Cole JJ, Prairie YT, Caraco NF, McDowell WH, Tranvik LJ, Striegl RG, et al. Plumbing the global carbon cycle: integrating inland waters into the terrestrial carbon budget. Ecosystems. 2007;10:172–85..
Google Scholar
Xenopoulos MA, Downing JA, Kumar MD, Menden-Deuer S, Voss M. Headwaters to oceans: ecological and biogeochemical contrasts across the aquatic continuum: headwaters to oceans. Limnol Oceanogr. 2017;62:S3–S14.
CAS
Google Scholar
Guenet B, Danger M, Abbadie L, Lacroix G. Primming effect: bridging the gap between terrestrial and aquatic ecology. Ecology. 2010;91:2850–61.
Google Scholar
Bianchi TS. The role of terrestrially derived organic carbon in the coastal ocean: a changing paradigm and the priming effect. Proc Natl Acad Sci U S A. 2011;108:19473–81.
CAS
Google Scholar
Mende DR, Bryant JA, Aylward FO, Eppley JM, Nielsen T, Karl DM, et al. Environmental drivers of a microbial genomic transition zone in the ocean’s interior. Nat Microbiol. 2017;2:1367–73.
CAS
Google Scholar
Carradec Q, Pelletier E, Da Silva C, Alberti A, Seeleuthner Y, Blanc-Mathieu R, et al. A global ocean atlas of eukaryotic genes. Nat Commun. 2018;9:373.
Google Scholar
Sunagawa S, Coelho LP, Chaffron S, Kultima JR, Labadie K, Salazar G, et al. Structure and function of the global ocean microbiome. Science. 2015;348:1261359.
Google Scholar
Bahram M, Hildebrand F, Forslund SK, Anderson JL, Soudzilovskaia NA, Bodegom PM, et al. Structure and function of the global topsoil microbiome. Nature. 2018;560:233–7.
CAS
Google Scholar
Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature. 2010;464:59–65.
CAS
Google Scholar
Pan H, Guo R, Zhu J, Wang Q, Ju Y, Xie Y, et al. A gene catalogue of the Sprague-Dawley rat gut metagenome. GigaScience. 2018;7.
Salazar G, Paoli L, Alberti A, Huerta-Cepas J, Ruscheweyh H-J, Cuenca M, et al. Gene expression changes and community turnover differentially shape the global ocean metatranscriptome. Cell. 2019;179:1068-1083.e21.
Santos-Júnior CD, Kishi LT, Toyama D, Soares-Costa A, Oliveira TCS, de Miranda FP, et al. Metagenome sequencing of prokaryotic microbiota collected from rivers in the upper Amazon basin. Genome Announc. 2017;5:e01450–16.
Google Scholar
Toyama D, Kishi LT, Santos-Júnior CD, Soares-Costa A, Souza De Oliveira TC, Pellon De Miranda F, et al. Metagenomics analysis of microorganisms in freshwater lakes of the Amazon basin. Genome Announc. 2016;4:1440–16.
Google Scholar
Ghai R, Rodriguez-Valera F, McMahon KD, Toyama D, Rinke R, de Oliveira TCS, et al. Metagenomics of the water column in the pristine upper course of the Amazon river. Lopez-Garcia P, editor. PLoS ONE. 2011;6:e23785.
Santos-Junior CD, Toyama D, TCS O, Pellon De Miranda F, Henrique-Silva F. Flood season microbiota from the Amazon basin lakes: analysis with metagenome sequencing. Microbiol Resour Announc. 2019;8:e00229–19.
Google Scholar
Satinsky BM, Smith CB, Sharma S, Ward ND, Krusche AV, Richey JE, et al. Patterns of bacterial and archaeal gene expression through the lower Amazon river. Front Mar Sci. 2017;4:253.
Google Scholar
Satinsky BM, Smith CB, Sharma S, Landa M, Medeiros PM, Coles VJ, et al. Expression patterns of elemental cycling genes in the Amazon River plume. ISME J. 2017;11:1852–64.
CAS
Google Scholar
Satinsky BM, Zielinski BL, Doherty M, Smith CB, Sharma S, Paul JH, et al. The Amazon continuum dataset: quantitative metagenomic and metatranscriptomic inventories of the Amazon River plume, June 2010. Microbiome. 2014;2:17.
Google Scholar
Field B, Randerson F. Primary production of the biosphere: integrating terrestrial and oceanic components. Science. 1998;281:237–40.
CAS
Google Scholar
Malhi Y, Roberts JT, Betts RA, Killeen TJ, Li W, Nobre CA. Climate change, deforestation, and the fate of the Amazon. Science. 2008;319:169–72.
CAS
Google Scholar
Mikhailov VN. Water and sediment runoff at the Amazon River mouth. Water Resour. 2010;37:145–59.
CAS
Google Scholar
Subramaniam A, Yager PL, Carpenter EJ, Mahaffey C, Björkman K, Cooley S, et al. Amazon River enhances diazotrophy and carbon sequestration in the tropical North Atlantic Ocean. Proc Natl Acad Sci U S A. 2008;105:10460–5.
CAS
Google Scholar
Sioli H. The Amazon and its main affluents: hydrography, morphology of the river courses, and river types. Amaz Limnol Landsc Ecol Mighty Trop River Its Basin. Dordrecht: Springer Netherlands: Sioli, H.; 1984. p. 127–165.
Wissmar RC, Richey JE, Stallard RF, Edmond JM. Plankton metabolism and carbon processes in the Amazon River, its tributaries, and floodplain waters, Peru-Brazil, May-June 1977. Ecology. 1981;62:1622–33.
CAS
Google Scholar
Mayorga E, Aufdenkampe AK, Masiello CA, Krusche AV, Hedges JI, Quay PD, et al. Young organic matter as a source of carbon dioxide outgassing from Amazonian rivers. Nature. 2005;436:538.
CAS
Google Scholar
Richey JE, Melack JM, Aufdenkampe AK, Ballester VM, Hess LL. Outgassing from Amazonian rivers and wetlands as a large tropical source of atmospheric CO2. Nature. 2002;416:617–20.
CAS
Google Scholar
Ward ND, Keil RG, Medeiros PM, Brito DC, Cunha AC, Dittmar T, et al. Degradation of terrestrially derived macromolecules in the Amazon River. Nat Geosci. 2013;6:530–3.
CAS
Google Scholar
Ward ND, Bianchi TS, Sawakuchi HO, Gagne-Maynard W, Cunha AC, Brito DC, et al. The reactivity of plant-derived organic matter and the potential importance of priming effects along the lower Amazon River. J Geophys Res Biogeosciences. 2016;121:1522–39.
CAS
Google Scholar
Ertel JR, Hedges JI, Devol AH, Richey JE, Ribeiro M de NG. Dissolved humic substances of the Amazon River system. Limnol Oceanogr. 1986;31:739–54.
Seidel M, Dittmar T, Ward ND, Krusche AV, Richey JE, Yager PL, et al. Seasonal and spatial variability of dissolved organic matter composition in the lower Amazon River. Biogeochemistry. 2016;131:281–302.
CAS
Google Scholar
Gagne-Maynard WC, Ward ND, Keil RG, Sawakuchi HO, Da Cunha AC, Neu V, et al. Evaluation of primary production in the lower Amazon River based on a dissolved oxygen stable isotopic mass balance. Front Mar Sci. 2017;4:26.
Google Scholar
Satinsky BM, Crump BC, Smith CB, Sharma S, Zielinski BL, Doherty M, et al. Microspatial gene expression patterns in the Amazon River plume. Proc Natl Acad Sci U S A. 2014;111:11085–90.
CAS
Google Scholar
Cragg SM, Beckham GT, Bruce NC, Bugg TD, Distel DL, Dupree P, et al. Lignocellulose degradation mechanisms across the Tree of Life. Curr Opin Chem Biol. 2015;29:108–19.
CAS
Google Scholar
Wilhelm RC, Singh R, Eltis LD, Mohn WW. Bacterial contributions to delignification and lignocellulose degradation in forest soils with metagenomic and quantitative stable isotope probing. ISME J. 2019;13:413–29.
CAS
Google Scholar
Kögel-Knabner I. The macromolecular organic composition of plant and microbial residues as inputs to soil organic matter. Soil Biol Biochem. 2002;34:139–62.
Google Scholar
Bugg TDH, Ahmad M, Hardiman EM, Rahmanpour R. Pathways for degradation of lignin in bacteria and fungi. Nat Prod Rep. 2011;28:1883–96.
CAS
Google Scholar
Janusz G, Pawlik A, Sulej J, Świderska-Burek U, Jarosz-Wilkołazka A, Paszczyński A. Lignin degradation: microorganisms, enzymes involved, genomes analysis and evolution. FEMS Microbiol Rev. 2017;41:941–62.
CAS
Google Scholar
Wantzen KM, Yule CM, Mathooko JM, Pringle CM. 3 - organic matter processing in tropical streams. In: Dudgeon D, editor. Trop Stream Ecol [Internet]. London: Academic Press; 2008 [cited 2020 Feb 26]. p. 43–64. Available from: http://www.sciencedirect.com/science/article/pii/B9780120884490500054.
Benner R, Moran MA, Hodson RE. Biogeochemical cycling of lignocellulosic carbon in marine and freshwater ecosystems: Relative contributions of procaryotes and eucaryotes1. Limnol Oceanogr. 1986;31:89–100.
Google Scholar
Benner R, Opsahl S, Chin-Leo G, Richey JE, Forsberg BR. Bacterial carbon metabolism in the Amazon River system. Limnol Oceanogr. 1995;40:1262–70.
Google Scholar
Hernes PJ, Benner R. Photochemical and microbial degradation of dissolved lignin phenols: implications for the fate of terrigenous dissolved organic matter in marine environments. J Geophys Res Oceans. 2003;108:3291.
Google Scholar
Parks DH, Chuvochina M, Chaumeil P-A, Rinke C, Mussig AJ, Hugenholtz P. A complete domain-to-species taxonomy for Bacteria and Archaea. Nat Biotechnol. Nature Publishing Group. 2020:1–8.
Tessler M, Brugler MR, DeSalle R, Hersch R, Velho LFM, Segovia BT, et al. A global eDNA comparison of freshwater bacterioplankton assemblages focusing on large-river floodplain lakes of Brazil. Microb Ecol. 2017;73:61–74.
CAS
Google Scholar
Staley C, Gould TJ, Wang P, Phillips J, Cotner JB, Sadowsky MJ. Core functional traits of bacterial communities in the Upper Mississippi River show limited variation in response to land cover. Front Microbiol. 2014;5:414.
Google Scholar
Kamimura N, Takahashi K, Mori K, Araki T, Fujita M, Higuchi Y, et al. Bacterial catabolism of lignin-derived aromatics: New findings in a recent decade: update on bacterial lignin catabolism. Environ Microbiol Rep. 2017;9:679–705.
CAS
Google Scholar
Poretsky RS, Sun S, Mou X, Moran MA. Transporter genes expressed by coastal bacterioplankton in response to dissolved organic carbon. Environ Microbiol. 2010;12:616–27.
CAS
Google Scholar
Rosa LT, Dix SR, Rafferty JB, Kelly DJ. Structural basis for high-affinity adipate binding to AdpC (RPA4515), an orphan periplasmic-binding protein from the tripartite tricarboxylate transporter (TTT) family in Rhodopseudomonas palustris. FEBS J. 2017;284:4262–77.
CAS
Google Scholar
Hosaka M, Kamimura N, Toribami S, Mori K, Kasai D, Fukuda M, et al. Novel tripartite aromatic acid transporter essential for terephthalate uptake in Comamonas sp. strain E6. Appl Environ Microbiol. 2013;79:6148–55.
CAS
Google Scholar
Newton RJ, Jones SE, Eiler A, McMahon KD, Bertilsson S. A guide to the natural history of freshwater lake bacteria. Microbiol Mol Biol Rev MMBR. 2011;75:14–49.
CAS
Google Scholar
Hutalle-Schmelzer KML, Zwirnmann E, Krüger A, Grossart H-P. Enrichment and cultivation of pelagic bacteria from a humic lake using phenol and humic matter additions. FEMS Microbiol Ecol. 2010;72:58–73.
CAS
Google Scholar
Logares R, Brate J, Bertilsson S, Clasen JL, Shalchian-Tabrizi K, Rengefors K. Infrequent marine–freshwater transitions in the microbial world. Trends Microbiol. 2009;17:414–22.
CAS
Google Scholar
Herlemann DPR, Manecki M, Meeske C, Pollehne F, Labrenz M, Schulz-Bull D, et al. Uncoupling of bacterial and terrigenous dissolved organic matter dynamics in decomposition experiments. PLOS ONE. Public Library of Science; 2014;9:e93945.
Sipler RE, Kellogg CTE, Connelly TL, Roberts QN, Yager PL, Bronk DA. Microbial community response to terrestrially derived dissolved organic matter in the coastal arctic. Front Microbiol. 2017;8:1018.
Google Scholar
Qin L, Li W-C, Liu L, Zhu J-Q, Li X, Li B-Z, et al. Inhibition of lignin-derived phenolic compounds to cellulase. Biotechnol Biofuels. 2016;9:70.
Google Scholar
Monlau F, Sambusiti C, Barakat A, Quemeneur M, Trably E, Steyer JP, et al. Do furanic and phenolic compounds of lignocellulosic and algae biomass hydrolyzate inhibit anaerobic mixed cultures? A comprehensive review. Biotechnol Adv. 2014;32:934–51.
CAS
Google Scholar
Xue S, Jones AD, Sousa L, Piotrowski J, Jin M, Sarks C, et al. Water-soluble phenolic compounds produced from extractive ammonia pretreatment exerted binary inhibitory effects on yeast fermentation using synthetic hydrolysate. PLOS ONE. 2018;13:e0194012.
Google Scholar
Aston JE, Apel WA, Lee BD, Thompson DN, Lacey JA, Newby DT, et al. Degradation of phenolic compounds by the lignocellulose deconstructing thermoacidophilic bacterium Alicyclobacillus Acidocaldarius. J Ind Microbiol Biotechnol. 2016;43:13–23.
CAS
Google Scholar
Farjalla VF. Are the mixing zones between aquatic ecosystems hot spots of bacterial production in the Amazon River system? Hydrobiologia. 2014;728:153–65.
CAS
Google Scholar
Laraque A, Guyot JL, Filizola N. Mixing processes in the Amazon River at the confluences of the Negro and Solimões Rivers, Encontro das Águas, Manaus. Brazil. Hydrol Process. 2009;23:3131–40.
CAS
Google Scholar
Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.journal. 2011;17:10.
Google Scholar
Andrews S. Babraham Bioinformatics - FastQC a quality control tool for high throughput sequence data [Internet]. 2017 [cited 2017 Nov 8]. Available from: https://www.bioinformatics.babraham.ac.uk/projects/fastqc/.
Li D, Luo R, Liu CM, Leung CM, Ting HF, Sadakane K, et al. MEGAHIT v1.0: a fast and scalable metagenome assembler driven by advanced methodologies and community practices. 2016;102:3–11.
Vollmers J, Wiegand S, Kaster A-K. Comparing and evaluating metagenome assembly tools from a microbiologist’s perspective - not only size matters! Rodriguez-Valera F, editor. PLOS ONE. 2017;12:e0169662.
Google Scholar
Gurevich A, Saveliev V, Vyahhi N, Tesler G. QUAST: Quality assessment tool for genome assemblies. Bioinformatics. 2013;29:1072–5.
CAS
Google Scholar
Staley C, Gould TJ, Wang P, Phillips J, Cotner JB, Sadowsky MJ. Bacterial community structure is indicative of chemical inputs in the Upper Mississippi River. Front Microbiol. 2014;5:524.
Google Scholar
Van Rossum T, Peabody MA, Uyaguari-Diaz MI, Cronin KI, Chan M, Slobodan JR, et al. Year-long metagenomic study of river microbiomes across land use and water quality. Front Microbiol. 2015;6:1405.
Google Scholar
Meyer KM, Klein AM, Rodrigues JLM, Nüsslein K, Tringe SG, Mirza BS, et al. Conversion of Amazon rainforest to agriculture alters community traits of methane-cycling organisms. Mol Ecol. 2017;26:1547–56.
CAS
Google Scholar
Benoit G, Peterlongo P, Mariadassou M, Drezen E, Schbath S, Lavenier D, et al. Multiple comparative metagenomics using multiset k-mer counting. PeerJ Comput Sci. 2016;2:e94.
Google Scholar
Dixon P. VEGAN, a package of R functions for community ecology. J Veg Sci. 2003;14:927–30.
Google Scholar
Hyatt D, Chen G-L, LoCascio PF, Land ML, Larimer FW, Hauser LJ. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics. 2010;11:119.
Google Scholar
Fu L, Niu B, Zhu Z, Wu S, Li W. CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics. 2012;28:3150–2.
CAS
Google Scholar
Li W, Godzik A. Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics. 2006;22:1658–9.
CAS
Google Scholar
Rice P, Longden I, Bleasby A. EMBOSS: the European Molecular Biology Open Software Suite. Trends Genet TIG. 2000;16:276–7.
CAS
Google Scholar
Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. 2009;25:1754–60.
CAS
Google Scholar
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics. 2009;25:2078–9.
Google Scholar
Roberts A, Pachter L. Streaming fragment assignment for real-time analysis of sequencing experiments. Nat Methods. 2012;10:71–3.
Google Scholar
Kanehisa M, Goto S, Sato Y, Furumichi M, Tanabe M. KEGG for integration and interpretation of large-scale molecular data sets. Nucleic Acids Res. 2012;40:D109–14.
CAS
Google Scholar
Tatusov RL, Fedorova ND, Jackson JD, Jacobs AR, Kiryutin B, Koonin EV, et al. The COG database: an updated version includes eukaryotes. BMC Bioinformatics. 2003;4:41.
Google Scholar
Sun S, Chen J, Li W, Altintas I, Lin A, Peltier S, et al. Community cyberinfrastructure for Advanced Microbial Ecology Research and Analysis: the CAMERA resource. Nucleic Acids Res. 2011;39:D546–51.
CAS
Google Scholar
UniProt Consortium. UniProt: a hub for protein information. Nucleic Acids Res. 2015;43:D204–12.
Google Scholar
Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using DIAMOND. Nat Methods. 2014;12:59–60.
Google Scholar
Kanehisa M, Furumichi M, Tanabe M, Sato Y, Morishima K. KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res. 2017;45:D353–61.
CAS
Google Scholar
Eddy SR. Accelerated Profile HMM Searches. Pearson WR, editor. PLoS Comput Biol. 2011;7:e1002195.
Yin Y, Mao X, Yang J, Chen X, Mao F, Xu Y. dbCAN: a web resource for automated carbohydrate-active enzyme annotation. Nucleic Acids Res. 2012;40:W445–51.
CAS
Google Scholar
Finn RD, Coggill P, Eberhardt RY, Eddy SR, Mistry J, Mitchell AL, et al. The Pfam protein families database: towards a more sustainable future. Nucleic Acids Res. 2016;44:D279–85.
CAS
Google Scholar
Huerta-Cepas J, Szklarczyk D, Forslund K, Cook H, Heller D, Walter MC, et al. eggNOG 4.5: a hierarchical orthology framework with improved functional annotations for eukaryotic, prokaryotic and viral sequences. Nucleic Acids Res. 2016;44:D286–93.
CAS
Google Scholar
Kanehisa M, Sato Y. KEGG Mapper for inferring cellular functions from protein sequences. Protein Sci Publ Protein Soc. 2020;29:28–35.
CAS
Google Scholar
Ye Y, Doak TG. A parsimony approach to biological pathway reconstruction/inference for genomes and metagenomes. Ouzounis CA, editor. PLoS Comput Biol. 2009;5:e1000465.
Steinegger M, Söding J. MMseqs2 enables sensitive protein sequence searching for the analysis of massive data sets. Nat Biotechnol. Nature Publishing Group. 2017;35:1026–8.
CAS
Google Scholar
Brumm PJ. Bacterial genomes: what they teach us about cellulose degradation. Biofuels. 2013;4:669–81.
CAS
Google Scholar
López-Mondéjar R, Zühlke D, Becher D, Riedel K, Baldrian P. Cellulose and hemicellulose decomposition by forest soil bacteria proceeds by the action of structurally variable enzymatic systems. Sci Rep. 2016;6.
Yu NY, Wagner JR, Laird MR, Melli G, Rey S, Lo R, et al. PSORTb 3.0: improved protein subcellular localization prediction with refined localization subcategories and predictive capabilities for all prokaryotes. Bioinformatics. 2010;26:1608–15.
CAS
Google Scholar
Wei T, Simko V. R package “corrplot”: Visualization of a Correlation Matrix [Internet]; 2017 [cited 2017 Nov 7]. Available from: https://github.com/taiyun/corrplot.
Neuwirth E. CRAN - Package ColorBrewer Palettes [Internet]. Comprehensive R Archive Network (CRAN); 2014 [cited 2017 Nov 7]. Available from: https://cran.r-project.org/web/packages/RColorBrewer/index.html.
Douglas Nychka, Reinhard Furrer, John Paige, Stephan Sain. fields: Tools for spatial data [Internet]. Boulder, CO, USA: University Corporation for Atmospheric Research; 2017 [cited 2017 Nov 7]. Available from: www.image.ucar.edu/ nychka/Fields.