Awany D, Allali I, Dalvie S, Hemmings S, Mwaikono KS, Thomford NE, et al. Host and microbiome genome-wide association studies: current state and challenges. Front Genet. 2019;9:637. https://doi.org/10.3389/fgene.2018.00637.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bull MJ, Plummer NT. Part 1: The human gut microbiome in health and disease. Integr Med (Encinitas, Calif). 2014;13(6):17–22.
Google Scholar
Lynch JB, Hsiao EY. Microbiomes as sources of emergent host phenotypes. Science. 2019;365(6460):1405–9. https://doi.org/10.1126/science.aay0240.
Article
CAS
PubMed
Google Scholar
Allegretti JR, Mullish BH, Kelly C, Fischer M. The evolution of the use of faecal microbiota transplantation and emerging therapeutic indications. Lancet. 2019;394(10196):420–31. https://doi.org/10.1016/S0140-6736(19)31266-8.
Article
CAS
PubMed
Google Scholar
Wong SH, Yu J. Gut microbiota in colorectal cancer: mechanisms of action and clinical applications. Nat Rev Gastroenterol Hepatol. 2019. https://doi.org/10.1038/s41575-019-0209-8.
Davies NM, Holmes MV, Davey SG. Reading Mendelian randomisation studies: a guide, glossary, and checklist for clinicians. BMJ. 2018;362:k601. https://doi.org/10.1136/bmj.k601.
Article
PubMed
PubMed Central
Google Scholar
Turpin W, Espin-Garcia O, Xu W, Silverberg MS, Kevans D, Smith MI, et al. Association of host genome with intestinal microbial composition in a large healthy cohort. Nat Genet. 2016;48(11):1413–7. https://doi.org/10.1038/ng.3693.
Article
CAS
PubMed
Google Scholar
Wang J, Thingholm LB, Skieceviciene J, Rausch P, Kummen M, Hov JR, et al. Genome-wide association analysis identifies variation in vitamin D receptor and other host factors influencing the gut microbiota. Nat Genet. 2016;48(11):1396–406. https://doi.org/10.1038/ng.3695.
Article
CAS
PubMed
PubMed Central
Google Scholar
Goodrich JK, Waters JL, Poole AC, Sutter JL, Koren O, Blekhman R, et al. Human genetics shape the gut microbiome. Cell. 2014;159(4):789–99. https://doi.org/10.1016/j.cell.2014.09.053.
Article
CAS
PubMed
PubMed Central
Google Scholar
Goodrich JK, Davenport ER, Beaumont M, Jackson MA, Knight R, Ober C, et al. Genetic determinants of the gut microbiome in UK Twins. Cell Host Microbe. 2016;19(5):731–43. https://doi.org/10.1016/j.chom.2016.04.017.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ganesan K, Chung SK, Vanamala J, Xu B. Causal relationship between diet-induced gut microbiota changes and diabetes: a novel strategy to transplant Faecalibacterium prausnitzii in preventing diabetes. Int J Mol Sci. 2018;19(12). https://doi.org/10.3390/ijms19123720.
He Y, Wu W, Zheng HM, Li P, McDonald D, Sheng HF, et al. Regional variation limits applications of healthy gut microbiome reference ranges and disease models. Nat Med. 2018;24(10):1532–5. https://doi.org/10.1038/s41591-018-0164-x.
Article
CAS
PubMed
Google Scholar
Rothschild D, Weissbrod O, Barkan E, Kurilshikov A, Korem T, Zeevi D, et al. Environment dominates over host genetics in shaping human gut microbiota. Nature. 2018;555(7695):210–5. https://doi.org/10.1038/nature25973.
Article
CAS
PubMed
Google Scholar
Duvallet C, Gibbons SM, Gurry T, Irizarry RA, Alm EJ. Meta-analysis of gut microbiome studies identifies disease-specific and shared responses. Nat Commun. 2017;8(1):1784. https://doi.org/10.1038/s41467-017-01973-8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cheng S, Han B, Ding M, Wen Y, Ma M, Zhang L, et al. Identifying psychiatric disorder-associated gut microbiota using microbiota-related gene set enrichment analysis. Brief Bioinform. 2019. https://doi.org/10.1093/bib/bbz034.
Jackson MA, Verdi S, Maxan M-E, Shin CM, Zierer J, Bowyer RCE, et al. Gut microbiota associations with common diseases and prescription medications in a population-based cohort. Nat Commun. 2018;9(1):2655. https://doi.org/10.1038/s41467-018-05184-7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cao Y, Wang C, Guan K, Xu Y, Su Y-X, Chen YM. Association of magnesium in serum and urine with carotid intima-media thickness and serum lipids in middle-aged and elderly Chinese: a community-based cross-sectional study. Eur J Nutr. 2015;55. https://doi.org/10.1007/s00394-015-0839-8.
Sun L-L, Li B-L, Xie H-L, Fan F, Yu W-Z, Wu B-H, et al. Associations between the dietary intake of antioxidant nutrients and the risk of hip fracture in elderly Chinese: A case-control study. Bri J Nutr. 2014;112:1–9. https://doi.org/10.1017/S0007114514002773.
Article
CAS
Google Scholar
Low SK, Takahashi A, Ebana Y, Ozaki K, Christophersen IE, Ellinor PT, et al. Identification of six new genetic loci associated with atrial fibrillation in the Japanese population. Nat Genet. 2017;49(6):953–8. https://doi.org/10.1038/ng.3842.
Article
CAS
PubMed
Google Scholar
Suzuki K, Akiyama M, Ishigaki K, Kanai M, Hosoe J, Shojima N, et al. Identification of 28 new susceptibility loci for type 2 diabetes in the Japanese population. Nat Genet. 2019;51(3):379–86. https://doi.org/10.1038/s41588-018-0332-4.
Article
CAS
PubMed
Google Scholar
Akiyama M, Okada Y, Kanai M, Takahashi A, Momozawa Y, Ikeda M, et al. Genome-wide association study identifies 112 new loci for body mass index in the Japanese population. Nat Genet. 2017;49(10):1458–67. https://doi.org/10.1038/ng.3951.
Article
CAS
PubMed
Google Scholar
Kanai M, Akiyama M, Takahashi A, Matoba N, Momozawa Y, Ikeda M, et al. Genetic analysis of quantitative traits in the Japanese population links cell types to complex human diseases. Nat Genet. 2018;50(3):390–400. https://doi.org/10.1038/s41588-018-0047-6.
Article
CAS
PubMed
Google Scholar
Matoba N, Akiyama M, Ishigaki K, Kanai M, Takahashi A, Momozawa Y, et al. GWAS of smoking behaviour in 165,436 Japanese people reveals seven new loci and shared genetic architecture. Nat Hum Behav. 2019;3(5):471–7. https://doi.org/10.1038/s41562-019-0557-y.
Article
PubMed
Google Scholar
Okada Y, Wu D, Trynka G, Raj T, Terao C, Ikari K, et al. Genetics of rheumatoid arthritis contributes to biology and drug discovery. Nature. 2014;506(7488):376–81. https://doi.org/10.1038/nature12873.
Article
CAS
PubMed
Google Scholar
Lu XF, Wang LY, Chen SF, He L, Yang XL, Shi YY, et al. Genome-wide association study in Han Chinese identifies four new susceptibility loci for coronary artery disease. Nat Genet. 2012;44(8):890. https://doi.org/10.1038/ng.2337.
Article
CAS
PubMed
PubMed Central
Google Scholar
Marzec J, Mao X, Li M, Wang M, Feng N, Gou X, et al. A genetic study and meta-analysis of the genetic predisposition of prostate cancer in a Chinese population. Oncotarget. 2016;7(16):21393–403. https://doi.org/10.18632/oncotarget.7250.
Article
PubMed
PubMed Central
Google Scholar
Okada Y, Sim X, Go MJ, Wu JY, Gu D, Takeuchi F, et al. Meta-analysis identifies multiple loci associated with kidney function-related traits in east Asian populations. Nat Genet. 2012;44(8):904–9. https://doi.org/10.1038/ng.2352.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zeng C, Matsuda K, Jia WH, Chang J, Kweon SS, Xiang YB, et al. Identification of susceptibility loci and genes for colorectal cancer risk. Gastroenterology. 2016;150(7):1633–45. https://doi.org/10.1053/j.gastro.2016.02.076.
Article
CAS
PubMed
Google Scholar
Zhou X, Chen Y, Mok KY, Zhao Q, Chen K, Chen Y, et al. Identification of genetic risk factors in the Chinese population implicates a role of immune system in Alzheimer’s disease pathogenesis. Proc Natl Acad Sci. 2018;115(8):1697. https://doi.org/10.1073/pnas.1715554115.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gan W, Walters RG, Holmes MV, Bragg F, Millwood IY, Banasik K, Chen Y, Du H, Iona A, Mahajan A, et al. Evaluation of type 2 diabetes genetic risk variants in Chinese adults: findings from 93,000 individuals from the China Kadoorie Biobank. Diabetologia. 2016;59(7):1446–57.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lim MY, You HJ, Yoon HS, Kwon B, Lee JY, Lee S, et al. The effect of heritability and host genetics on the gut microbiota and metabolic syndrome. Gut. 2017;66(6):1031–8. https://doi.org/10.1136/gutjnl-2015-311326.
Article
CAS
PubMed
Google Scholar
Davenport ER. Elucidating the role of the host genome in shaping microbiome composition. Gut Microbes. 2016;7(2):178–84. https://doi.org/10.1080/19490976.2016.1155022.
Article
PubMed
PubMed Central
Google Scholar
Davenport ER, Cusanovich DA, Michelini K, Barreiro LB, Ober C, Gilad Y. Genome-wide association studies of the human gut microbiota. PLoS One. 2015;10(11):e0140301. https://doi.org/10.1371/journal.pone.0140301.
Article
CAS
PubMed
PubMed Central
Google Scholar
Arumugam M, Raes J, Pelletier E, Le Paslier D, Yamada T, Mende DR, et al. Enterotypes of the human gut microbiome. Nature. 2011;473(7346):174–80. https://doi.org/10.1038/nature09944.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hua X, Song L, Yu G, Goedert JJ, Abnet CC, Landi MT, et al. MicrobiomeGWAS: a tool for identifying host genetic variants associated with microbiome composition. bioRxiv. 2015:031187. https://doi.org/10.1101/031187.
Ruhlemann MC, Degenhardt F, Thingholm LB, Wang J, Skieceviciene J, Rausch P, et al. Application of the distance-based F test in an mGWAS investigating beta diversity of intestinal microbiota identifies variants in SLC9A8 (NHE8) and 3 other loci. Gut Microbes. 2018;9(1):68–75. https://doi.org/10.1080/19490976.2017.1356979.
Article
PubMed
Google Scholar
Bonder MJ, Kurilshikov A, Tigchelaar EF, Mujagic Z, Imhann F, Vila AV, et al. The effect of host genetics on the gut microbiome. Nat Genet. 2016;48(11):1407–12. https://doi.org/10.1038/ng.3663.
Article
CAS
PubMed
Google Scholar
Tang WHW, Kitai T, Hazen SL. Gut microbiota in cardiovascular health and disease. Circ Res. 2017;120(7):1183–96. https://doi.org/10.1161/CIRCRESAHA.117.309715.
Article
CAS
PubMed
PubMed Central
Google Scholar
Langille MGI, Zaneveld J, Caporaso JG, McDonald D, Knights D, Reyes JA, et al. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat Biotechnol. 2013;31:814. https://doi.org/10.1038/nbt.2676.
Article
CAS
PubMed
PubMed Central
Google Scholar
Canga Y, Emre A, Yuksel GA, Karatas MB, Yelgec NS, Gurkan U, et al. Assessment of atrial conduction times in patients with newly diagnosed Parkinson's disease. Parkinsons Dis. 2018;2018:2916905. https://doi.org/10.1155/2018/2916905.
Article
PubMed
PubMed Central
Google Scholar
Ihara M, Washida K. Linking atrial fibrillation with Alzheimer's disease: epidemiological, pathological, and mechanistic evidence. J Alzheimers Dis. 2018;62(1):61–72. https://doi.org/10.3233/JAD-170970.
Article
PubMed
PubMed Central
Google Scholar
Conen D, Wong JA, Sandhu RK, Cook NR, Lee I-M, Buring JE, et al. Risk of malignant cancer among women with new-onset atrial fibrillation. JAMA Cardiol. 2016;1(4):389–96. https://doi.org/10.1001/jamacardio.2016.0280.
Article
PubMed
PubMed Central
Google Scholar
Rousseeuw PJ. Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. J Comput Appl Math. 1987;20:53–65.
Article
Google Scholar
Blekhman R, Goodrich JK, Huang K, Sun Q, Bukowski R, Bell JT, et al. Host genetic variation impacts microbiome composition across human body sites. Genome Biol. 2015;16:191. https://doi.org/10.1186/s13059-015-0759-1.
Article
CAS
PubMed
PubMed Central
Google Scholar
Goodrich JK, Davenport ER, Clark AG, Ley RE. The relationship between the human genome and microbiome comes into view. Annu Rev Genet. 2017;51:413–33. https://doi.org/10.1146/annurev-genet-110711-155532.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kuehbacher T, Rehman A, Lepage P, Hellmig S, Fölsch UR, Schreiber S, et al. Intestinal TM7 bacterial phylogenies in active inflammatory bowel disease. J Med Microbiol. 2008;57(12):1569–76.
Article
CAS
PubMed
Google Scholar
He X, McLean JS, Edlund A, Yooseph S, Hall AP, Liu S-Y, et al. Cultivation of a human-associated TM7 phylotype reveals a reduced genome and epibiotic parasitic lifestyle. Proc Natl Acad Sci U S A. 2015;112(1):244–9. https://doi.org/10.1073/pnas.1419038112.
Article
CAS
PubMed
Google Scholar
Bor B, Bedree JK, Shi W, McLean JS, He X. Saccharibacteria (TM7) in the human oral microbiome. J Dental Res. 2019;98(5):500–9. https://doi.org/10.1177/0022034519831671.
Article
CAS
Google Scholar
Cirulli ET, Goldstein DB. Uncovering the roles of rare variants in common disease through whole-genome sequencing. Nat Rev Genet. 2010;11(6):415–25. https://doi.org/10.1038/nrg2779.
Article
CAS
PubMed
Google Scholar
Vinter N, Christesen Amanda MS, Fenger-Grøn M, Tjønneland A, Frost L. Atrial fibrillation and risk of cancer: a Danish population-based cohort study. J Am Heart Assoc. 2018. https://doi.org/10.1161/JAHA.118.009543.
Zoja C, Corna D, Rottoli D, Zanchi C, Abbate M, Remuzzi G. Imatinib ameliorates renal disease and survival in murine lupus autoimmune disease. Kidney Int. 2006;70(1):97–103.
Article
CAS
PubMed
Google Scholar
Boursi B, Mamtani R, Haynes K, Yang Y-X. Parkinson's disease and colorectal cancer risk-A nested case control study. Cancer Epidemiol. 2016;43:9–14. https://doi.org/10.1016/j.canep.2016.05.007.
Article
PubMed
PubMed Central
Google Scholar
Xie X, Luo X, Xie M. Association between Parkinson's disease and risk of colorectal cancer. Parkinsonism Relat Disord. 2017;35:42–7. https://doi.org/10.1016/j.parkreldis.2016.11.011.
Article
PubMed
Google Scholar
van Rheenen W, Shatunov A, Dekker AM, McLaughlin RL, Diekstra FP, Pulit SL, et al. Genome-wide association analyses identify new risk variants and the genetic architecture of amyotrophic lateral sclerosis. Nat Genet. 2016;48(9):1043–8. https://doi.org/10.1038/ng.3622.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lambert JC, Ibrahim-Verbaas CA, Harold D, Naj AC, Sims R, Bellenguez C, et al. Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer's disease. Nat Genet. 2013;45(12):1452–8. https://doi.org/10.1038/ng.2802.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pankratz N, Beecham GW, DeStefano AL, Dawson TM, Doheny KF, Factor SA, et al. Meta-analysis of Parkinson's disease: identification of a novel locus, RIT2. Ann Neurol. 2012;71(3):370–84. https://doi.org/10.1002/ana.22687.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhao L, Wang G, Siegel P, He C, Wang H, Zhao W, et al. Quantitative genetic background of the host influences gut microbiomes in chickens. Sci Rep. 2013;3:1163. https://doi.org/10.1038/srep01163.
Article
CAS
PubMed
PubMed Central
Google Scholar
Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D, et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet. 2007;81(3):559–75. https://doi.org/10.1086/519795.
Article
CAS
PubMed
PubMed Central
Google Scholar
Anderson CA, Pettersson FH, Clarke GM, Cardon LR, Morris AP, Zondervan KT. Data quality control in genetic case-control association studies. Nat Protoc. 2010;5(9):1564–73. https://doi.org/10.1038/nprot.2010.116.
Article
CAS
PubMed
PubMed Central
Google Scholar
Delaneau O, Marchini J, Zagury J-F. A linear complexity phasing method for thousands of genomes. Nat Methods. 2011;9:179. https://doi.org/10.1038/nmeth.1785.
Article
CAS
PubMed
Google Scholar
Delaneau O, Marchini J, The Genomes Project C, McVean GA, Donnelly P, Lunter G, et al. Integrating sequence and array data to create an improved 1000 Genomes Project haplotype reference panel. Nat Commun. 2014;5:3934. https://doi.org/10.1038/ncomms4934.
Article
CAS
PubMed
Google Scholar
Das S, Forer L, Schönherr S, Sidore C, Locke AE, Kwong A, et al. Next-generation genotype imputation service and methods. Nat Genet. 2016;48:1284. https://doi.org/10.1038/ng.3656.
Article
CAS
PubMed
PubMed Central
Google Scholar
Clarke L, Fairley S, Zheng-Bradley X, Streeter I, Perry E, Lowy E, et al. The international genome sample resource (IGSR): a worldwide collection of genome variation incorporating the 1000 Genomes Project data. Nucleic Acids Res. 2016. https://doi.org/10.1093/nar/gkw829.
Okada Y, Kim K, Han B, Pillai NE, Ong RT, Saw WY, et al. Risk for ACPA-positive rheumatoid arthritis is driven by shared HLA amino acid polymorphisms in Asian and European populations. Hum Mol Genet. 2014;23(25):6916–26. https://doi.org/10.1093/hmg/ddu387.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pillai NE, Okada Y, Saw WY, Ong RT, Wang X, Tantoso E, et al. Predicting HLA alleles from high-resolution SNP data in three Southeast Asian populations. Hum Mol Genet. 2014;23(16):4443–51. https://doi.org/10.1093/hmg/ddu149.
Article
CAS
PubMed
Google Scholar
Jia X, Han B, Onengut-Gumuscu S, Chen W-M, Concannon PJ, Rich SS, et al. Imputing amino acid polymorphisms in human leukocyte antigens. PLoS One. 2013;8(6):e64683. https://doi.org/10.1371/journal.pone.0064683.
Article
CAS
PubMed
PubMed Central
Google Scholar
Edgar RC. Search and clustering orders of magnitude faster than BLAST. Bioinformatics. 2010;26(19):2460–1. https://doi.org/10.1093/bioinformatics/btq461.
Article
CAS
PubMed
Google Scholar
Edgar RC. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods. 2013;10(10):996–8. https://doi.org/10.1038/nmeth.2604.
Article
CAS
PubMed
Google Scholar
Second Genome, Inc: the Greengenes Databases.http://greengenes.secondgenome.com/. .
Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods. 2010;7(5):335–6. https://doi.org/10.1038/nmeth.f.303.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lee SH, Wray NR, Goddard ME, Visscher PM. Estimating missing heritability for disease from genome-wide association studies. Am J Hum Genet. 2011;88(3):294–305. https://doi.org/10.1016/j.ajhg.2011.02.002.
Article
CAS
PubMed
PubMed Central
Google Scholar
Visscher PM, Hemani G, Vinkhuyzen AAE, Chen G-B, Lee SH, Wray NR, et al. Statistical power to detect genetic (Co)variance of complex traits using SNP data in unrelated samples. PLoS Genet. 2014;10(4):e1004269. https://doi.org/10.1371/journal.pgen.1004269.
Article
CAS
PubMed
PubMed Central
Google Scholar
Caliński T, Harabasz J. A dendrite method for cluster analysis. Communications in Statistics. 1974;3(1):1–27. https://doi.org/10.1080/03610927408827101.
Article
Google Scholar
Yang J, Lee SH, Goddard ME, Visscher PM. GCTA: a tool for genome-wide complex trait analysis. Am J Hum Genet. 2011;88(1):76–82. https://doi.org/10.1016/j.ajhg.2010.11.011.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yang J, Zaitlen NA, Goddard ME, Visscher PM, Price AL. Advantages and pitfalls in the application of mixed-model association methods. Nat Genet. 2014;46(2):100–6. https://doi.org/10.1038/ng.2876.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yang J, Benyamin B, McEvoy BP, Gordon S, Henders AK, Nyholt DR, et al. Common SNPs explain a large proportion of the heritability for human height. Nat Genet. 2010;42:565. https://doi.org/10.1038/ng.608.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bulik-Sullivan BK, Loh P-R, Finucane HK, Ripke S, Yang J, Patterson N, et al. LD Score regression distinguishes confounding from polygenicity in genome-wide association studies. Nat Genet. 2015;47(3):291–5. https://doi.org/10.1038/ng.3211.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lee SH, Yang J, Goddard ME, Visscher PM, Wray NR. Estimation of pleiotropy between complex diseases using single-nucleotide polymorphism-derived genomic relationships and restricted maximum likelihood. Bioinformatics. 2012;28(19):2540–2. https://doi.org/10.1093/bioinformatics/bts474.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang H, Zhang F, Zeng J, Wu Y, Kemper KE, Xue A, et al. Genotype-by-environment interactions inferred from genetic effects on phenotypic variability in the UK Biobank. Sci Adv. 2019;5(8):eaaw3538. https://doi.org/10.1126/sciadv.aaw3538.
Article
PubMed
PubMed Central
Google Scholar
Bretherton CS, Widmann M, Dymnikov VP, Wallace JM, Bladé I. The effective number of spatial degrees of freedom of a time-varying field. J Clim. 1999;12(7):1990–2009. https://doi.org/10.1175/1520-0442(1999)012<1990:Tenosd>2.0.Co;2.
Article
Google Scholar
Bowden J, Davey Smith G, Haycock PC, Burgess S. Consistent estimation in mendelian randomization with some invalid instruments using a weighted median estimator. Genet Epidemiol. 2016;40(4):304–14. https://doi.org/10.1002/gepi.21965.
Article
PubMed
PubMed Central
Google Scholar
Burgess S, Thompson SG. Interpreting findings from Mendelian randomization using the MR-Egger method. Eur J Epidemiol. 2017;32(5):377–89. https://doi.org/10.1007/s10654-017-0255-x.
Article
PubMed
PubMed Central
Google Scholar
Verbanck M, Chen C-Y, Neale B, Do R. Detection of widespread horizontal pleiotropy in causal relationships inferred from Mendelian randomization between complex traits and diseases. Nat Genet. 2018;50(5):693–8. https://doi.org/10.1038/s41588-018-0099-7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000;28(1):27–30. https://doi.org/10.1093/nar/28.1.27.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kanehisa M, Sato Y, Furumichi M, Morishima K, Tanabe M. New approach for understanding genome variations in KEGG. Nucleic Acids Res. 2019. https://doi.org/10.1093/nar/gky962.
Kanehisa M. Toward understanding the origin and evolution of cellular organisms. Protein Sci. 2019. https://doi.org/10.1002/pro.3715.
Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13(11):2498–504. https://doi.org/10.1101/gr.1239303.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kurtz ZD, Müller CL, Miraldi ER, Littman DR, Blaser MJ, Bonneau RA. Sparse and compositionally robust inference of microbial ecological Networks. PLoS Comput Biol. 2015. https://doi.org/10.1371/journal.pcbi.1004226.
Reynolds AP, Richards G, de la Iglesia B, Rayward-Smith VJ. Clustering rules: a comparison of partitioning and hierarchical clustering algorithms. J Mathe Model Algorithms. 2006;5(4):475–504. https://doi.org/10.1007/s10852-005-9022-1.
Article
Google Scholar
Kaufman L, Rousseeuw P. Partitioning around medoids (Program PAM): Wiley; 1990. p. 68–125.