Segre JA. Epidermal barrier formation and recovery in skin disorders. J. Clin. Invest. 2006;116(5):1150–8 https://doi.org/10.1172/JCI28521.
Article
CAS
PubMed
PubMed Central
Google Scholar
Di Meglio P, Perera GK, Nestle FO. The multitasking organ: recent insights into skin immune function. Immunity. 2011;35(6):857–69 https://doi.org/10.1016/j.immuni.2011.12.003.
Article
PubMed
CAS
Google Scholar
Proksch E, Brandner JM, Jensen J-M. The skin: an indispensable barrier. Exp. Dermatol. 2008;17(12):1063–72 https://doi.org/10.1111/j.1600-0625.2008.00786.x.
Article
PubMed
Google Scholar
Grice EA, Segre JA. The Skin Microbiome. Nat. Rev. Microbiol. 2011;9(4):244–53 https://doi.org/10.1038/nrmicro2537.
Article
CAS
PubMed
PubMed Central
Google Scholar
Grice, E. A.; Kong, H. H.; Conlan, S.; Deming, C. B.; Davis, J.; Young, A. C.; NISC Comparative Sequencing Program; Bouffard, G. G.; Blakesley, R. W.; Murray, P. R.; Green, E. D.; Turner, M. L.; Segre, J. A. Topographical and temporal diversity of the human skin microbiome. Science 2009, 324 (5931), 1190–1192. https://doi.org/10.1126/science.1171700.
Grice EA, Kong HH, Renaud G, Young AC. NISC comparative sequencing program; Bouffard, G. G.; Blakesley, R. W.; Wolfsberg, T. G.; Turner, M. L.; Segre, J. A. A diversity profile of the human skin microbiota. Genome Res. 2008;18(7):1043–50 https://doi.org/10.1101/gr.075549.107.
Article
CAS
PubMed
PubMed Central
Google Scholar
Belkaid Y, Segre JA. Dialogue between skin microbiota and immunity. Science. 2014;346(6212):954–9 https://doi.org/10.1126/science.1260144.
Article
CAS
PubMed
Google Scholar
Scholz CFP, Kilian M. The natural history of cutaneous propionibacteria, and reclassification of selected species within the genus propionibacterium to the proposed novel genera Acidipropionibacterium Gen. Nov., Cutibacterium Gen. Nov. and Pseudopropionibacterium Gen. Nov. Int. J. Syst. Evol. Microbiol. 2016;66(11):4422–32 https://doi.org/10.1099/ijsem.0.001367.
Article
PubMed
CAS
Google Scholar
Gao Z, Tseng C, Pei Z, Blaser MJ. Molecular analysis of human forearm superficial skin bacterial biota. Proc. Natl. Acad. Sci. U. S. A. 2007;104(8):2927–32 https://doi.org/10.1073/pnas.0607077104.
Article
CAS
PubMed
PubMed Central
Google Scholar
Timm, C. M.; Loomis, Kristin H; Stone, W.; Mehoke, Thomas; Brensinger, Bryan; Pellicore, M. R.; Staniczenko, Philip; Charles, Curtisha; Nayak, S.; Karig, David. Isolation and characterization of diverse microbial representatives from the human skin microbiome. Microbiome 2020.
Marx V. Microbiology: The Return of Culture. Nat. Methods. 2017;14(1):37–40 https://doi.org/10.1038/nmeth.4107.
Article
CAS
Google Scholar
Marples, M. J. Ecology of the Human Skin; 1965. https://doi.org/10.2307/2701.
Google Scholar
Meisel JS, Hannigan GD, Tyldsley AS, SanMiguel AJ, Hodkinson BP, Zheng Q, Grice EA. Skin microbiome surveys are strongly influenced by experimental design. J. Invest. Dermatol. 2016;136(5):947–56 https://doi.org/10.1016/j.jid.2016.01.016.
Article
CAS
PubMed
PubMed Central
Google Scholar
Browne, P. D.; Nielsen, T. K.; Kot, W.; Aggerholm, A.; Gilbert, M. T. P.; Puetz, L.; Rasmussen, M.; Zervas, A.; Hansen, L. H. GC Bias affects genomic and metagenomic reconstructions, underrepresenting GC-poor organisms. GigaScience 2020, 9 (2). https://doi.org/10.1093/gigascience/giaa008.
Chen YE, Fischbach MA, Belkaid Y. Skin microbiota–host interactions. Nature. 2018;553(7689):427–36 https://doi.org/10.1038/nature25177.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lai Y, Nardo AD, Nakatsuji T, Leichtle A, Yang Y, Cogen AL, Wu Z-R, Hooper LV, Schmidt RR, von Aulock S, Radek KA, Huang C-M, Ryan AF, Gallo RL. Commensal bacteria regulate toll-like receptor 3–dependent inflammation after skin injury. Nat. Med. 2009;15(12):1377–82 https://doi.org/10.1038/nm.2062.
Article
CAS
PubMed
PubMed Central
Google Scholar
O’Neill AM, Gallo RL. Host-microbiome interactions and recent progress into understanding the biology of acne vulgaris. Microbiome. 2018;6(1):177 https://doi.org/10.1186/s40168-018-0558-5.
Article
PubMed
PubMed Central
Google Scholar
Sanford, J. A.; Zhang, L.-J.; Williams, M. R.; Gangoiti, J. A.; Huang, C.-M.; Gallo, R. L. Inhibition of HDAC8 and HDAC9 by microbial short-chain fatty acids breaks immune tolerance of the epidermis to TLR ligands. Sci. Immunol. 2016, 1 (4). https://doi.org/10.1126/sciimmunol.aah4609.
Wanke I, Steffen H, Christ C, Krismer B, Götz F, Peschel A, Schaller M, Schittek B. Skin commensals amplify the innate immune response to pathogens by activation of distinct signaling pathways. J. Invest. Dermatol. 2011;131(2):382–90 https://doi.org/10.1038/jid.2010.328.
Article
CAS
PubMed
Google Scholar
Ridaura VK, Bouladoux N, Claesen J, Chen YE, Byrd AL, Constantinides MG, Merrill ED, Tamoutounour S, Fischbach MA, Belkaid Y. Contextual control of skin immunity and inflammation by corynebacterium. J. Exp. Med. 2018;215(3):785–99 https://doi.org/10.1084/jem.20171079.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chang H-W, Yan D, Singh R, Liu J, Lu X, Ucmak D, Lee K, Afifi L, Fadrosh D, Leech J, Vasquez KS, Lowe MM, Rosenblum MD, Scharschmidt TC, Lynch SV, Liao W. Alteration of the cutaneous microbiome in psoriasis and potential role in Th17 polarization. Microbiome. 2018;6(1):154 https://doi.org/10.1186/s40168-018-0533-1.
Article
PubMed
PubMed Central
Google Scholar
Gao, Z.; Tseng, C.; Strober, B. E.; Pei, Z.; Blaser, M. J. Substantial alterations of the cutaneous bacterial biota in psoriatic lesions. PLoS ONE 2008, 3 (7). https://doi.org/10.1371/journal.pone.0002719.
Stehlikova Z, Kostovcik M, Kostovcikova K, Kverka M, Juzlova K, Rob F, Hercogova J, Bohac P, Pinto Y, Uzan A, Koren O, Tlaskalova-Hogenova H, Jiraskova Zakostelska Z. Dysbiosis of skin microbiota in psoriatic patients: co-occurrence of fungal and bacterial communities. Front. Microbiol. 2019;10 https://doi.org/10.3389/fmicb.2019.00438.
Kong HH, Oh J, Deming C, Conlan S, Grice EA, Beatson MA, Nomicos E, Polley EC, Komarow HD, Program NCS, Murray PR, Turner ML, Segre JA. Temporal shifts in the skin microbiome associated with disease flares and treatment in children with atopic dermatitis. Genome Res. 2012;22(5):850–9 https://doi.org/10.1101/gr.131029.111.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dekio I, Sakamoto M, Hayashi H, Amagai M, Suematsu M, Benno Y. Characterization of skin microbiota in patients with atopic dermatitis and in normal subjects using 16S RRNA gene-based comprehensive analysis. J. Med. Microbiol. 2007;56(12):1675–83 https://doi.org/10.1099/jmm.0.47268-0.
Article
CAS
PubMed
Google Scholar
Paller AS, Kong HH, Seed P, Naik S, Scharschmidt TC, Gallo RL, Luger T, Irvine AD. The microbiome in patients with atopic dermatitis. J. Allergy Clin. Immunol. 2019;143(1):26–35 https://doi.org/10.1016/j.jaci.2018.11.015.
Article
PubMed
Google Scholar
Rosenthal M, Goldberg D, Aiello A, Larson E, Foxman B. Skin microbiota: microbial community structure and its potential association with health and disease. Infect. Genet. Evol. 2011;11(5):839–48 https://doi.org/10.1016/j.meegid.2011.03.022.
Article
PubMed
PubMed Central
Google Scholar
Zeeuwen PLJM, Kleerebezem M, Timmerman HM, Schalkwijk J. Microbiome and skin diseases. Curr. Opin. Allergy Clin. Immunol. 2013;13(5):514–20 https://doi.org/10.1097/ACI.0b013e328364ebeb.
Article
CAS
PubMed
Google Scholar
Hooper LV, Wong MH, Thelin A, Hansson L, Falk PG, Gordon JI. Molecular analysis of commensal host-microbial relationships in the intestine. Science. 2001;291(5505):881–4 https://doi.org/10.1126/science.291.5505.881.
Article
CAS
PubMed
Google Scholar
Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature. 2006;444(7122):1027–31 https://doi.org/10.1038/nature05414.
Article
PubMed
Google Scholar
Bäckhed F, Ding H, Wang T, Hooper LV, Koh GY, Nagy A, Semenkovich CF, Gordon JI. The gut microbiota as an environmental factor that regulates fat storage. Proc. Natl. Acad. Sci. 2004;101(44):15718–23 https://doi.org/10.1073/pnas.0407076101.
Article
PubMed
CAS
PubMed Central
Google Scholar
Canesso, M. C. C.; Vieira, A. T.; Castro, T. B. R.; Schirmer, B. G. A.; Cisalpino, D.; Martins, F. S.; Rachid, M. A.; Nicoli, J. R.; Teixeira, M. M.; Barcelos, L. S. Skin wound healing is accelerated and scarless in the absence of commensal microbiota. J. Immunol. Baltim. Md 1950 2014, 193 (10), 5171–5180. https://doi.org/10.4049/jimmunol.1400625.
Meisel JS, Sfyroera G, Bartow-McKenney C, Gimblet C, Bugayev J, Horwinski J, Kim B, Brestoff JR, Tyldsley AS, Zheng Q, Hodkinson BP, Artis D, Grice EA. Commensal microbiota modulate gene expression in the skin. Microbiome. 2018;6 https://doi.org/10.1186/s40168-018-0404-9.
Ross AA, Müller KM, Weese JS, Neufeld JD. Comprehensive skin microbiome analysis reveals the uniqueness of human skin and evidence for phylosymbiosis within the class mammalia. Proc. Natl. Acad. Sci. 2018;115(25):E5786–95 https://doi.org/10.1073/pnas.1801302115.
Article
CAS
PubMed
PubMed Central
Google Scholar
Council, S. E.; Savage, A. M.; Urban, J. M.; Ehlers, M. E.; Skene, J. H. P.; Platt, M. L.; Dunn, R. R.; Horvath, J. E. Diversity and evolution of the primate skin microbiome. Proc. R. Soc. B Biol. Sci. 2016, 283 (1822), 20152586. https://doi.org/10.1098/rspb.2015.2586.
Corzo-León DE, Munro CA, MacCallum DM. An ex vivo human skin model to study superficial fungal infections. Front. Microbiol. 2019;10 https://doi.org/10.3389/fmicb.2019.01172.
Rademacher F, Simanski M, Gläser R, Harder J. Skin microbiota and human 3D skin models. Exp. Dermatol. 2018;27(5):489–94 https://doi.org/10.1111/exd.13517.
Article
PubMed
Google Scholar
Walter S, Rademacher F, Kobinger N, Simanski M, Gläser R, Harder J. RNase 7 participates in cutaneous innate control of corynebacterium amycolatum. Sci. Rep. 2017;7(1):1–7 https://doi.org/10.1038/s41598-017-14383-z.
Article
CAS
Google Scholar
Holland DB, Bojar RA, Jeremy AHT, Ingham E, Holland KT. Microbial colonization of an in vitro model of a tissue engineered human skin equivalent--a novel approach. FEMS Microbiol. Lett. 2008;279(1):110–5 https://doi.org/10.1111/j.1574-6968.2007.01021.x.
Article
CAS
PubMed
Google Scholar
Popov L, Kovalski J, Grandi G, Bagnoli F, Amieva MR. Three-dimensional human skin models to understand staphylococcus aureus skin colonization and infection. Front. Immunol. 2014;5 https://doi.org/10.3389/fimmu.2014.00041.
Lemoine L, Dieckmann R, Al Dahouk S, Vincze S, Luch A, Tralau T. Microbially competent 3D Skin: a test system that reveals insight into host–microbe interactions and their potential toxicological impact. Arch. Toxicol. 2020; https://doi.org/10.1007/s00204-020-02841-z.
Timm CM, Loomis K, Stone W, Mehoke T, Brensinger B, Pellicore M, Staniczenko PPA, Charles C, Nayak S, Karig DK. Isolation and characterization of diverse microbial representatives from the human skin microbiome. Microbiome. 2020;8(1):58 https://doi.org/10.1186/s40168-020-00831-y.
Article
PubMed
PubMed Central
Google Scholar
Pruesse E, Peplies J, Glöckner FO. SINA: Accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics. 2012;28(14):1823–9 https://doi.org/10.1093/bioinformatics/bts252.
Article
CAS
PubMed
PubMed Central
Google Scholar
Malone CL, Boles BR, Lauderdale KJ, Thoendel M, Kavanaugh JS, Horswill AR. Fluorescent reporters for Staphylococcus Aureus. J. Microbiol. Methods. 2009;77(3):251–60 https://doi.org/10.1016/j.mimet.2009.02.011.
Article
CAS
PubMed
PubMed Central
Google Scholar
Moll, P.; Ante, M.; Seitz, A.; Reda, T. QuantSeq 3′ MRNA Sequencing for RNA Quantification. Nat. Methods 2014, 11 (12), i–iii. https://doi.org/10.1038/nmeth.f.376.
Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for illumina sequence data. Bioinformatics. 2014;30(15):2114–20 https://doi.org/10.1093/bioinformatics/btu170.
Article
CAS
PubMed
PubMed Central
Google Scholar
Patro R, Duggal G, Love MI, Irizarry RA, Kingsford C. Salmon: fast and bias-aware quantification of transcript expression using dual-phase inference. Nat. Methods. 2017;14(4):417–9 https://doi.org/10.1038/nmeth.4197.
Article
CAS
PubMed
PubMed Central
Google Scholar
Soneson, C.; Love, M. I.; Robinson, M. D. Differential analyses for RNA-Seq: transcript-level estimates improve gene-level inferences. F1000Research 2015, 4, 1521. https://doi.org/10.12688/f1000research.7563.1.
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-Seq data with DESeq2. Genome Biol. 2014;15(12):550 https://doi.org/10.1186/s13059-014-0550-8.
Article
PubMed
PubMed Central
CAS
Google Scholar
Pimentel H, Bray NL, Puente S, Melsted P, Pachter L. Differential analysis of RNA-Seq incorporating quantification uncertainty. Nat. Methods. 2017;14(7):687–90 https://doi.org/10.1038/nmeth.4324.
Article
CAS
PubMed
Google Scholar
Koch CM, Chiu SF, Akbarpour M, Bharat A, Ridge KM, Bartom ET, Winter DR. A Beginner’s guide to analysis of RNA sequencing data. Am. J. Respir. Cell Mol. Biol. 2018;59(2):145–57 https://doi.org/10.1165/rcmb.2017-0430TR.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wood DE, Lu J, Langmead B. Improved Metagenomic Analysis with Kraken 2. Genome Biol. 2019;20(1):257 https://doi.org/10.1186/s13059-019-1891-0.
Article
CAS
PubMed
PubMed Central
Google Scholar
Micallef, L.; Rodgers, P. EulerAPE: drawing area-proportional 3-Venn diagrams using ellipses. PLoS ONE 2014, 9 (7). https://doi.org/10.1371/journal.pone.0101717.
Mi H, Muruganujan A, Huang X, Ebert D, Mills C, Guo X, Thomas PD. Protocol update for large-scale genome and gene function analysis with the PANTHER classification system (v.14.0). Nat Protoc. 2019;14(3):703–21 https://doi.org/10.1038/s41596-019-0128-8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G. Gene Ontology: tool for the unification of biology. Nat. Genet. 2000;25(1):25–9 https://doi.org/10.1038/75556.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mi H, Muruganujan A, Ebert D, Huang X, Thomas PD. PANTHER Version 14: More genomes, a new PANTHER GO-slim and improvements in enrichment analysis tools. Nucleic Acids Res. 2019;47(D1):D419–26 https://doi.org/10.1093/nar/gky1038.
Article
CAS
PubMed
Google Scholar
Supek F, Bošnjak M, Škunca N, Šmuc T. REVIGO Summarizes and Visualizes Long Lists of Gene Ontology Terms. PLOS ONE. 2011;6(7):e21800 https://doi.org/10.1371/journal.pone.0021800.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 Years of Image Analysis. Nat. Methods. 2012;9(7):671–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li X, Wang S, Wang H, Gupta D. Differential expression of peptidoglycan recognition protein 2 in the skin and liver requires different transcription factors. J. Biol. Chem. 2006;281(30):20738–48 https://doi.org/10.1074/jbc.M601017200.
Article
CAS
PubMed
Google Scholar
Wang H, Gupta D, Li X, Dziarski R. Peptidoglycan recognition protein 2 (N-Acetylmuramoyl-l-Ala Amidase) is induced in keratinocytes by bacteria through the P38 kinase pathway. Infect. Immun. 2005;73(11):7216–25 https://doi.org/10.1128/IAI.73.11.7216-7225.2005.
Article
CAS
PubMed
PubMed Central
Google Scholar
Boccitto M, Wolin SL. Ro60 and Y RNAs: structure, functions, and roles in autoimmunity. Crit. Rev. Biochem. Mol. Biol. 2019;54(2):133–52 https://doi.org/10.1080/10409238.2019.1608902.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chakrabortty, S. K.; Prakash, A.; Nechooshtan, G.; Hearn, S.; Gingeras, T. R. Extracellular vesicle-mediated transfer of processed and functional RNY5 RNA. RNA 2015, 21 (11), 1966–1979. https://doi.org/10.1261/rna.053629.115.
van Balkom, B. W. M.; Eisele, A. S.; Pegtel, D. M.; Bervoets, S.; Verhaar, M. C. Quantitative and qualitative analysis of small RNAs in human endothelial cells and exosomes provides insights into localized RNA processing, degradation and sorting. J. Extracell. Vesicles 2015, 4. https://doi.org/10.3402/jev.v4.26760.
Holland DB, Bojar RA, Farrar MD, Holland KT. Differential innate immune responses of a living skin equivalent model colonized by Staphylococcus Epidermidis or Staphylococcus Aureus. FEMS Microbiol. Lett. 2009;290(2):149–55 https://doi.org/10.1111/j.1574-6968.2008.01402.x.
Article
CAS
PubMed
Google Scholar
Werner S, Smola H. Paracrine regulation of keratinocyte proliferation and differentiation. Trends Cell Biol. 2001;11(4):143–6 https://doi.org/10.1016/S0962-8924(01)01955-9.
Article
CAS
PubMed
Google Scholar
Randall MJ, Jüngel A, Rimann M, Wuertz-Kozak K. Advances in the biofabrication of 3D skin in vitro: healthy and pathological models. Front. Bioeng. Biotechnol. 2018;6 https://doi.org/10.3389/fbioe.2018.00154.
Niehues H, Bouwstra JA, El Ghalbzouri A, Brandner JM, Zeeuwen PLJM, van den Bogaard EH. 3D skin models for 3R research: the potential of 3D reconstructed skin models to study skin barrier function. Exp. Dermatol. 2018;27(5):501–11 https://doi.org/10.1111/exd.13531.
Article
PubMed
Google Scholar
Bogaard, E. van den; Ilic, D.; Dubrac, S.; Tomic-Canic, M.; Bouwstra, J.; Celli, A.; Mauro, T. Perspective and consensus opinion: good practices for using organotypic skin and epidermal equivalents in experimental dermatology research. J. Invest. Dermatol. 2020, 0 (0). https://doi.org/10.1016/j.jid.2020.04.023.
Ying S, Zeng D-N, Chi L, Tan Y, Galzote C, Cardona C, Lax S, Gilbert J, Quan Z-X. The influence of age and gender on skin-associated microbial communities in urban and rural human populations. PLOS ONE. 2015;10(10):e0141842 https://doi.org/10.1371/journal.pone.0141842.
Article
PubMed
PubMed Central
CAS
Google Scholar
Farage MA, Miller KW, Elsner P, Maibach HI. Characteristics of the aging skin. Adv. Wound Care. 2013;2(1):5–10 https://doi.org/10.1089/wound.2011.0356.
Article
Google Scholar
Fleischer JG, Schulte R, Tsai HH, Tyagi S, Ibarra A, Shokhirev MN, Huang L, Hetzer MW, Navlakha S. Predicting age from the transcriptome of human dermal fibroblasts. Genome Biol. 2018;19(1):221 https://doi.org/10.1186/s13059-018-1599-6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Solé-Boldo L, Raddatz G, Schütz S, Mallm J-P, Rippe K, Lonsdorf AS, Rodríguez-Paredes M, Lyko F. Single-cell transcriptomes of the human skin reveal age-related loss of fibroblast priming. Commun. Biol. 2020;3(1):1–12 https://doi.org/10.1038/s42003-020-0922-4.
Article
CAS
Google Scholar
Girardeau-Hubert S, Deneuville C, Pageon H, Abed K, Tacheau C, Cavusoglu N, Donovan M, Bernard D, Asselineau D. Reconstructed skin models revealed unexpected differences in epidermal African and Caucasian Skin. Sci. Rep. 2019;9(1):7456 https://doi.org/10.1038/s41598-019-43128-3.
Article
PubMed
PubMed Central
CAS
Google Scholar