martens, Mattias de Hollander, George A. Kowalchuk, Wim H. van der Putten, Gerlinde B. De Deyn. Differential responses of soil bacteria, fungi, archaea and protists to plant species richness and plant functional group identity. Molecular Ecology. 2017;26(15):4085–98
Xiong W, Song Y, Yang K, Gu Y, Wei Z, Kowalchuk GA, et al. Rhizosphere protists are key determinants of plant health. Microbiome. 2020;8(1):27. https://doi.org/10.1186/s40168-020-00799-9.
Schröder P, Herzig R, Bojinov B, Ruttens A, Nehnevajova E, Stamatiadis S, et al. Bioenergy to save the world. Environ Sci Pollut Res. 2008;15(3):196–204. https://doi.org/10.1065/espr2008.03.481.
Deng Y, Jiang Y-H, Yang Y, He Z, Luo F, Zhou J. Molecular ecological network analyses. BMC Bioinformatics. 2012;13(1):113. https://doi.org/10.1186/1471-2105-13-113.
Article
PubMed
PubMed Central
Google Scholar
Ning D, Yuan M, Wu L, Zhang Y, Guo X, Zhou X, et al. A quantitative framework reveals ecological drivers of grassland microbial community assembly in response to warming. Nat Commun. 2020;11(1):4717. https://doi.org/10.1038/s41467-020-18560-z.
Prokopowich CD, Gregory TR, Crease TJ. The correlation between rDNA copy number and genome size in eukaryotes. Genome. 2003;46(1):48–50. https://doi.org/10.1139/g02-103.
Article
CAS
PubMed
Google Scholar
Berdjeb L, Parada A, Needham DM, Fuhrman JA. Short-term dynamics and interactions of marine protist communities during the spring–summer transition. ISME J. 2018;12(8):1907–17. https://doi.org/10.1038/s41396-018-0097-x.
Article
PubMed
PubMed Central
Google Scholar
Geyer KM, Altrichter AE, Takacs-Vesbach CD, van Horn DJ, Gooseff MN, Barrett JE. Bacterial community composition of divergent soil habitats in a polar desert. FEMS Microbiol Ecol. 2014;89(2):490–4. https://doi.org/10.1111/1574-6941.12306.
Article
CAS
PubMed
Google Scholar
Yang F, Wu J, Zhang D, Chen Q, Zhang Q, Cheng X. Soil bacterial community composition and diversity in relation to edaphic properties and plant traits in grasslands of southern China. Appl Soil Ecol. 2018;128:43–53. https://doi.org/10.1016/j.apsoil.2018.04.001.
Article
Google Scholar
Hinsinger P, Bengough AG, Vetterlein D, Young IM. Rhizosphere: biophysics, biogeochemistry and ecological relevance. Plant Soil. 2009;321(1-2):117–52. https://doi.org/10.1007/s11104-008-9885-9.
Article
CAS
Google Scholar
Berg G, Smalla K. Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere. FEMS Microbiol Ecol. 2009;68(1):1–13. https://doi.org/10.1111/j.1574-6941.2009.00654.x.
Article
CAS
PubMed
Google Scholar
Schreiter S, Ding G-C, Heuer H, Neumann Gü, Sandmann M, Grosch R, et al. Effect of the soil type on the microbiome in the rhizosphere of field-grown lettuce. Front Microbiol. 2014;5. https://doi.org/10.3389/fmicb.2014.00144.
Shi S, Nuccio E, Herman DJ, Rijkers R, Estera K, Li J, et al. Successional trajectories of rhizosphere bacterial communities over consecutive seasons. MBio. 2015;6(4):e00746. https://doi.org/10.1128/mBio.00746-15.
Fukami T. Community assembly along a species pool gradient: implications for multiple-scale patterns of species diversity. Popul Ecol. 2004;46(2). https://doi.org/10.1007/s10144-004-0182-z.
Nuccio EE, Starr E, Karaoz U, Brodie EL, Zhou J, Tringe SG, et al. Niche differentiation is spatially and temporally regulated in the rhizosphere. ISME J. 2020;14(4):999–1014. https://doi.org/10.1038/s41396-019-0582-x.
Green S, Şerban M, Scholl R, Jones N, Brigandt I, Bechtel W. Network analyses in systems biology: new strategies for dealing with biological complexity. Synthese. 2018;195(4):1751–77. https://doi.org/10.1007/s11229-016-1307-6.
Article
Google Scholar
Carr A, Diener C, Baliga NS, Gibbons SM. Use and abuse of correlation analyses in microbial ecology. ISME J. 2019;13(11):2647–55. https://doi.org/10.1038/s41396-019-0459-z.
Article
PubMed
PubMed Central
Google Scholar
Barberán A, Bates ST, Casamayor EO, Fierer N. Using network analysis to explore co-occurrence patterns in soil microbial communities. ISME J. 2012;6(2):343–51. https://doi.org/10.1038/ismej.2011.119.
Article
CAS
PubMed
Google Scholar
Nuccio EE, Anderson-Furgeson J, Estera KY, Pett-Ridge J, de Valpine P, Brodie EL, et al. Climate and edaphic controllers influence rhizosphere community assembly for a wild annual grass. Ecology. 2016;97(5):1307–18. https://doi.org/10.1890/15-0882.1.
Fan K, Cardona C, Li Y, Shi Y, Xiang X, Shen C, et al. Rhizosphere-associated bacterial network structure and spatial distribution differ significantly from bulk soil in wheat crop fields. Soil Biol Biochem. 2017;113:275–84. https://doi.org/10.1016/j.soilbio.2017.06.020.
Götzenberger L, de Bello F, Bråthen KA, Davison J, Dubuis A, Guisan A, et al. Ecological assembly rules in plant communities-approaches, patterns and prospects. Biol Rev. 2012;87(1):111–27. https://doi.org/10.1111/j.1469-185X.2011.00187.x.
Brazeau HA, Schamp BS. Examining the link between competition and negative co-occurrence patterns. Oikos. 2019;128(9):1358–66. https://doi.org/10.1111/oik.06054.
Article
Google Scholar
Paine RT. A conversation on refining the concept of keystone species. Conserv Biol. 1995;9(4):962–4. https://doi.org/10.1046/j.1523-1739.1995.09040962.x.
Article
Google Scholar
Power ME, Tilman D, Estes JA, Menge BA, Bond WJ, Mills LS, et al. Challenges in the quest for keystones. Bioscience. 1996;46(8):609–20. https://doi.org/10.2307/1312990.
Olesen JM, Bascompte J, Dupont YL, Jordano P. The modularity of pollination networks. Proc Natl Acad Sci. 2007;104(50):19891–6. https://doi.org/10.1073/pnas.0706375104.
Article
PubMed
PubMed Central
Google Scholar
Berry D, Widder S. Deciphering microbial interactions and detecting keystone species with co-occurrence networks. Front Microbiol. 2014;5. https://doi.org/10.3389/fmicb.2014.00219.
Gerbore J, Benhamou N, Vallance J, le Floch G, Grizard D, Regnault-Roger C, et al. Biological control of plant pathogens: advantages and limitations seen through the case study of Pythium oligandrum. Environ Sci Pollut Res. 2014;21(7):4847–60. https://doi.org/10.1007/s11356-013-1807-6.
Tamada T, Asher MJC. The Plasmodiophorid Protist Polymyxa betae. In: Rhizomania. Cham: Springer International Publishing; 2016. p. 135–53. https://doi.org/10.1007/978-3-319-30678-0_6.
Chapter
Google Scholar
Ekelund F. Enumeration and abundance of mycophagous protozoa in soil, with special emphasis on heterotrophic flagellates. Soil Biol Biochem. 1998;30(10-11):1343–7. https://doi.org/10.1016/S0038-0717(97)00266-6.
Article
CAS
Google Scholar
Bass D, Howe AT, Mylnikov AP, Vickerman K, Chao EE, Edwards Smallbone J, et al. Phylogeny and classification of Cercomonadida (Protozoa, Cercozoa): Cercomonas, Eocercomonas, Paracercomonas, and Cavernomonas gen. nov. Protist. 2009;160(4):483–521. https://doi.org/10.1016/j.protis.2009.01.004.
Bamforth SS. Interactions between protozoa and other organisms. Agric Ecosyst Environ. 1988;24(1-3):229–34. https://doi.org/10.1016/0167-8809(88)90068-0.
Article
Google Scholar
Rodríguez-Zaragoza S. Ecology of Free-Living Amoebae. Crit Rev Microbiol. 1994;20(3):225–41. https://doi.org/10.3109/10408419409114556.
Article
PubMed
Google Scholar
Trappeniers K, Van Kerckvoorde A, Chardez D, et al. Testate amoebae assemblages from soils in the zackenberg area, Northeast Greenland. Arctic, Antarct Alp Res. 2002;34(1):94. https://doi.org/10.2307/1552513.
Article
Google Scholar
Huang AC, Jiang T, Liu Y-X, et al (2019) A specialized metabolic network selectively modulates Arabidopsis root microbiota. Science (80- ) 364:eaau6389. https://doi.org/10.1126/science.aau6389
Pausch J, Kuzyakov Y. Carbon input by roots into the soil: quantification of rhizodeposition from root to ecosystem scale. Glob Chang Biol. 2018;24(1):1–12. https://doi.org/10.1111/gcb.13850.
Article
PubMed
Google Scholar
Rovira AD. Plant root excretions in relation to the rhizosphere effect. Plant Soil. 1956;7(2):178–94. https://doi.org/10.1007/BF01343726.
Article
Google Scholar
Schulz-Bohm K, Geisen S, Wubs ERJ, Song C, de Boer W, Garbeva P (2017) The prey’s scent—volatile organic compound mediated interactions between soil bacteria and their protist predators. ISME J 11:817–820. https://doi.org/10.1038/ismej.2016.144, The prey’s scent – Volatile organic compound mediated interactions between soil bacteria and their protist predators, 3
Zhou J. Stochastic Community Assembly : Does It. Microbiol Mol Biol Rev. 2017;81:1–32.
Article
Google Scholar
Tran T Sen, Giroux M, Guilbeault J, Audesse P (1990) Evaluation of Mehlich-III extractant to estimate the available P in Quebec soils. Commun Soil Sci Plant Anal 21:1–28. https://doi.org/10.1080/00103629009368212, 1-2
Herbold CW, Pelikan C, Kuzyk O, Hausmann B, Angel R, Berry D, et al. A flexible and economical barcoding approach for highly multiplexed amplicon sequencing of diverse target genes. Front Microbiol. 2015;6:1–8. https://doi.org/10.3389/fmicb.2015.00731.
Rudi K (2003) A novel multiplex quantitative DNA array based PCR (MQDA-PCR) for quantification of transgenic maize in food and feed. Nucleic Acids Res 31:62e – 62. https://doi.org/10.1093/nar/gng061
Hamady M, Walker JJ, Harris JK, Gold NJ, Knight R. Error-correcting barcoded primers for pyrosequencing hundreds of samples in multiplex. Nat Methods. 2008;5(3):235–7. https://doi.org/10.1038/nmeth.1184.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fonseca VG, Sinniger F, Gaspar JM, Quince C, Creer S, Power DM, et al. Revealing higher than expected meiofaunal diversity in Antarctic sediments: a metabarcoding approach. Sci Rep. 2017;7(1):1–11. https://doi.org/10.1038/s41598-017-06687-x.
Amaral-Zettler LA, McCliment EA, Ducklow HW, Huse SM. A method for studying protistan diversity using massively parallel sequencing of V9 hypervariable regions of small-subunit ribosomal RNA genes. PLoS One. 2009;4(7):e6372. https://doi.org/10.1371/journal.pone.0006372.
Article
CAS
PubMed
PubMed Central
Google Scholar
Edgar RC. Search and clustering orders of magnitude faster than BLAST. Bioinformatics. 2010;26(19):2460–1. https://doi.org/10.1093/bioinformatics/btq461.
Article
CAS
PubMed
Google Scholar
Huson DH, Beier S, Flade I, Górska A, el-Hadidi M, Mitra S, Ruscheweyh HJ, Tappu R (2016) MEGAN community edition—interactive exploration and analysis of large-scale microbiome sequencing data. PLOS Comput Biol 12:e1004957. https://doi.org/10.1371/journal.pcbi.1004957, MEGAN Community Edition - Interactive Exploration and Analysis of Large-Scale Microbiome Sequencing Data, 6
Minh BQ, Schmidt HA, Chernomor O, Schrempf D, Woodhams MD, von Haeseler A, et al. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol Biol Evol. 2020;37(5):1530–4. https://doi.org/10.1093/molbev/msaa015.
McMurdie PJ, Holmes S (2013) phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One 8:e61217. https://doi.org/10.1371/journal.pone.0061217
Flores GE, Caporaso JG, Henley JB, Rideout JR, Domogala D, Chase J, et al. Temporal variability is a personalized feature of the human microbiome. Genome Biol. 2014;15(12):531. https://doi.org/10.1186/s13059-014-0531-y.
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15(12):550. https://doi.org/10.1186/s13059-014-0550-8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rodriguez Zaragoza S, Mayzlish E, Steinberger Y. Seasonal changes in free-living amoeba species in the root canopy of Zygophyllum dumosum in the Negev Desert, Israel. Microb Ecol. 2005;49(1):134–41. https://doi.org/10.1007/s00248-003-1056-1.
Article
CAS
PubMed
Google Scholar
Howe AT, Bass D, Vickerman K, Chao EE, Cavalier-Smith T. Phylogeny, taxonomy, and astounding genetic diversity of Glissomonadida ord. nov., The Dominant Gliding Zooflagellates in Soil (Protozoa: Cercozoa). Protist. 2009;160(2):159–89. https://doi.org/10.1016/j.protis.2008.11.007.
Article
CAS
PubMed
Google Scholar
Sowell SM, Abraham PE, Shah M, Verberkmoes NC, Smith DP, Barofsky DF, et al. Environmental proteomics of microbial plankton in a highly productive coastal upwelling system. ISME J. 2011;5(5):856–65. https://doi.org/10.1038/ismej.2010.168.
Bernard C, Simpson AGB, Patterson DJ. Some free-living flagellates (protista) from anoxic habitats. Ophelia. 2000;52(2):113–42. https://doi.org/10.1080/00785236.1999.10409422.
Article
Google Scholar
Hsu SC, Lockwood JL. Biological Control of phytophthora root rot of soybean by Hyphochytrium catenoides in greenhouse tests. J Phytopathol. 1984;109(2):139–46. https://doi.org/10.1111/j.1439-0434.1984.tb00701.x.
Article
Google Scholar
van der Plaats-Niterink AJ. Monograph of the Genus Pythium. Stud Mycol. 1981;21:1–242.
Google Scholar
Ayers WA, Lumsden RD. Mycoparasitism of oospores of Pythium and Aphanomyces species by Hyphochytrium catenoides. Can J Microbiol. 1977;23(1):38–44. https://doi.org/10.1139/m77-005.
Article
Google Scholar
Zhou J, Deng Y, Luo F, He Z, Tu Q, Zhi X. Functional molecular ecological networks. MBio. 2010;1(4). https://doi.org/10.1128/mBio.00169-10.
Zhou J, Deng Y, Luo F, et al. Phylogenetic molecular ecological network of soil microbial communities in response to elevated CO2. MBio 2. 2011. https://doi.org/10.1128/mBio.00122-11.
Guimerà R, Nunes Amaral LA. Functional cartography of complex metabolic networks. Nature. 2005;433(7028):895–900. https://doi.org/10.1038/nature03288.
Article
CAS
PubMed
PubMed Central
Google Scholar