Klepeis NE, Nelson WC, Ott WR, Robinson JP, Tsang AM, Switzer P, Behar JV, Hern SC, Engelmann WH. The National Human Activity Pattern Survey (NHAPS): a resource for assessing exposure to environmental pollutants. J Expo Sci Environ Epidemiol. 2001; 11(3):231.
Article
CAS
Google Scholar
Adams RI, Bateman AC, Bik HM, Meadow JF. Microbiota of the indoor environment: a meta-analysis. Microbiome. 2015; 3:49.
Article
Google Scholar
Kembel SW, Jones E, Kline J, Northcutt D, Stenson J, Womack AM, Bohannan BJ, Brown G, Green JL. Architectural design influences the diversity and structure of the built environment microbiome. ISME J. 2012; 6(8):1469–79.
Article
CAS
Google Scholar
Jeon YS, Chun J, Kim BS. Identification of household bacterial community and analysis of species shared with human microbiome. Curr Microbiol. 2013; 67(5):557–63.
Article
CAS
Google Scholar
Meadow J, Altrichter A, Kembel S, Kline J, Mhuireach G, Moriyama M, Northcutt D, O’connor T, Womack A, Brown G, et al. Indoor airborne bacterial communities are influenced by ventilation, occupancy, and outdoor air source. Indoor Air. 2014; 24:41–8.
Article
CAS
Google Scholar
Chase J, Fouquier J, Zare M, Sonderegger DL, Knight R, Kelley ST, Siegel J, Caporaso JG. Geography and location are the primary drivers of office microbiome composition. mSystems. 2016; 1(2):e00022–16.
Article
Google Scholar
National Academies of Sciences E, Medicine, et al. Microbiomes of the built environment: a research agenda for indoor microbiology, human health, and buildings. Washington, DC: National Academies Press; 2017.
Google Scholar
Dales RE, Burnett R, Zwanenburg H. Adverse health effects among adults exposed to home dampness and molds. Am Rev Respir Dis. 1991; 143(3):505–9.
Article
CAS
Google Scholar
Husman T. Health effects of indoor-air microorganisms. Scand J Work Environ Health. 1996; 22(1):5–13.
Article
CAS
Google Scholar
Poza M, Gayoso C, Gomez MJ, Rumbo-Feal S, Tomás M, Aranda J, Fernandez A, Bou G. Exploring bacterial diversity in hospital environments by GS-FLX titanium pyrosequencing. PLoS ONE. 2012; 7(8):e44105.
Article
CAS
Google Scholar
Flores GE, Bates ST, Caporaso JG, Lauber CL, Leff JW, Knight R, Fierer N. Diversity, distribution and sources of bacteria in residential kitchens. Environ Microbiol. 2013; 15(2):588–96.
Article
CAS
Google Scholar
Rook GA. Regulation of the immune system by biodiversity from the natural environment: an ecosystem service essential to health. Proc Natl Acad Sci. 2013; 110(46):18360–7.
Article
CAS
Google Scholar
Mensah-Attipoe J, Täubel M, Hernandez M, Pitkäranta M, Reponen T. An emerging paradox: toward a better understanding of the potential benefits and adversity of microbe exposures in the indoor environment. Indoor Air. 2017; 27:3–5.
Article
CAS
Google Scholar
Brown G, Kline J, Mhuireach G, Northcutt D, Stenson J. Making microbiology of the built environment relevant to design. Microbiome. 2016; 4:6.
Article
CAS
Google Scholar
Hopkinson R, Petherbridge P, Longmore J. Daylighting. London: Heinemann; 1966.
Google Scholar
Faergemann J, Larkö O. The effect of UV-light on human skin microorganisms. Acta Derm Venereol. 1986; 67:69–72.
Google Scholar
Hobday R. Sunlight therapy and solar architecture. Med Hist. 1997; 41(04):455–72.
Article
CAS
Google Scholar
Hockberger PE. The discovery of the damaging effect of sunlight on bacteria. J Photochem Photobiol B. 2000; 58(2):185–91.
Article
CAS
Google Scholar
World Health Organization. Guidelines on prevention and control of hospital associated infections. Geneva: WHO; 2002.
Google Scholar
Hobday R, Dancer S. Roles of sunlight and natural ventilation for controlling infection: historical and current perspectives. J Hosp Infect. 2013; 84(4):271–82.
Article
CAS
Google Scholar
Downes A, Blunt TP. Researches on the effect of light upon bacteria and other organisms. Proc R Soc Lond. 1877; 26(179-184):488–500.
Article
Google Scholar
The action of light on bacteria.—III. Philos Trans R Soc Lond B Biol Sci. 1894; 185:961–86. http://rstb.royalsocietypublishing.org/content/185/961.
Broadhurst J, Hausmann TW. Bacterial destruction through glass. Am J Nurs. 1930; 30(11):1391–4.
Google Scholar
Lidwell O, Lowbury E. The survival of bacterial in dust. IV. Atmospheric humidity and the bactericidal action of ultra-violet irradiation. J Hyg. 1950; 48(01):38–43.
Article
CAS
Google Scholar
Lidwell O, Lowbury E. The survival of bacteria in dust. III. The effect of light on the survival of bacteria in dust. J Hyg. 1950; 48(01):28–37.
Article
CAS
Google Scholar
Tuchinda C, Srivannaboon S, Lim HW. Photoprotection by window glass, automobile glass, and sunglasses. J Am Acad Dermatol. 2006; 54(5):845–54.
Article
Google Scholar
Kettleson EM, Adhikari A, Vesper S, Coombs K, Indugula R, Reponen T. Key determinants of the fungal and bacterial microbiomes in homes. Environ Res. 2015; 138:130–5.
Article
CAS
Google Scholar
Gibbons SM. The built environment is a microbial wasteland. mSystems. 2016; 1(2):e00033–16.
Article
Google Scholar
Proctor CR, Dai D, Edwards MA, Pruden A. Interactive effects of temperature, organic carbon, and pipe material on microbiota composition and Legionella pneumophila in hot water plumbing systems. Microbiome. 2017; 5:130.
Article
Google Scholar
Drake JA, Huxel GR, Hewitt CL. Microcosms as models for generating and testing community theory. Ecology. 1996; 77(3):670–7.
Article
Google Scholar
Benton TG, Solan M, Travis JM, Sait SM. Microcosm experiments can inform global ecological problems. Trends Ecol Evol. 2007; 22(10):516–21.
Article
Google Scholar
Meadow JF, Altrichter AE, Bateman AC, Stenson J, Brown G, Green JL, Bohannan BJ. Humans differ in their personal microbial cloud. PeerJ. 2015; 3:e1258.
Article
Google Scholar
Harvey PH, Colwell RK, Silvertown JW, May RM. Null models in ecology. Annu Rev Ecol Syst. 1983; 14:189–211.
Article
Google Scholar
Gotelli NJ, Graves GR. Null models in ecology. Washington: Smithsonian Institution; 1996.
Google Scholar
Pinheiro J, Bates D, DebRoy S, Sarkar D. R Core Team. nlme: Linear and Nonlinear Mixed Effects Models. 2017. https://CRAN.R-project.org/package=nlme. R package version 3.1-131.
American Society of Heating & Refrigerating & Air-Conditioning Engineers & American National Standards Institute. Thermal environmental conditions for human occupancy, vol. 55: American Society of Heating, Refrigerating and Air-Conditioning Engineers; 2004.
CIBSE L. Daylighting and window design. London: The Chartered Institution of Building Services Engineers; 1999.
Google Scholar
Qian J, Ferro AR, Fowler KR. Estimating the resuspension rate and residence time of indoor particles. J Air Waste Manag Assoc. 2008; 58(4):502–16.
Article
CAS
Google Scholar
Carini P, Marsden PJ, Leff JW, Morgan EE, Strickland MS, Fierer N. Relic DNA is abundant in soil and obscures estimates of soil microbial diversity. Nat Microbiol. 2016; 2:16242.
Article
Google Scholar
Nocker A, Cheung CY, Camper AK. Comparison of propidium monoazide with ethidium monoazide for differentiation of live vs. dead bacteria by selective removal of DNA from dead cells. J Microbiol Meth. 2006; 67(2):310–20.
Article
CAS
Google Scholar
Kembel SW, Meadow JF, O’Connor TK, Mhuireach G, Northcutt D, Kline J, Moriyama M, Brown G, Bohannan BJ, Green JL. Architectural design drives the biogeography of indoor bacterial communities. PloS ONE. 2014; 9:e87093.
Article
Google Scholar
Maeda H, Fujimoto C, Haruki Y, Maeda T, Kokeguchi S, Petelin M, Arai H, Tanimoto I, Nishimura F, Takashiba S. Quantitative real-time PCR using TaqMan and SYBR Green for Actinobacillus actinomycetemcomitans, Porphyromonas gingivalis, Prevotella intermedia, tetQ gene and total bacteria. FEMS Immunol Med Microbiol. 2003; 39:81–6.
Article
CAS
Google Scholar
Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods. 2016; 13(7):581.
Article
CAS
Google Scholar
Callahan BJ, Sankaran K, Fukuyama JA, McMurdie PJ, Holmes SP. Bioconductor workflow for microbiome data analysis: from raw reads to community analyses. F1000Research. 2016; 5:1492.
Article
Google Scholar
Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glöckner FO. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2012; 41(D1):D590–6.
Article
Google Scholar
Dannemiller KC, Lang-Yona N, Yamamoto N, Rudich Y, Peccia J. Combining real-time PCR and next-generation DNA sequencing to provide quantitative comparisons of fungal aerosol populations. Atmos Environ. 2014; 84:113–21.
Article
CAS
Google Scholar
Nguyen NH, Smith D, Peay K, Kennedy P. Parsing ecological signal from noise in next generation amplicon sequencing. New Phytol. 2015; 205(4):1389–93.
Article
CAS
Google Scholar
Kuczynski J, Liu Z, Lozupone C, McDonald D, Fierer N, Knight R. Microbial community resemblance methods differ in their ability to detect biologically relevant patterns. Nat Methods. 2010; 7(10):813–9.
Article
CAS
Google Scholar
Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B Methodol. 1995; 57(1):289–300.
Google Scholar
Anderson MJ. Distance-based tests for homogeneity of multivariate dispersions. Biometrics. 2006; 62:245–53.
Article
Google Scholar
R Core Team. R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing; 2017. https://www.R-project.org/.
Google Scholar
Van Der MaatenLvd, Hinton G. Visualizing data using t-SNE. J Mach Learn Res. 2008; 9(Nov):2579–605.
Google Scholar
Van Der Maaten L. Accelerating t-SNE using tree-based algorithms. J Mach Learn Res. 2014; 15:3221–45.
Google Scholar
Podani J, Miklos I. Resemblance coefficients and the horseshoe effect in principal coordinates analysis. Ecology. 2002; 83(12):3331–43.
Article
Google Scholar
Morton JT, Toran L, Edlund A, Metcalf JL, Lauber C, Knight R. Uncovering the horseshoe effect in microbial analyses. mSystems. 2017; 2:e00166–16.
PubMed
PubMed Central
Google Scholar
Knights D, Kuczynski J, Charlson ES, Zaneveld J, Mozer MC, Collman RG, Bushman FD, Knight R, Kelley ST. Bayesian community-wide culture-independent microbial source tracking. Nat Methods. 2011; 8(9):761–3.
Article
CAS
Google Scholar
McDonald D, Hyde E, Debelius JW, Morton JT, Gonzalez A, Ackermann G, Aksenov AA, Behsaz B, Brennan C, Chen Y, et al. American gut: an open platform for citizen science microbiome research. mSystems. 2018; 3(3):e00031–18.
Article
Google Scholar
Thompson LR, Sanders JG, McDonald D, Amir A, Ladau J, Locey KJ, Prill RJ, Tripathi A, Gibbons SM, Ackermann G, et al. A communal catalogue reveals Earth’s multiscale microbial diversity. Nature. 2017; 551:7681.
Article
Google Scholar
Fukuyama J, Rumker L, Sankaran K, Jeganathan P, Dethlefsen L, Relman DA, Holmes SP. Multidomain analyses of a longitudinal human microbiome intestinal cleanout perturbation experiment. PLoS Comput Biol. 2017; 13(8):e1005706.
Article
Google Scholar
Price MN, Dehal PS, Arkin AP. FastTree 2–approximately maximum-likelihood trees for large alignments. PloS ONE. 2010; 5(3):e9490.
Article
Google Scholar
Klein AM, Bohannan BJ, Jaffe DA, Levin DA, Green JL. Molecular evidence for metabolically active bacteria in the atmosphere. Front Microbiol. 2016; 7:772.
Article
Google Scholar
Bewick S, Thielen P, Mehoke T, Karig D, Fagan WF. Sampling, sequencing and the SAD. Ecol Complex. 2017; 32:168–80.
Article
Google Scholar
Baldridge E, Harris DJ, Xiao X, White EP. An extensive comparison of species-abundance distribution models. PeerJ. 2016; 4:e2823.
Article
Google Scholar
Dannemiller K, Weschler C, Peccia J. Fungal and bacterial growth in floor dust at elevated relative humidity levels. Indoor Air. 2017; 27(2):354–63.
Article
CAS
Google Scholar
Checinska A, Probst AJ, Vaishampayan P, White JR, Kumar D, Stepanov VG, Fox GE, Nilsson HR, Pierson DL, Perry J, et al. Microbiomes of the dust particles collected from the International Space Station and Spacecraft Assembly Facilities. Microbiome. 2015; 3:50.
Article
Google Scholar
Hospodsky D, Qian J, Nazaroff WW, Yamamoto N, Bibby K, Rismani-Yazdi H, Peccia J. Human occupancy as a source of indoor airborne bacteria. PloS ONE. 2012; 7(4):e34867.
Article
CAS
Google Scholar
Chase JM. Community assembly: when should history matter?. Oecologia. 2003; 136(4):489–98.
Article
Google Scholar
Jiang L, Patel SN. Community assembly in the presence of disturbance: a microcosm experiment. Ecology. 2008; 89(7):1931–40.
Article
Google Scholar
Lindell MJ, Granéli W, Tranvik LJ. Enhanced bacterial growth in response to photochemical transformation of dissolved organic matter. Limnol Oceanogr. 1995; 40:195–9.
Article
Google Scholar
O’Dwyer JP, Kembel SW, Green JL. Phylogenetic diversity theory sheds light on the structure of microbial communities. PLoS Comput Biol. 2012; 8(12):e1002832.
Article
Google Scholar
Lynch MD, Neufeld JD. Ecology and exploration of the rare biosphere. Nat Rev Microbiol. 2015; 13(4):217–29.
Article
CAS
Google Scholar
Ruiz-Calderon JF, Cavallin H, Song SJ, Novoselac A, Pericchi LR, Hernandez JN, Rios R, Branch OH, Pereira H, Paulino LC, et al. Walls talk: microbial biogeography of homes spanning urbanization. Sci Adv. 2016; 2(2):e1501061.
Article
Google Scholar
Beckett WS. Occupational respiratory diseases. N Engl J Med. 2000; 342(6):406–13.
Article
CAS
Google Scholar
Yang X, Jiang Y, Wang C. Does IL-17 respond to the disordered lung microbiome and contribute to the neutrophilic phenotype in asthma?. Mediat Inflamm. 2016; 2016:7.
Google Scholar
Adams RI, Lymperopoulou DS, Misztal PK, Pessotti RDC, Behie SW, Tian Y, Goldstein AH, Lindow SE, Nazaroff WW, Taylor JW, et al. Microbes and associated soluble and volatile chemicals on periodically wet household surfaces. Microbiome. 2017; 5:128.
Article
Google Scholar
Sandhu B, Singh C, et al. Relationship of sunlight and humidity on the virulence of street rabies virus in saliva. Indian J Anim Sci. 2009; 79:24.
Google Scholar
Sichel C, De Cara M, Tello J, Blanco J, Fernández-Ibáñez P. Solar photocatalytic disinfection of agricultural pathogenic fungi: Fusarium species. Appl Catal B Environ. 2007; 74(1-2):152–60.
Article
CAS
Google Scholar
Hijnen W, Beerendonk E, Medema GJ. Inactivation credit of UV radiation for viruses, bacteria and protozoan (oo) cysts in water: a review. Water Res. 2006; 40:3–22.
Article
CAS
Google Scholar
Pettijohn D, Hanawalt P. Evidence for repair-replication of ultraviolet damaged DNA in bacteria. J Mol Biol. 1964; 9(2):395–410.
Article
CAS
Google Scholar
Gourmelon M, Cillard J, Pommepuy M. Visible light damage to Escherichia coli in seawater: oxidative stress hypothesis. J Appl Microbiol. 1994; 77:105–12.
CAS
Google Scholar
Ward G. The radiance synthetic imaging system. Berkeley: University of California; 2004.
Google Scholar