Kim YC, Leveau J, Gardener BBMS, Pierson EA, Pierson LS, Ryu CM. The multifactorial basis for plant health promotion by plant-associated bacteria. Appl Environ Microbiol. 2011;77(5):1548–55.
Article
CAS
PubMed
PubMed Central
Google Scholar
Berg G. Plant-microbe interactions promoting plant growth and health: perspectives for controlled use of microorganisms in agriculture. Appl Microbiol Biotechnol. 2009;84(1):11–8.
Article
CAS
PubMed
Google Scholar
Santhanam R, Weinhold A, Goldberg J, Oh Y, Baldwin IT. Native root-associated bacteria rescue a plant from a sudden-wilt disease that emerged during continuous cropping. Proc Natl Acad Sci. 2015;112(36):E5013–20.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu K, Newman M, McInroy JA, Hu CH, Kloepper JW. Selection and assessment of plant growth-promoting rhizobacteria for biological control of multiple plant diseases. Phytopathology. 2017;107(8):928–36.
Article
CAS
PubMed
Google Scholar
Xu XM, Jeffries P, Pautasso M, Jeger MJ. Combined use of biocontrol agents to manage plant diseases in theory and practice. Phytopathology. 2011;101(9):1024–31.
Article
CAS
PubMed
Google Scholar
Liu K, McInroy JA, Hu CH, Kloepper JW. Mixtures of plant-growth-promoting rhizobacteria enhance biological control of multiple plant diseases and plant-growth promotion in the presence of pathogens. Plant Dis. 2018;102(1):67–72.
Article
PubMed
Google Scholar
Kandula DRW, Jones EE, Stewart A, McLean KL, Hampton JG. Trichoderma species for biocontrol of soil-borne plant pathogens of pasture species. Biocontrol Sci Tech. 2015;25(9):1052–69.
Article
Google Scholar
Ciancio A, Pieterse CMJ, Mercado-Blanco J. Harnessing useful rhizosphere microorganisms for pathogen and pest biocontrol. Front Microbiol. 2016;7:1620.
Article
PubMed
PubMed Central
Google Scholar
Bach E, dos Santos Seger GD, de Carvalho Fernandes G, Lisboa BB, Passaglia LMP. Evaluation of biological control and rhizosphere competence of plant growth promoting bacteria. Appl Soil Ecol. 2016;99:141–9.
Article
Google Scholar
Mazzola M. Assessment and management of soil microbial community structure for disease suppression. Annu Rev Phytopathol. 2004;42:35–59.
Article
CAS
PubMed
Google Scholar
Mendes R, Kruijt M, De Bruijn I, Dekkers E, van der Voort M, Schneider JH, et al. Deciphering the rhizosphere microbiome for disease-suppressive bacteria. Science. 2011;332(6033):1097–100.
Article
CAS
PubMed
Google Scholar
van Bruggen AHC, Semenov AM, van Diepeningen AD, de Vos OJ, Blok WJ. Relation between soil health, wave-like fluctuations in microbial populations, and soil-borne plant disease management. Eur J Plant Pathol. 2006;115(1):105–22.
Article
Google Scholar
Zhang Y, Xu J, Riera N, Jin T, Li J, Wang N. Huanglongbing impairs the rhizosphere-to-rhizoplane enrichment process of the citrus root-associated microbiome. Microbiome. 2017;5(1):97.
Article
CAS
PubMed
PubMed Central
Google Scholar
Larousse M, Rancurel C, Syska C, Palero F, Etienne C, Nesme X, et al. Tomato root microbiota and Phytophthora parasitica-associated disease. Microbiome. 2017;5(1):56.
Article
PubMed
PubMed Central
Google Scholar
Wehner J, Antunes PM, Powell JR, Mazukatow J, Rillig MC. Plant pathogen protection by arbuscular mycorrhizas: a role for fungal diversity? Pedobiologia. 2010;53(3):197–201.
Article
Google Scholar
Mallon CA, van Elsas JD, Salles JF. Microbial invasions: the process, patterns, and mechanisms. Trends Microbiol. 2015;23(11):719–29.
Article
CAS
PubMed
Google Scholar
Van Elsas JD, Garbeva P, Salles J. Effects of agronomical measures on the microbial diversity of soils as related to the suppression of soil-borne plant pathogens. Biodegradation. 2002;13(1):29–40.
Article
PubMed
Google Scholar
Romanuk TN, Zhou Y, Brose U, Berlow EL, Williams RJ, Martinez ND. Predicting invasion success in complex ecological networks. Philos Trans R Soc, B. 2009;364(1524):1743–54.
Article
Google Scholar
Lurgi M, Galiana N, López BC, Joppa LN, Montoya JM. Network complexity and species traits mediate the effects of biological invasions on dynamic food webs. Front Ecol Evol. 2014;2:36.
Article
Google Scholar
Eisenhauer N, Schulz W, Scheu S, Jousset A. Niche dimensionality links biodiversity and invasibility of microbial communities. Funct Ecol. 2013;27(1):282–8.
Article
Google Scholar
Tardy V, Mathieu O, Lévêque J, Terrat S, Chabbi A, Lemanceau P, et al. Stability of soil microbial structure and activity depends on microbial diversity. Environ Microbiol Rep. 2014;6(2):173–83.
Article
CAS
PubMed
Google Scholar
Downing AL, Brown BL, Leibold MA. Multiple diversity-stability mechanisms enhance population and community stability in aquatic food webs. Ecology. 2014;95(1):173–84.
Article
PubMed
Google Scholar
Hill J, Lazarovits G. A mail survey of growers to estimate potato common scab prevalence and economic loss in Canada. Can J Plant Pathol. 2005;27(1):46–52.
Article
Google Scholar
Lambert DH, Loria R. Streptomyces scabies sp. nov., nom. rev. Int J Syst Evol Microbiol. 1989;39(4):387–92.
Google Scholar
Lambert DH, Loria R. Streptomyces acidiscabies sp. nov. Int J Syst Evol Microbiol. 1989;39(4):393–6.
Google Scholar
Miyajima K, Tanaka F, Takeuchi T, Kuninaga S. Streptomyces turgidiscabies sp. nov. Int J Syst Evol Microbiol. 1998;48(2):495–502.
Google Scholar
Bouchek-Mechiche K, Gardan L, Normand P, Jouan B. DNA relatedness among strains of Streptomyces pathogenic to potato in France: description of three new species, S. europaeiscabiei sp. nov. and S. stelliscabiei sp. nov. associated with common scab, and S. reticuliscabiei sp. nov. associated with netted scab. Int J Syst Evol Microbiol. 2000;50(1):91–9.
Article
CAS
PubMed
Google Scholar
Zhou B, Zhang MS, Ma XK. First report of Streptomyces bottropensis causing potato common scab in Hebei Province, China. Plant Dis. 2017;101(3):502.
Article
Google Scholar
King RR, Calhoun LA. The thaxtomin phytotoxins: sources, synthesis, biosynthesis, biotransformation and biological activity. Phytochemistry. 2009;70(7):833–41.
Article
CAS
PubMed
Google Scholar
Bignell DRD, Fyans JK, Cheng Z. Phytotoxins produced by plant pathogenic Streptomyces species. J Appl Microbiol. 2014;116(2):223–35.
Article
CAS
PubMed
Google Scholar
Lawrence CH, Clark MC, King RR. Induction of common scab symptoms in aseptically cultured potato tubers by the vivotoxin, thaxtomin. Phytopathology. 1990; 80(7):606–8.
King RR, Lawrence CH, Clark MC. Correlation of phytotoxin production with pathogenicity of Streptomyces scabies isolates from scab infected potato tubers. American Potato Journal. 1991;68(10):675–80.
Article
CAS
Google Scholar
Goyer C, Vachon J, Beaulieu C. Pathogenicity of Streptomyces scabies mutants altered in thaxtomin A production. Phytopathology. 1998;88(5):442–5.
Article
CAS
PubMed
Google Scholar
Kers JA, Cameron KD, Joshi MV, Bukhalid RA, Morello JE, Wach MJ, et al. A large, mobile pathogenicity island confers plant pathogenicity on Streptomyces species. Mol Microbiol. 2005;55(4):1025–33.
Article
CAS
PubMed
Google Scholar
Huguet-Tapia JC, Badger JH, Loria R, Pettis GS. Streptomyces turgidiscabies Car8 contains a modular pathogenicity island that shares virulence genes with other actinobacterial plant pathogens. Plasmid. 2011;65(2):118–24.
Article
CAS
PubMed
Google Scholar
Huguet-Tapia JC, Loria R. Draft genome sequence of Streptomyces acidiscabies 84-104, an emergent plant pathogen. J Bacteriol. 2012;194(7):1847.
Article
CAS
PubMed
PubMed Central
Google Scholar
Loria R, Bignell DRD, Moll S, Huguet-Tapia JC, Joshi MV, Johnson EG, et al. Thaxtomin biosynthesis: the path to plant pathogenicity in the genus Streptomyces. Antonie Van Leeuwenhoek. 2008;94(1):3–10.
Article
PubMed
Google Scholar
Healy FG, Krasnoff SB, Wach M, Gibson DM, Loria R. Involvement of a cytochrome P450 monooxygenase in thaxtomin a biosynthesis by Streptomyces acidiscabies. J Bacteriol. 2002;184(7):2019–29.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kers JA, Wach MJ, Krasnoff SB, Widom J, Cameron KD, Bukhalid RA, et al. Nitration of a peptide phytotoxin by bacterial nitric oxide synthase. Nature. 2004;429(6987):79.
Article
CAS
PubMed
Google Scholar
Barry SM, Kers JA, Johnson EG, Song L, Aston PR, Patel B, et al. Cytochrome P450-catalyzed L-tryptophan nitration in thaxtomin phytotoxin biosynthesis. Nat Chem Biol. 2012;8(10):814.
Article
CAS
PubMed
PubMed Central
Google Scholar
Duval I, Brochu V, Simard M, Beaulieu C, Beaudoin N. Thaxtomin A induces programmed cell death in Arabidopsis thaliana suspension-cultured cells. Planta. 2005;222(5):820–31.
Article
CAS
PubMed
Google Scholar
Loria R, Coombs J, Yoshida M, Kers J, Bukhalid R. A paucity of bacterial root diseases: Streptomyces succeeds where others fail. Physiol Mol Plant Pathol. 2003;62(2):65–72.
Article
Google Scholar
Tegg RS, Melian L, Wilson CR, Shabala S. Plant cell growth and ion flux responses to the streptomycete phytotoxin thaxtomin A: calcium and hydrogen flux patterns revealed by the non-invasive MIFE technique. Plant Cell Physiol. 2005;46(4):638–48.
Article
CAS
PubMed
Google Scholar
Dees MW, Wanner LA. In search of better management of potato common scab. Potato Res. 2012;55(3–4):249–68.
Article
Google Scholar
Ryan AD, Kinkel LL, Schottel JL. Effect of pathogen isolate, potato cultivar, and antagonist strain on potato scab severity and biological control. Biocontrol Sci Tech. 2004;14(3):301–11.
Article
Google Scholar
Tanaka T. Integrated control of potato scab according to incidence levels. Plant Prot. 2005;59:218–21.
Google Scholar
Meng Q, Hanson LE, Douches D, Hao JJ. Managing scab diseases of potato and radish caused by Streptomyces spp. using Bacillus amyloliquefaciens BAC03 and other biomaterials. Biol Control. 2013;67(3):373–9.
Article
Google Scholar
Han JS, Cheng JH, Yoon TM, Song J, Rajkarnikar A, Kim WG, et al. Biological control agent of common scab disease by antagonistic strain Bacillus sp. sunhua. J Appl Microbiol. 2005;99(1):213–21.
Article
CAS
PubMed
Google Scholar
Arseneault T, Goyer C, Filion M. Pseudomonas fluorescens LBUM223 increases potato yield and reduces common scab symptoms in the field. Phytopathology. 2015;105(10):1311–7.
Article
CAS
PubMed
Google Scholar
St-Onge R, Gadkar VJ, Arseneault T, Goyer C, Filion M. The ability of Pseudomonas sp. LBUM 223 to produce phenazine-1-carboxylic acid affects the growth of Streptomyces scabies, the expression of thaxtomin biosynthesis genes and the biological control potential against common scab of potato. FEMS Microbiol Ecol. 2010;75(1):173–83.
Article
PubMed
CAS
Google Scholar
Wanner LA. High proportions of nonpathogenic Streptomyces are associated with common scab-resistant potato lines and less severe disease. Can J Microbiol. 2007;53(9):1062–75.
Article
CAS
PubMed
Google Scholar
Wanner LA, Kirk WW, Qu XS. Field efficacy of nonpathogenic Streptomyces species against potato common scab. J Appl Microbiol. 2014;116(1):123–33.
Article
CAS
PubMed
Google Scholar
Hiltunen LH, Ojanperä T, Kortemaa H, Richter E, Lehtonen MJ, Valkonen JPT. Interactions and biocontrol of pathogenic Streptomyces strains co-occurring in potato scab lesions. J Appl Microbiol. 2009;106(1):199–212.
Article
CAS
PubMed
Google Scholar
Wenzl H, Demel J. Bildskalen für die Beurteilung von Kartoffelschorf und Rhizoctonia-Pocken. Der Pflanzenarzt. 1967;20:77–8.
Google Scholar
Edwards J, Johnson C, Santos-Medellín C, Lurie E, Podishetty NK, Bhatnagar S, et al. Structure, variation, and assembly of the root-associated microbiomes of rice. Proc Natl Acad Sci. 2015;112(8):E911–20.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang JT, Cao P, Hu HW, Li J, Han LL, Zhang LM, et al. Altitudinal distribution patterns of soil bacterial and archaeal communities along Mt. Shegyla on the Tibetan plateau. Microb Ecol. 2015;69(1):135–45.
Article
PubMed
Google Scholar
Sun M, Xiao T, Ning Z, Xiao E, Sun W. Microbial community analysis in rice paddy soils irrigated by acid mine drainage contaminated water. Appl Microbiol Biotechnol. 2015;99(6):2911–22.
Article
CAS
PubMed
Google Scholar
Bates ST, Berg-Lyons D, Caporaso JG, Walters WA, Knight R, Fierer N. Examining the global distribution of dominant archaeal populations in soil. The ISME journal. 2011;5(5):908.
Article
CAS
PubMed
Google Scholar
Sagova-Mareckova M, Daniel O, Omelka M, Kristufek V, Divis J, Kopecky J. Determination of factors associated with natural soil suppressivity to potato common scab. PLoS One. 2015;10(1):e0116291.
Article
PubMed
PubMed Central
CAS
Google Scholar
Edgar RC. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods. 2013;10(10):996.
Article
CAS
PubMed
Google Scholar
Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, et al. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol. 2009;75(23):7537–41.
Article
CAS
PubMed
PubMed Central
Google Scholar
Qin J, Li Y, Cai Z, Li S, Zhu J, Zhang F, et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature. 2012;490(7418):55.
Article
CAS
PubMed
Google Scholar
Truong DT, Franzosa EA, Tickle TL, Scholz M, Weingart G, Pasolli E, et al. MetaPhlAn2 for enhanced metagenomic taxonomic profiling. Nat Methods. 2015;12(10):902.
Article
CAS
PubMed
Google Scholar
Zhang Z, Qu Y, Li S, Feng K, Wang S, Cai W, et al. Soil bacterial quantification approaches coupling with relative abundances reflecting the changes of taxa. Sci Rep. 2017;7(1):4837.
Article
PubMed
PubMed Central
CAS
Google Scholar
Qu X, Wanner LA, Christ BJ. Using the TxtAB operon to quantify pathogenic Streptomyces in potato tubers and soil. Phytopathology. 2008;98(4):405–12.
Article
CAS
PubMed
Google Scholar
Kobayashi A, Kobayashi YO, Someya N, Ikeda S. Community analysis of root- and tuber-associated bacteria in field-grown potato plants harboring different resistance levels against common scab. Microbes Environ. 2015;30(4):301–9.
Article
PubMed
PubMed Central
Google Scholar
Sun P, Otto-Hanson LK, Arenz BE, Ma Q, Kinkel LL. Molecular and functional characteristics of streptomycete communities in relation to soil factors and potato common scab. Eur J Soil Biol. 2015;70:58–66.
Article
CAS
Google Scholar
Ferris H, Tuomisto H. Unearthing the role of biological diversity in soil health. Soil Biol Biochem. 2015;85:101–9.
Article
CAS
Google Scholar
van Bruggen AHC, Sharma K, Kaku E, Karfopoulos S, Zelenev VV, Blok WJ. Soil health indicators and Fusarium wilt suppression in organically and conventionally managed greenhouse soils. Appl Soil Ecol. 2015;86:192–201.
Article
Google Scholar
Epelde L, Becerril JM, Alkorta I, Garbisu C. Adaptive long-term monitoring of soil health in metal phytostabilization: ecological attributes and ecosystem services based on soil microbial parametersxs. Int J Phytoremediation. 2014;16(10):971–81.
Article
PubMed
Google Scholar
Garbeva P, Van Veen JA, Van Elsas JD. Microbial diversity in soil: selection of microbial populations by plant and soil type and implications for disease suppressiveness. Annu Rev Phytopathol. 2004;42:243–70.
Article
CAS
PubMed
Google Scholar
Lefcheck JS, Byrnes JEK, Isbell F, Gamfeldt L, Griffin JN, Eisenhauer N, et al. Biodiversity enhances ecosystem multifunctionality across trophic levels and habitats. Nat Commun. 2015;6:6936.
Article
CAS
PubMed
Google Scholar
Delgado-Baquerizo M, Maestre FT, Reich PB, Jeffries TC, Gaitan JJ, Encinar D, et al. Microbial diversity drives multifunctionality in terrestrial ecosystems. Nat Commun. 2016;7:10541.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gibbons SM. Microbial community ecology: function over phylogeny. Nature ecology & evolution. 2017;1(1):0032.
Article
Google Scholar
Louca S, Parfrey LW, Doebeli M. Decoupling function and taxonomy in the global ocean microbiome. Science. 2016;353(6305):1272–7.
Article
CAS
PubMed
Google Scholar
Nelson MB, Martiny AC, Martiny JBH. Global biogeography of microbial nitrogen-cycling traits in soil. Proc Natl Acad Sci. 2016;113(29):8033–40.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sarma BK, Yadav SK, Singh S, Singh HB. Microbial consortium-mediated plant defense against phytopathogens: readdressing for enhancing efficacy. Soil Biol Biochem. 2015;87:25–33.
Article
CAS
Google Scholar
van Bruggen AHC, Finckh MR. Plant diseases and management approaches in organic farming systems. Annu Rev Phytopathol. 2016;54:25–54.
Article
PubMed
CAS
Google Scholar
Panke-Buisse K, Poole AC, Goodrich JK, Ley RE, Kao-Kniffin J. Selection on soil microbiomes reveals reproducible impacts on plant function. The ISME journal. 2015;9(4):980.
Article
CAS
PubMed
Google Scholar
Woo HL, DeAngelis KM, Teshima H, Davenport K, Daligault H, Erkkila T, et al. High-quality draft genome sequences of four lignocellulose-degrading bacteria isolated from Puerto Rican forest soil: Gordonia sp., Paenibacillus sp., Variovorax sp., and Vogesella sp. Genome announcements. 2017;5(18):e00300–17.
Article
PubMed
PubMed Central
Google Scholar
Ghio S, Di Lorenzo GS, Lia V, Talia P, Cataldi A, Grasso D, et al. Isolation of Paenibacillus sp. and Variovorax sp. strains from decaying woods and characterization of their potential for cellulose deconstruction. Int J Biochem Mol Biol. 2012;3(4):352.
CAS
PubMed
PubMed Central
Google Scholar
Talia P, Sede SM, Campos E, Rorig M, Principi D, Tosto D, et al. Biodiversity characterization of cellulolytic bacteria present on native Chaco soil by comparison of ribosomal RNA genes. Res Microbiol. 2012;163(3):221–32.
Article
CAS
PubMed
Google Scholar
Morales-Jiménez J, Zúñiga G, Ramírez-Saad HC, Hernández-Rodríguez C. Gut-associated bacteria throughout the life cycle of the bark beetle Dendroctonus rhizophagus Thomas and Bright (Curculionidae: Scolytinae) and their cellulolytic activities. Microb Ecol. 2012;64(1):268–78.
Article
PubMed
Google Scholar
Johnson EG, Joshi MV, Gibson DM, Loria R. Cello-oligosaccharides released from host plants induce pathogenicity in scab-causing Streptomyces species. Physiol Mol Plant Pathol. 2007;71(1–3):18–25.
Article
CAS
Google Scholar
Lerat S, Simao-Beaunoir AM, Wu R, Beaudoin N, Beaulieu C. Involvement of the plant polymer suberin and the disaccharide cellobiose in triggering thaxtomin A biosynthesis, a phytotoxin produced by the pathogenic agent Streptomyces scabies. Phytopathology. 2010;100(1):91–6.
Article
CAS
PubMed
Google Scholar
Tagawa M, Tamaki H, Manome A, Koyama O, Kamagata Y. Isolation and characterization of antagonistic fungi against potato scab pathogens from potato field soils. FEMS Microbiol Lett. 2010;305(2):136–42.
Article
CAS
PubMed
Google Scholar
Chen Y, Yan F, Chai Y, Liu H, Kolter R, Losick R, et al. Biocontrol of tomato wilt disease by Bacillus subtilis isolates from natural environments depends on conserved genes mediating biofilm formation. Environ Microbiol. 2013;15(3):848–64.
Article
PubMed
Google Scholar
Chen F, Wang M, Zheng Y, Luo J, Yang X, Wang X. Quantitative changes of plant defense enzymes and phytohormone in biocontrol of cucumber Fusarium wilt by Bacillus subtilis B579. World J Microbiol Biotechnol. 2010;26(4):675–84.
Article
CAS
Google Scholar
Chowdhury SP, Uhl J, Grosch R, Alquéres S, Pittroff S, Dietel K, et al. Cyclic lipopeptides of Bacillus amyloliquefaciens subsp. plantarum colonizing the lettuce rhizosphere enhance plant defense responses toward the bottom rot pathogen Rhizoctonia solani. Mol Plant-Microbe Interact. 2015;28(9):984–95.
Article
CAS
PubMed
Google Scholar
Bassler BL. How bacteria talk to each other: regulation of gene expression by quorum sensing. Curr Opin Microbiol. 1999;2(6):582–7.
Article
CAS
PubMed
Google Scholar
Williams P. Quorum sensing, communication and cross-kingdom signalling in the bacterial world. Microbiology. 2007;153(12):3923–38.
Article
CAS
PubMed
Google Scholar
Regan JC, Brandão AS, Leitão AB, Dias ÂRM, Sucena É, Jacinto A, et al. Steroid hormone signaling is essential to regulate innate immune cells and fight bacterial infection in Drosophila. PLoS Pathog. 2013;9(10):e1003720.
Article
PubMed
PubMed Central
CAS
Google Scholar
Negri I. Wolbachia as an “infectious” extrinsic factor manipulating host signaling pathways. Front Endocrinol. 2012;2:115.
Article
Google Scholar
Tseng TT, Tyler BM, Setubal JC. Protein secretion systems in bacterial-host associations, and their description in the gene ontology. BMC Microbiol. 2009;9(1):S2.
Article
PubMed
PubMed Central
CAS
Google Scholar
Galán JE, Collmer A. Type III secretion machines: bacterial devices for protein delivery into host cells. Science. 1999;284(5418):1322–8.
Article
PubMed
Google Scholar
Eijsink VGH, Axelsson L, Diep DB, Håvarstein LS, Holo H, Nes IF. Production of class II bacteriocins by lactic acid bacteria; an example of biological warfare and communication. Antonie Van Leeuwenhoek. 2002;81(1–4):639–54.
Article
CAS
PubMed
Google Scholar
Silver AC, Kikuchi Y, Fadl AA, Sha J, Chopra AK, Graf J. Interaction between innate immune cells and a bacterial type III secretion system in mutualistic and pathogenic associations. Proc Natl Acad Sci. 2007;104(22):9481–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ghosh P. Process of protein transport by the type III secretion system. Microbiol Mol Biol Rev. 2004;68(4):771–95.
Article
CAS
PubMed
PubMed Central
Google Scholar
King RR, Lawrence CH, Calhoun LA. Chemistry of phytotoxins associated with Streptomyces scabies the causal organism of potato common scab. J Agric Food Chem. 1992;40(5):834–7.
Article
CAS
Google Scholar
Weyrich LS, Duchene S, Soubrier J, Arriola L, Llamas B, Farrell M, et al. Neanderthal behaviour, diet, and disease inferred from ancient DNA in dental calculus. Nature. 2017;544(7650):357.
Article
CAS
PubMed
Google Scholar
Berer K, Gerdes LA, Cekanaviciute E, Jia X, Xiao L, Kümpfel T, et al. Gut microbiota from multiple sclerosis patients enables spontaneous autoimmune encephalomyelitis in mice. Proc Natl Acad Sci. 2017;114(40):10719–24.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kwak MJ, Kong HG, Choi K, Kwon SK, Song JY, Lee J, et al. Rhizosphere microbiome structure alters to enable wilt resistance in tomato. Nat Biotechnol. 2018;36(11):1100–9.
Yang L, Lou J, Wang HZ, Wu LS, Xu JM. Use of an improved high-throughput absolute abundance quantification method to characterize soil bacterial community and dynamics. Sci Total Environ. 2018;633:360–71.
Article
CAS
PubMed
Google Scholar
Lou J, Yang L, Wang HZ, Wu LS, Xu JM. Assessing soil bacterial community and dynamics by integrated high-throughput absolute abundance quantification. PeerJ. 2018;6:e4514.
Article
PubMed
PubMed Central
Google Scholar