Zilber-Rosenberg I, Rosenberg E. Role of microorganisms in the evolution of animals and plants: the hologenome theory of evolution. FEMS Microbiol Rev. 2008;32:723–35.
Article
CAS
PubMed
Google Scholar
Sasse J, Martinoia E, Northen T. Feed your friends: do plant exudates shape the root microbiome? Trends Plant Sci. 2018;23:25–41.
Article
CAS
PubMed
Google Scholar
Bressan M, Roncato M-A, Bellvert F, Comte G, Haichar FZ, Achouak W, Berge O. Exogenous glucosinolate produced by Arabidopsis thaliana has an impact on microbes in the rhizosphere and plant roots. ISME J. 2009;3:1243–57.
Article
CAS
PubMed
Google Scholar
Steinkellner S, Lendzemo V, Langer I, Schweiger P, Khaosaad T, Toussaint J-P, Vierheilig H. Flavonoids and strigolactones in root exudates as signals in symbiotic and pathogenic plant-fungus interactions. Molecules. 2007;12:1290–306.
Article
CAS
PubMed
PubMed Central
Google Scholar
Turner TR, James EK, Poole PS. The plant microbiome. Genome Biol. 2013;14:209.
Article
PubMed
PubMed Central
CAS
Google Scholar
Berendsen RL, Pieterse CMJ, Bakker PAHM. The rhizosphere microbiome and plant health. Trends Plant Sci. 2012;17:478–86.
Article
CAS
PubMed
Google Scholar
Abdel-Lateif K, Bogusz D, Hocher V. The role of flavonoids in the establishment of plant roots endosymbioses with arbuscular mycorrhiza fungi, rhizobia and Frankia bacteria. Plant Signal Behav. 2012;7:636–41.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sood SG. Chemotactic response of plant-growth-promoting bacteria towards roots of vesicular-arbuscular mycorrhizal tomato plants. FEMS Microbiol Ecol. 2003;45:219–27.
Article
CAS
Google Scholar
Badri DV, Weir TL, van der Lelie D, Vivanco JM. Rhizosphere chemical dialogues: plant-microbe interactions. Curr Opin Biotechnol. 2009;20:642–50.
Article
CAS
PubMed
Google Scholar
Zhou X, Wu F. p-Coumaric acid influenced cucumber rhizosphere soil microbial communities and the growth of Fusarium oxysporum f.sp. cucumerinum Owen. PLoS One. 2012;7:e48288.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wouters FC, Blanchette B, Gershenzon J, Vassão DG. Plant defense and herbivore counter-defense: benzoxazinoids and insect herbivores. Phytochem Rev. 2016;15:1127–51.
Article
CAS
PubMed
PubMed Central
Google Scholar
Frey M, Huber K, June W, Sicker D, Lindberg P, Meeley RB, Simmons CR, Yalpani N, Gierl A. A 2-oxoglutarate-dependent dioxygenase is integrated in DIMBOA- biosynthesis. Phytochem. 2003;62:371–6.
Article
CAS
Google Scholar
Jonczyk R, Schmidt H, Osterrieder A, Fiesselmann A, Schullehner K, Haslbeck M, Sicker D, Hofmann D, Yalpani N, Simmons C, Frey M, Gierl A. Elucidation of the final reactions of DIMBOA-glucoside biosynthesis in maize: characterization of Bx6 and Bx7. Plant Physiol. 2008;146(3):1053–63.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhou S, Richter A, Jander G. Beyond defense: multiple functions of benzoxazinoids in maize metabolism. Plant Cell Physiol. 2018;59:1528–37.
Article
PubMed
Google Scholar
Etzerodt T, Nielsen ST, Mortensen AG, Christophersen C, Fomsgaard IS. Elucidating the transformation pattern of the cereal allelochemical 6-Methoxy-2-benzoxazolinone (MBOA) and the Trideuteriomethoxy analogue [D3]-MBOA in soil. J Agric Food Chem. 2006;54:1075–85.
Article
PubMed
CAS
Google Scholar
Neal AL, Ahmad S, Gordon-Weeks R, Ton J. Benzoxazinoids in root exudates of maize attract Pseudomonas putida to the rhizosphere. PLoS One. 2012;7:e35498.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fomsgaard IS, Mortensen AG, Carlsen SCK. Microbial transformation products of benzoxazolinone and benzoxazinone allelochemicals––a review. Chemosphere. 2004;54:1025–38.
Article
CAS
PubMed
Google Scholar
Tzin V, Fernandez-Pozo N, Richter A, Schmelz EA, Schoettner M, Schäfer M, Ahern KR, Meihls LN, Kaur H, Huffaker A, Mori N, Degenhardt J, Mueller LA, Jander G. Dynamic maize responses to aphid feeding are revealed by a time series of transcriptomic and metabolomic assays. Plant Physiol. 2015;169:1727–43.
CAS
PubMed
PubMed Central
Google Scholar
Betsiashvili M, Ahern KR, Jander G. Additive effects of two quantitative trait loci that confer Rhopalosiphum maidis (corn leaf aphid) resistance in maize inbred line Mo17. J Exp Bot. 2015;66:571–8.
Article
CAS
PubMed
Google Scholar
Pedersen HA, Heinrichson K, Fomsgaard IS. Alterations of the benzoxazinoid profiles of uninjured maize seedlings during freezing, storage, and lyophilization. J Agric Food Chem. 2017;65:4103–10.
Article
CAS
PubMed
Google Scholar
Niemeyer H. Hydroxamic acids derived from 2-hydroxy-2 H-1, 4-benzoxazin-3 (4 H)-one: key defense chemicals of cereals. J Agric Food Chem. 2009;3:1677–96.
Article
CAS
Google Scholar
Schulz M, Marocco A, Tabaglio V, Macias FA, Molinillo JMG. Benzoxazinoids in rye allelopathy - from discovery to application in sustainable weed control and organic farming. J Chem Ecol. 2013;39:154–74.
Article
CAS
PubMed
Google Scholar
Bacon CW, Hinton DM. Endophytic and biological control potential of Bacillus mojavensis and related species. Biol Cont. 2002;284:274–84.
Article
CAS
Google Scholar
Bacon CW, Hinton DM, Glenn AE, Macías FA, Marin D. Interactions of Bacillus mojavensis and Fusarium verticillioides with a benzoxazolinone (BOA) and its transformation product, APO. J Chem Ecol. 2007;33:1885–97.
Article
CAS
PubMed
Google Scholar
Vollbrecht E, Duvick J, Schares JP, Ahern KR, Deewatthanawong P, Xu L, Conrad LJ, Kikuchi K, Kubinec TA, Hall BD, Weeks R, Unger-Wallace E, Muszynski M, Brendel VP, Brutnell TP. Genome-wide distribution of transposed dissociation elements in maize. Plant Cell. 2010;22(6):1667–85.
Article
CAS
PubMed
PubMed Central
Google Scholar
Alleman M, Kermicle JL. Somatic variegation and germinal mutability reflect the position of transposable element dissociation within the maize R gene. Genetics. 1993;135:189–203.
CAS
PubMed
PubMed Central
Google Scholar
Reddy AR, Britsch L, Salamini F, Saedler H, Rohde W. The A1 (anthocyanin-1) locus in Zea mays encodes dihydroquercetin reductase. Plant Sci. 1987;52:7–13.
Article
CAS
Google Scholar
Czaban W, Rasmussen J, Laursen BB, Vidkjær NH, Sapkota R, Nicolaisen M, Fomsgaard IS. Multiple effects of secondary metabolites on amino acid cycling in white clover rhizosphere. Soil Biol Biochem. 2018;123:54–63.
Article
CAS
Google Scholar
Klindworth A, Pruesse E, Schweer T, Peplies J, Quast C, Horn M, Glöckner FO. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res. 2013;41(1):e1.
Article
CAS
PubMed
Google Scholar
Ihrmark K, Bödeker ITM, Cruz-Martinez K, Friberg H, Kubartova A, Schenck J, Strid Y, Stenlid J, Brandström-Durling M, Clemmensen KE, Lindahl BD. New primers to amplify the fungal ITS2 region--evaluation by 454-sequencing of artificial and natural communities. FEMS Microbiol Ecol. 2012;82:666–77.
Article
CAS
PubMed
Google Scholar
Siddique AB, Unterseher M. A cost-effective and efficient strategy for Illumina sequencing of fungal communities: a case study of beech endophytes identified elevation as main explanatory factor for diversity and community composition. Fungal Ecol. 2016;20:175–85.
Article
Google Scholar
Wu L, Wen C, Qin Y, Yin H, Tu Q, Van Nostrand JD, Yuan T, Yuan M, Deng Y, Zhou J. Phasing amplicon sequencing on Illumina Miseq for robust environmental microbial community analysis. BMC Microbiol. 2015;15:125.
Article
PubMed
PubMed Central
CAS
Google Scholar
Sapkota R, Nicolaisen M. Cropping history shapes fungal, oomycete and nematode communities in arable soils and affects cavity spot in carrot. Agric Ecosyst Environ. 2018;257:120–31.
Article
Google Scholar
Adhikari KB, Laursen BB, Gregersen PL, Schnoor HJ, Witten M, Poulsen LK, Jensen BM, Fomsgaard IS. Absorption and metabolic fate of bioactive dietary benzoxazinoids in humans. Mol Nutr Food Res. 2013;57:1847–58.
CAS
PubMed
Google Scholar
Jensen BM, Adhikari KB, Schnoor HJ, Juel-Berg N, Fomsgaard IS, Poulsen LK. Quantitative analysis of absorption, metabolism, and excretion of benzoxazinoids in humans after the consumption of high- and low-benzoxazinoid diets with similar contents of cereal dietary fibres: a crossover study. Eur J Nutr. 2017;56:387–97.
Article
CAS
PubMed
Google Scholar
Pedersen HA, Laursen B, Mortensen A, Fomsgaard IS. Bread from common cereal cultivars contains an important array of neglected bioactive benzoxazinoids hydroxamic acids. Food Chem. 2011;127:1814–20.
Article
CAS
Google Scholar
Adhikari KB, Laursen BB, Lærke HN, Fomsgaard IS. Bioactive benzoxazinoids in rye bread are absorbed and metabolized in pigs. J Agric Food Chem. 2012;60:2497–506.
Article
CAS
PubMed
Google Scholar
Steffensen SK, Pedersen HA, Adhikari KB, Laursen BB, Jensen C, Høyer S, Borre M, Pedersen HH, Borre M, Edwards D, Fomsgaard IS. Benzoxazinoids in prostate cancer patients after a rye-intensive diet: methods and initial results. J Agric Food Chem. 2016;64:8235–45.
Article
CAS
PubMed
Google Scholar
Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Peña AG, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone CA, McDonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Turnbaugh PJ, Walters WA, Widmann J, Yatsunenko T, Zaneveld J, Knight R. QIIME allows analysis of high-throughput community sequencing data. Nat Methods. 2010;7:335–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rognes T, Flouri T, Nichols B, Quince C, Mahé F. VSEARCH: a versatile open source tool for metagenomics. PeerJ. 2016;4:e2584.
Article
PubMed
PubMed Central
Google Scholar
Bengtsson-Palme J, Ryberg M, Hartmann M, Branco S, Wang Z, Godhe A, De Wit P, Sánchez-García M, Ebersberger I, de Sousa F, Amend AS, Jumpponen A, Unterseher M, Kristiansson E, Abarenkov K, Bertrand YJK, Sanli K, Eriksson KM, Vik U, Veldre V, Nilsson RH, Bunce M. Improved software detection and extraction of ITS1 and ITS2 from ribosomal ITS sequences of fungi and other eukaryotes for analysis of environmental sequencing data. Methods Ecol Evol. 2013;4:914–9.
Google Scholar
McDonald D, Price MN, Goodrich J, Nawrocki EP, DeSantis TZ, Probst A, Andersen GL, Knight R, Hugenholtz P. An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea. ISME J. 2012;6:610–8.
Article
CAS
PubMed
Google Scholar
Abarenkov K, Henrik Nilsson R, Larsson K-H, Alexander IJ, Eberhardt U, Erland S, Høiland K, Kjøller R, Larsson E, Pennanen T, Sen R, Taylor AFS, Tedersoo L, Ursing BM, Vrålstad T, Liimatainen K, Peintner U, Kõljalg U. The UNITE database for molecular identification of fungi--recent updates and future perspectives. New Phytol. 2010;186:281–5.
Article
PubMed
Google Scholar
R Core Team. R: a language and environment for statistical computing. 2017.
Google Scholar
Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin PR, O'Hara RB, Simpson GL, Solymos P, Stevens MHH, Eduard Szoecs E, Wagner H. Vegan: community ecology package. 2018. R package version 2.4-6. https://CRAN.R-project.org/package=vegan.
McMurdie PJ, Holmes S, Kindt R, Legendre P, O’Hara R. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One. 2013;8:e61217.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dufrene M, Legendre P. Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecol Mon. 1997;345:1–17.
Google Scholar
Dutartre L, Hilliou F, Feyereisen R. Phylogenomics of the benzoxazinoid biosynthetic pathway of Poaceae: gene duplications and origin of the Bx cluster. BMC Evol Biol. 2012;12:64.
Article
CAS
PubMed
PubMed Central
Google Scholar
Micallef S, Colón-Carmona A. Genetic and developmental control of rhizosphere bacterial communities. Mol Microb Ecol Rhizosph. 2013;1:257–63.
Article
Google Scholar
Sapkota R, Knorr K, Jørgensen LN, O’Hanlon KA, Nicolaisen M. Host genotype is an important determinant of the cereal phyllosphere mycobiome. New Phytol. 2015;207:1134–44.
Article
CAS
PubMed
Google Scholar
Inceoglu O, Salles JF, Van Overbeek L, Van Elsas JD. Effects of plant genotype and growth stage on the betaproteobacterial communities associated with different potato cultivars in two fields. Appl Environ Microbiol. 2010;76:3675–84.
Article
CAS
PubMed
PubMed Central
Google Scholar
Aira M, Gomez-Brandon M, Lazcano C, Baath E, Dominguez J. Plant genotype strongly modifies the structure and growth of maize rhizosphere microbial communities. Soil Biol Biochem. 2010;42:2276–81.
Article
CAS
Google Scholar
Lundberg DS, Lebeis SL, Paredes SH, Yourstone S, Gehring J, Malfatti S, Tremblay J, Engelbrektson A, Kunin V, del Rio TG, Edgar RC, Eickhorst T, Ley RE, Hugenholtz P, Tringe SG, Dangl JL. Defining the core Arabidopsis thaliana root microbiome. Nature. 2012;488:86–90.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bulgarelli D, Garrido-Oter R, Münch PC, Weiman A, Dröge J, Pan Y, McHardy AC, Schulze-Lefert P. Structure and function of the bacterial root microbiota in wild and domesticated barley. Cell Host Microbe. 2015;17:392–403.
Article
CAS
PubMed
PubMed Central
Google Scholar
Von Rad U, Hüttl R, Lottspeich F, Gierl A, Frey M. Two glucosyltransferases are involved in detoxification of benzoxazinoids in maize. The Plant J. 2001;28:633–42.
Google Scholar
Tzin V, Hojo Y, Strickler SR, Bartsch LJ, Archer CM, Ahern KR, Zhou S, Christensen SA, Galis I, Mueller LA, Jander G. Rapid defense responses in maize leaves induced by Spodoptera exigua caterpillar feeding. J Exp Bot. 2017;68:4709–23.
Article
CAS
PubMed
PubMed Central
Google Scholar
Makowska B, Bakera B, Rakoczy-Trojanowska M. The genetic background of benzoxazinoid biosynthesis in cereals. Acta Physiol Plant. 2015;37:1–12.
Article
CAS
Google Scholar
Niculaes C, Abramov A, Hannemann L, Frey M. Plant protection by benzoxazinoids—recent insights into biosynthesis and function. Agronomy. 2018;8:143.
Article
Google Scholar
Jones DL, Nguyen C, Finlay RD. Carbon flow in the rhizosphere: carbon trading at the soil – root interface. Plant Soil. 2009;321:5–33.
Article
CAS
Google Scholar
Chauhan PS, Chaudhry V, Mishra S, Nautiyal CS. Uncultured bacterial diversity in tropical maize (Zea mays L.) rhizosphere. J Basic Microbiol. 2011;51:15–32.
Article
CAS
PubMed
Google Scholar
Johnston-Monje D, Lundberg DS, Lazarovits G, Reis VM, Raizada MN. Bacterial populations in juvenile maize rhizospheres originate from both seed and soil. Plant and Soil. 2016;405:337–55.
Article
CAS
Google Scholar
Peiffer JA, Spor A, Koren O, Jin Z, Tringe SG, Dangl JL, Buckler ES, Ley RE. Diversity and heritability of the maize rhizosphere microbiome under field conditions. Proc Natl Acad Sci. 2013;110:6548–53.
Article
CAS
PubMed
Google Scholar
Niu B, Paulson JN, Zheng X, Kolter R. Simplified and representative bacterial community of maize roots. Proc Natl Acad Sci. 2017;114:2450-9.
Article
CAS
Google Scholar
Durán P, Thiergart T, Garrido-Oter R, Agler M, Kemen E, Schulze-Lefert P, Hacquard S. Microbial interkingdom interactions in roots promote Arabidopsis survival. Cell. 2018;175:973–983.e14.
Article
PubMed
PubMed Central
CAS
Google Scholar
Almario J, Jeena G, Wunder J, Langen G, Zuccaro A, Coupland G, Bucher M. Root-associated fungal microbiota of nonmycorrhizal Arabis alpina and its contribution to plant phosphorus nutrition. Proc Natl Acad Sci. 2017;114:9403-12.
Article
CAS
Google Scholar
Zhang N, Wang Z. Pezizomycotina: Sordariomycetes and Leotiomycetes. In: Systematics and Evolution. Heidelberg: Springer, Berlin; 2015. p. 57–88.
Google Scholar
Gdanetz K, Trail F. The wheat microbiome under four management strategies, and potential for endophytes in disease protection. Phytobiomes. 2017;1:158–68.
Article
Google Scholar
Qian X, Duan T, Sun X, Zheng Y, Wang Y, Guo L, Zhang D. Host genotype strongly influences phyllosphere fungal communities associated with Mussaenda pubescens var. alba (Rubiaceae). Fungal Ecol. 2018;36:141–51.
Article
Google Scholar
Sapkota R, Jørgensen LN, Nicolaisen M. Spatiotemporal variation and networks in the mycobiome of the wheat canopy. Front Plant Sci. 2017;8:1357.
Article
PubMed
PubMed Central
Google Scholar
Vorholt JA. Microbial life in the phyllosphere. Nat Rev Microbiol. 2012;10:828–40.
Article
CAS
PubMed
Google Scholar
Reinhold-Hurek B, Bünger W, Burbano CS, Sabale M, Hurek T. Roots shaping their microbiome: global hotspots for microbial activity. Annu Rev Phytopathol. 2015;53:403–24.
Article
CAS
PubMed
Google Scholar
Baudoin E, Benizri E, Guckert A. Impact of growth stage on the bacterial community structure along maize roots, as determined by metabolic and genetic fingerprinting. Appl Soil Ecol. 2002;19:135–45.
Article
Google Scholar
Shi S, Richardson AE, O’Callaghan M, Deangelis KM, Jones EE, Stewart A, Firestone MK, Condron LM. Effects of selected root exudate components on soil bacterial communities. FEMS Microbiol Ecol. 2011;77:600–10.
Article
CAS
PubMed
Google Scholar
Venturi V, Keel C. Signaling in the rhizosphere. Trends Plant Sci. 2016;21:187–98.
Article
CAS
PubMed
Google Scholar
Hu L, Robert CAM, Cadot S, Zhang X, Ye M, Li B, Manzo D, Chervet N, Steinger T, van der Heijden MGA, Schlaeppi K, Erb M. Root exudate metabolites drive plant-soil feedbacks on growth and defense by shaping the rhizosphere microbiota. Nat Commun. 2018;9:1–13.
Article
CAS
Google Scholar
Walters WA, Jin Z, Youngblut N, Wallace JG, Sutter J, Zhang W, González-Peña A, Peiffer J, Koren O, Shi Q, Knight R, Glavina Del Rio T, Tringe SG, Buckler ES, Dangl JL, Ley RE. Large-scale replicated field study of maize rhizosphere identifies heritable microbes. Proc Natl Acad Sci. 2018;115:7368–73.
Article
PubMed
Google Scholar
Badri DV, Vivanco JM. Regulation and function of root exudates. Plant, Cell Environ. 2009;32:666–81.
Article
CAS
Google Scholar
Chaparro JM, Badri DV, Vivanco JM. Rhizosphere microbiome assemblage is affected by plant development. ISME J. 2014;8:790–803.
Article
CAS
PubMed
Google Scholar
Peiffer JA, Ley RE. Exploring the maize rhizosphere microbiome in the field: a glimpse into a highly complex system. Commun Integr Biol. 2013;6:e25177.
Article
PubMed
PubMed Central
CAS
Google Scholar
Baker E, Smith IM. Antifungal compounds in winter wheat resistant and susceptible to Septoria. Ann Appl Biol. 1977;87:67–73.
Couture RM, Routley DG. Role of cyclic hydroxamic acids in monogenic resistance of maize to Helminthosporium turcicum. Physiol Pl Path. 1971;1:515–21.
Article
CAS
Google Scholar
Elnaghy MA, Shaw M. Correlation between resistance to stem rust and the concentration of a glucoside in wheat. Nature. 1966;210:417–8.
Article
CAS
Google Scholar
ElNaghy MA, Linko P. The role of 4-O-glucosyl-2,4- dihydroxy-7-methoxy-1,4-benzoxazin-3-one in resistance of wheat to stem rust. Physiol Plant. 1962;15:764–71.
Article
CAS
Google Scholar
Long BJ, Dunn GM, Routley DG. Relationship of hydroxamate concentration in maize and field reaction to Hetminthosporium turcicum. Crop Sci. 1978;18:573–5.
Article
CAS
Google Scholar
Vilich V, Löhndorf B, Sikora RA, Friebe A. Metabolism of benzoxazolinone allelochemicals of Zea mays by Fusarium subglutinans. Mycol Res. 1999;103:1529–32.
Article
CAS
Google Scholar
Friebe A, Vilich V, Hennig L, Kluge M, Sicker D. Detoxification of benzoxazolinone allelochemicals from wheat by Gaeumannomyces graminis var. tritici, G. graminis var. graminis, G. graminis var. avenae, and Fusarium culmorum. Appl enviromental Microbiol. 1998;64:2386–91.
CAS
Google Scholar
Søltoft M, Jørgensen LN, Svensmark B, Fomsgaard IS. Benzoxazinoid concentrations show correlation with Fusarium Head Blight resistance in Danish wheat varieties. Biochem Syst Ecol. 2008;36:245–59.
Article
CAS
Google Scholar
Yue Q, Bacon CW, Richardson MD. Biotransformation of 2-benzoxazolinone and 6-methoxy-benzoxazolinone by Fusarium moniliforme. Phytochemistry. 1998;48:451–4.
Article
CAS
Google Scholar
Wilkes MA, Marshall DR, Copeland L. Hydroxamic acids in cereal roots inhibit the growth of take-all. Soil Biol Biochem. 2006;31:1831–6.
Article
Google Scholar
Oikawa A, Ishihara A, Tanaka C, Mori N, Tsuda M, Iwamura H. Accumulation of HDMBOA-Glc is induced by biotic stresses prior to the release of MBOA in maize leaves. Phytochemistry. 2004;65:2995–3001.
Article
CAS
PubMed
Google Scholar
Martyniuk S, Stochmal A, Macías FA, Marín D, Oleszek W. Effects of some benzoxazinoids on in vitro growth of Cephalosporium gramineum and other fungi pathogenic to cereals and on Cephalosporium stripe of winter wheat. J Agric Food Chem. 2006;54:1036–9.
Article
CAS
PubMed
Google Scholar
Xu W, Wang Z, Wu F. The effect of D123 wheat as a companion crop on soil enzyme activities, microbial biomass and microbial communities in the rhizosphere of watermelon. Front Microbiol. 2015;6:1–10.
CAS
Google Scholar
Xu W, Liu D, Wu F, Liu S. Root exudates of wheat are involved in suppression of Fusarium wilt in watermelon in watermelon-wheat companion cropping. Eur J Plant Pathol. 2014;141:209–16.
Article
Google Scholar
Banerjee S, Schlaeppi K, van der Heijden MGA. Keystone taxa as drivers of microbiome structure and functioning. Nat Rev Microbiol. 2018;16:567–76.
Article
CAS
PubMed
Google Scholar
Hassani MA, Durán P, Hacquard S. Microbial interactions within the plant holobiont. Microbiome. 2018;6:58.
Article
PubMed
PubMed Central
Google Scholar