Nilsson RH, Anslan S, Bahram M, Wurzbacher C, Baldrian P, Tedersoo L. Mycobiome diversity: high-throughput sequencing and identification of fungi. Nat Rev Microbiol. 2019;17:95–109.
Article
CAS
PubMed
Google Scholar
van der Heijden MGA, Martin FM, Selosse M-A, Sanders IR. Mycorrhizal ecology and evolution: the past, the present and the future. New Phytol. 2015;205:1406–23.
Article
PubMed
CAS
Google Scholar
Wang W, Shi J, Xie Q, Jiang Y, Yu N, Wang E. Nutrient exchange and regulation in arbuscular mycorrhizal symbiosis. Mol Plant. 2017;10:1147–58.
Article
CAS
PubMed
Google Scholar
Smith SE, Anderson IC, Smith FA. Mycorrhizal associations and phosphorus acquisition: from cells to ecosystems. Annu Plant Rev. 2018;45:409–39.
Article
Google Scholar
Hammer EC, Nasr H, Wallander H. Effects of different organic materials and mineral nutrients on arbuscular mycorrhizal fungal growth in a Mediterranean saline dryland. Soil Biol Biochem. 2011;43:2332–7.
Article
CAS
Google Scholar
Zhu C, Ling N, Guo J, Wang M, Guo S, Shen Q. Impacts of fertilization regimes on arbuscular mycorrhizal fungal (AMF) community composition were correlated with organic matter composition in maize rhizosphere soil. Front Microbiol. 2016;7:1840.
PubMed
PubMed Central
Google Scholar
Peay KG, Kennedy PG, Talbot JM. Dimensions of biodiversity in the Earth mycobiome. Nat Rev Microbiol. 2016;14:434–47.
Article
CAS
PubMed
Google Scholar
Antunes PM, Koyama A. Mycorrhizas as nutrient and energy pumps of soil food webs: Multitrophic interactions and feedbacks. In: Johnson N, Gehring C, Jansa J, editors. Mycorrhizal mediation of soil. Amsterdam: Elsevier; 2017. p. 149–73.
Chapter
Google Scholar
Yeates GW, Bongers T, de Goede RGM, Freckman DW, Georgieva SS. Feeding habits in soil nematode families and genera–an outline for soil ecologists. J Nematol. 1993;25:315–31.
CAS
PubMed
PubMed Central
Google Scholar
Geisen S, Mitchell EAD, Adl S, Bonkowski M, Dunthorn M, Ekelund F, et al. Soil protists: a fertile frontier in soil biology research. FEMS Microbiol Rev. 2018;42:293–323.
Article
CAS
PubMed
Google Scholar
Schmitz OJ, Hawlena D, Trussell GC. Predator control of ecosystem nutrient dynamics. Ecol Lett. 2010;13:1199–209.
Article
PubMed
Google Scholar
Chen J, Ferris H. Growth and nitrogen mineralization of selected fungi and fungal-feeding nematodes on sand amended with organic matter. Plant Soil. 2000;218:91–101.
Article
CAS
Google Scholar
Koller R, Rodriguez A, Robin C, Scheu S, Bonkowski M. Protozoa enhance foraging efficiency of arbuscular mycorrhizal fungi for mineral nitrogen from organic matter in soil to the benefit of host plants. New Phytol. 2013;199:203–11.
Article
CAS
PubMed
Google Scholar
Liu J, Zhang J, Li D, Xu C, Xiang X. Differential responses of arbuscular mycorrhizal fungal communities to mineral and organic fertilization. MicrobiologyOpen. 2019;9:e920.
Säle V, Aguilera P, Laczko E, Mäder P, Berner A, Zihlmann U, et al. Impact of conservation tillage and organic farming on the diversity of arbuscular mycorrhizal fungi. Soil Biol Biochem. 2015;84:38–52.
Article
CAS
Google Scholar
Öpik M, Vanatoa A, Vanatoa E, Moora M, Davison J, Kalwij JM, et al. The online database MaarjAM reveals global and ecosystemic distribution patterns in arbuscular mycorrhizal fungi (Glomeromycota). New Phytol. 2010;188:233–41.
Article
CAS
Google Scholar
Williams A, Manoharan L, Rosenstock NP, Olsson PA, Hedlund K. Long-term agricultural fertilization alters arbuscular mycorrhizal fungal community composition and barley (Hordeum vulgare) mycorrhizal carbon and phosphorus exchange. New Phytol. 2017;213:874–85.
Veresoglou SD, Chen B, Rillig MC. Arbuscular mycorrhiza and soil nitrogen cycling. Soil Biol Biochem. 2012;46:53–62.
Article
CAS
Google Scholar
Walder F, Brulé D, Koegel S, Wiemken A, Boller T, Courty PE. Plant phosphorus acquisition in a common mycorrhizal network: regulation of phosphate transporter genes of the Pht1 family in sorghum and flax. New Phytol. 2015;205:1632–45.
Article
CAS
PubMed
Google Scholar
Koide RT, Kabir Z. Extraradical hyphae of the mycorrhizal fungus Glomus intraradices can hydrolyse organic phosphate. New Phytol. 2000;148:511–7.
Article
CAS
PubMed
Google Scholar
Smith SE, Jakobsen I, Gronlund M, Smith FA. Roles of arbuscular mycorrhizas in plant phosphorus nutrition: interactions between pathways of phosphorus uptake in arbuscular mycorrhizal roots have important implications for understanding and manipulating plant phosphorus acquisition. Plant Physiol. 2011;156:1050–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ingham RE, Trofymow J, Ingham ER, Coleman DC. Interactions of bacteria, fungi, and their nematode grazers: effects on nutrient cycling and plant growth. Ecol Monogr. 1985;55:119–40.
Article
Google Scholar
Geisen S, Mitchell EAD, Wilkinson DM, Adl S, Bonkowski M, Brown MW, et al. Soil protistology rebooted: 30 fundamental questions to start with. Soil Biol Biochem. 2017;111:94–103.
Article
CAS
Google Scholar
Aescht E, Foissner W, Mulisch M. Ultrastructure of the mycophagous ciliate Crossglockneria acuta (Ciliophora, Colpodea) and phylogenetic affinities of colpodid ciliates. Europ J Prcitistol. 1991;26:350–64.
Article
CAS
Google Scholar
Foissner W. Description of two new, mycophagous soil ciliates (Ciliophora, Colpodea): Fungiphrya strobli n. g., n. sp. and Grossglockneria ovata n. sp. J Eukaryot Microbiol. 1999;46:34–42.
Article
Google Scholar
Geisen S, Koller R, Hünninghaus M, Dumack K, Urich T, Bonkowski M. The soil food web revisited: Diverse and widespread mycophagous soil protists. Soil Biol Biochem. 2016;94:10–8.
Article
CAS
Google Scholar
Kumar S, Khanna AS, Verma AK, Chandel YS. Effects of inoculation time on damage potential of Aphelenchoides swarupi and Aphelenchus avenae to Rodman’s agaricus, Agaricus bitorquis. Nematol Mediterr. 2008;36:171–8.
Google Scholar
Hua J, Lin X, Bai J, Shao Y, Yin R, Jiang Q. Effects of arbuscular mycorrhizal fungi and earthworm on nematode communities and arsenic uptake by maize in arsenic-contaminated soils. Pedosphere. 2010;20:163–73.
Article
CAS
Google Scholar
Jiang Y, Zhou H, Chen L, Yuan Y, Fang H, Luan L, et al. Nematodes and microorganisms interactively stimulate soil organic carbon turnover in the macroaggregates. Front Microbiol. 2018;9:2803.
Article
PubMed
PubMed Central
Google Scholar
Fitter AH, Sanders IR. Interactions with the soil fauna. In: Allen MF, editor. Mycorrhizal Functioning. London: Chapman & Hall; 1992. p. 333–54.
Google Scholar
Bakhtiar Y, Miller D, Cavagnaro T, Smith S. Interactions between two arbuscular mycorrhizal fungi and fungivorous nematodes and control of the nematode with fenamifos. Appl Soil Ecol. 2011;17:107–17.
Article
Google Scholar
de Ruiter PC, Neutel AM, Moore JC. Energetics, patterns of interaction strengths, and stability in real ecosystems. Science. 1995;269:1257–60.
Article
PubMed
Google Scholar
Ekelund F. Enumeration and abundance of mycophagous protozoa in soil, with special emphasis on heterotrophic flagellates. Soil Biol Biochem. 1998;30:1343–7.
Article
CAS
Google Scholar
Geisen S. The bacterial-fungal energy channel concept challenged by enormous functional versatility of soil protists. Soil Biol Biochem. 2016;102:22–5.
Article
CAS
Google Scholar
Rillig MC, Mummey DL. Mycorrhizas and soil structure. New Phytol. 2006;171:41–53.
Article
CAS
PubMed
Google Scholar
Jiang Y, Liu M, Zhang J, Chen Y, Chen X, et al. Nematode grazing promotes bacterial community dynamics in soil at the aggregate level. ISME J. 2017;11:2705–17.
Article
PubMed
PubMed Central
Google Scholar
Morriën E, Hannula SE, Snoek LB, Helmsing NR, Zweers H, de Hollander M, et al. Soil networks become more connected and take up more carbon as nature restoration progresses. Nat Commun. 2017;8:14349.
Article
PubMed
PubMed Central
CAS
Google Scholar
Nelson DW, Sommers LE. Total carbon, organic carbon, and organic matter. In: Sparks DL, Page ALH, editors. Methods of soil analysis part 3–chemical methods. Madison: America Society of Agronomy, Inc; 1996. p. 961–1010.
Google Scholar
Bremner JM. Nitrogen-total. In: Sparks DL, Page AL, editors. Methods of soil analysis part 3–chemical methods. Madison: America Society of Agronomy, Inc.; 1996. p. 1085–121.
Google Scholar
Olsen SR, Cole C, Watanabe FS, Dean L. Estimation of available phosphorus in soils by extraction with sodium bicarbonate. Circular (No. 939). Washington DC: USDA Press; 1954. p. 1–19.
Google Scholar
O’Halloran IP, Cade-Menun BJ. Total and organic phosphorus. In: Carter MR, Gregorich EG, editors. Soil sampling and methods of analysis (2nd ed) part III–soil chemical analyses. Boca Raton: CRC Press; 2007. p. 267–71.
Google Scholar
Kanehiro Y, Sherman GD. Fusion with sodium carbonate for total elemental analysis. In: Black CA, editor. Methods of soil analysis, part 2−agronomy 9. Madison: America Society of Agronomy, Inc.; 1965. p. 952–8.
Google Scholar
Tabatabai MA. Soil enzymes. In: Weaver RW, Angle JS, Bottomley PS, editors. Methods of Soil Analysis, Part 2, Microbiological and Biochemical Properties. Madison: Soil Science Society of America; 1994. p. 775–833.
Google Scholar
Frostegård Å, Bååth E, Tunlio A. Shifts in the structure of soil microbial communities in limed forests as revealed by phospholipid fatty acid analysis. Soil Biol Biochem. 1993;25:723–30.
Article
Google Scholar
Frostegård A, Bååth E. The use of phospholipid fatty acid analysis to estimate bacterial and fungal biomass in soil. Biol Fertil Soils. 1996;22:59–65.
Article
Google Scholar
Olsson PA. Signature fatty acids provide tools for determination of the distribution and interactions of mycorrhizal fungi in soil. FEMS Microbiol Ecol. 1999;29:303–10.
Article
CAS
Google Scholar
Lumini E, Orgiazzi A, Borriello R, Bonfante P, Bianciotto V. Disclosing arbuscular mycorrhizal fungal biodiversity in soil through a land-use gradient using a pyrosequencing approach. Environ Microbiol. 2009;12:2165–79.
PubMed
Google Scholar
Stoeck T, Bass D, Nebel M, Christen R, Jones MD, Breiner H, et al. Multiple marker parallel tag environmental DNA sequencing reveals a highly complex eukaryotic community in marine anoxic water. Mol Ecol. 2010;19:21–31.
Article
CAS
PubMed
Google Scholar
Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods. 2010;7:335–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Edgar RC, Haas BJ, Clemente JC, Christopher Q, Rob K. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics. 2011;27:2194–200.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li W, Godzik A. Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics. 2006;22:1658–9.
Article
CAS
PubMed
Google Scholar
Guillou L, Bachar D, Audic S, Bass D, Berney C, Bittner L, et al. The Protist Ribosomal Reference database (PR2): a catalog of unicellular eukaryote small sub-unit rRNA sequences with curated taxonomy. Nucleic Acids Res. 2013;41:597–604.
Article
CAS
Google Scholar
Xiong W, Jousset A, Guo S, Karlsson I, Zhao Q, Wu H, et al. Soil protist communities form a dynamic hub in the soil microbiome. ISME J. 2018;12:634–8.
Article
PubMed
Google Scholar
Dalpé Y. Vesicular–arbuscular mycorrhizae. In: Carter MR, editor. Soil sampling and methods of analysis. 3rd ed. Boca Raton: Can Soc Soil Sci, CRC; 1993. p. 287–301.
Google Scholar
Mao X, Li H, Chen X, Hu F. Extraction efficiency of soil nematodes by different methods. Chin J Ecol. 2004;23:149–51.
Google Scholar
Gerdemann JW, Nicolson TH. Spores of mycorrhizal endogone species extracted from soil by wet sieving and decanting. Trans Br Mycol Soc. 1963;46:235–44.
Article
Google Scholar
Ianson DC, Allen MF. The effects of soil texture on extraction of vesicular-arbuscular mycorrhizal spores from arid soils. Mycologia. 1986;78:164–8.
Article
Google Scholar
Sawers RJH, Svane SF, Quan C, Grønlund M, Wozniak B, Gebreselassie M-N, et al. Phosphorus acquisition efficiency in arbuscular mycorrhizal maize is correlated with the abundance of root-external hyphae and the accumulation of transcripts encoding PHT1 phosphate transporters. New Phytol. 2017;214:632–43.
Article
CAS
PubMed
Google Scholar
Anderson MJ, Willis TJ. Canonical analysis of principal coordinates: a useful method of constrained ordination for ecology. Ecology. 2003;84:511–25.
Article
Google Scholar
Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara RB, et al. Vegan: community ecology package; 2013.
Google Scholar
Faust K, Sathirapongsasuti JF, Izard J, Segata N, Gevers D, Raes J, et al. Microbial co-occurrence relationships in the human microbiome. PLoS Comput Biol. 2012;8:e1002606.
Article
CAS
PubMed
PubMed Central
Google Scholar
Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc B. 1995;57:289–300.
Google Scholar
Bastian M, Heymann S, Jacomy M. Gephi: an open source software for exploring and manipulating networks. In: Proceedings of the Third International Conference on Weblogs and Social Media Conference, vol. 8; 2009. p. 361–2.
Google Scholar
Layeghifard M, Hwang DM, Guttman DS. Disentangling interactions in the microbiome: a network perspective. Trends Microbiol. 2017;25:217–28.
Article
CAS
PubMed
Google Scholar
Bader GD, Hogue CW. An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinformatics. 2003;4:2.
Article
PubMed
PubMed Central
Google Scholar
Langfelder P, Horvath S. Eigengene networks for studying the relationships between co-expression modules. BMC Syst Biol. 2007;1:54.
Article
PubMed
PubMed Central
CAS
Google Scholar
Liaw A, Wiener M. Classification and regression by randomForest. R News. 2002;2:17–22.
Google Scholar
Fortmannroe S. A3: Accurate, adaptable, and accessible error metrics for predictive models. R package version 1.0.0; 2015.
Google Scholar
Archer E. rfpermute: Estimate permutation p-values for importance metrics. R package version 2.1.5; 2015.
Google Scholar
Hooper D, Coughlan J, Mullen M. Structural equation modelling: guidelines for determining model fit. Elec J Buss Res Methods. 2008;6:53–60.
Google Scholar