Kral TVE, Eriksen WT, Souders MC, Pinto-Martin JA. Eating behaviors, diet quality, and gastrointestinal symptoms in children with autism spectrum disorders: a brief review. J Pediatr Nurs. 2013;28:548–56.
Article
PubMed
Google Scholar
Li Q, Han Y, Dy ABC, Hagerman RJ. The gut microbiota and autism spectrum disorders. Front Cell Neurosci. 2017;11:1–14.
Google Scholar
Souza NCS, Mendonça JN, Portari VG, Júnior AAJ, Marchini JS, Chiarello PG. Intestinal permeability and nutritional status in developmental disorders. Altern Ther Health Med. 2012;18:38–43.
Google Scholar
White JF. Minireview: intestinal pathophysiology in autism. Exp Biol Med. 2003;228:639–49.
Article
CAS
Google Scholar
Hsiao EY. Gastrointestinal issues in autism spectrum disorder. Harv Rev Psychiatry. 2014;22:104–11.
Article
PubMed
Google Scholar
Adams JB, Johansen LJ, Powell LD, Quig D, Rubin AR. Gastrointestinal flora and gastrointestinal status in children with autism-comparisons to typical children and correlation with autism severity. BMC Gastroenterol. 2011;11:1–13.
Article
Google Scholar
Tomova A, Husarova V, Lakatosova S, Bakos J, Vlkova B, Babinska K, Ostatnikova D. Gastrointestinal microbiota in children with autism in Slovakia. Physiol Behav. 2015;138:179–87.
Article
PubMed
CAS
Google Scholar
Harris C, Card B. A pilot study to evaluate nutritional influences on gastrointestinal symptoms and behaviour patterns in children with autism spectrum disorder. Complement Ther Med. 2012;20:437–40.
Article
PubMed
Google Scholar
Patel K, Curtis LT. A comprehensive approach to treating autism and attention-deficit hyperactivity disorder: a prepilot study. J Altern Complement Med. 2007;13:1091–7.
Article
PubMed
Google Scholar
Pennesi CM, Klein LC. Effectiveness of the gluten-free, casein-free diet for children diagnosed with autism spectrum disorder: based on parental report. Nutr Neurosci. 2012;15:85–91.
Article
PubMed
CAS
Google Scholar
Nazni P, Wesely EG, Nishadevi V. Impact of casein and gluten free dietary intervention on selected autistic children. Iran J Pediatr. 2008;18:244–50.
Google Scholar
Whiteley P, Haracopos D, Knivsberg AM, Reichelt KL, Parlar S, Jacobsen J, Seim A, Pedersen L, Schondel M, Shattock P. The ScanBrit randomised, controlled, singleblind study of a gluten- and casein-free dietary intervention for children with autism spectrum disorders. Nutr Neurosci. 2010;13:87–100.
Article
PubMed
CAS
Google Scholar
Elder JH, Shankar M, Shuster J, Theriaque D, Burns S, Sherrill L. The gluten-free, casein-free diet in autism: results of a preliminary double blind clinical trial. J Aut Dev Disord. 2006;36:413–20.
Article
Google Scholar
Seung HK. The gluten- and casein-free diet and autism: communication outcomes from a preliminary double-blind clinical trial. J Med Speech Lang Pathol. 2007;15:337–45.
Google Scholar
Johnson CR, Handen BL, Zimmer M, Sacco K, Turner K. Effects of gluten free/casein free diet in young children with autism: a pilot study. J Dev Phys Disabil. 2011;23:213–25.
Article
Google Scholar
Salonen A, De Vos WM. Impact of diet on human intestinal microbiota and health. Ann Rev Food Sci Technol. 2014;5:239–62.
Article
CAS
Google Scholar
Sanders ME. Probiotics: definition, sources, selection, and uses. Clin Infect Dis. 2008;46:S58–61.
Article
PubMed
Google Scholar
Gibson GR, Hutkins R, Sanders ME, Prescott SL, Reimer RA, Salminen SJ, Scott K, Stanton C, Swanson KS, Cani PD, Verbeke K, Reid G. The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nat Rev Gastroenterol Hepatol. 2017;14:491–502.
PubMed
Google Scholar
Parracho HMRT, Gibson GR, Knott F, Bosscher D, Kleerebezem M, McCartney AL. A double-blind, placebo-controlled, crossover-designed probiotic feeding study in children diagnosed with autistic spectrum disorders. Curr Top Nutraceutical Res. 2010;8:1–6.
Google Scholar
Kaluzna-Czaplińska J, Błaszczyk S. The level of arabinitol in autistic children after probiotic therapy. Nutr. 2012;28:124–36.
Article
CAS
Google Scholar
Grimaldi R, Cela D, Swann JR, Vulevic J, Gibson GR, Costabile A. In vitro fermentation of B-GOS: impact on faecal bacterial populations and metabolic activity in autistic and non-autistic children. FEMS Microbiol Ecol. 2017;93:1–10.
Article
CAS
Google Scholar
Mari-Bauset S, Llopis-Gonzalez A, Zazpe I, Marí-Sanchis A, Suárez-Varela MM. Comparison of nutritional status between children with autism spectrum disorder and typically developing children in the Mediterranean Region (Valencia, Spain). Autism. 2016;21:1–13.
Google Scholar
Marí-Bauset S, Llopis-González A, Zazpe I, Marı-Sanchis A, Suarez-Varela MM. Nutritional impact of a gluten-free casein-free diet in children with autism spectrum disorder. J Autism Dev Disord. 2015;46:673–84.
Article
Google Scholar
Kocovska E, Fernell E, Billstedt E, Minnis H, Gillberg C. Vitamin D and autism: clinical review. Res Dev Disabil. 2012;33:1541–50.
Article
PubMed
Google Scholar
Vinkhuyzen AAE, Eyles DW, Burne THL, Blanken LME, Kruithof CJ, Verhulst F, White T, Jaddoe VW, Tiemeier H, McGrath JJ. Gestational vitamin D deficiency and autism spectrum disorder. Brit J Psych. 2017;3:85–90.
Google Scholar
Cannell JJ. Vitamin D and autism, what’s new? Rev Endocr Metab Disord. 2017;18:183–93.
Article
PubMed
CAS
Google Scholar
Mulloy A, Lang R, O’Reilly M, Sigafoos J, Lancioni G, Rispoli M. Gluten-free and casein-free diets in the treatment of autism spectrum disorders: a systematic review. Res Autism Spectr Disord. 2010;4:328–39.
Article
Google Scholar
Ly V, Bottelier M, Hoekstra PJ, Vasquez AA, Buitelaar JK, Rommelse NN. Elimination diets’ efficacy and mechanisms in attention deficit hyperactivity disorder and autism spectrum disorder. Eur Child Adolesc Psychiatry. 2017;26:1067–79.
Article
PubMed
PubMed Central
Google Scholar
Pusponegoro HD, Ismael S, Firmansyah A, Sastroasmoro S, Vandenplas Y. Gluten and casein supplementation does not increase symptoms in children with autism spectrum disorder. Acta Paediatr. 2014;104:e500–5.
Article
CAS
Google Scholar
Hyman SL, Stewart PA, Foley J, Cain U, Peck R, Morris DD, Wang H, Smith T. The gluten-free/casein-free diet: a double-blind challenge trial in children with autism. J Autism Dev Disord. 2016;46:205–20.
Article
PubMed
Google Scholar
Finegold SM, Dowd SE, Gontcharova V, Liu C, Henley KE, Wolcott RD, Young E, Summanena HP, Granpeesheh D, Dixonh D, Liu M, Molitoris DR, Green JA. Pyrosequencing study of fecal microflora of autistic and control children. Anaerobe. 2010;16:444–53.
Article
PubMed
CAS
Google Scholar
Kang DWW, Park JG, Ilhan ZE, Wallstrom G, LaBaer J, Adams JB, Krajmalnik-Brown R. Reduced incidence of prevotella and other fermenters in intestinal microflora of autistic children. PLoS One. 2013;8:e68322.
Article
PubMed
PubMed Central
CAS
Google Scholar
Strati F, Cavalieri D, Albanese D, De Felice C, Donati C, Hayek J, Jousson O, Leoncini S, Renzi D, Calabrò A, De Filippo C. New evidences on the altered gut microbiota in autism spectrum disorders. Microbiome. 2017;5:24.
Article
PubMed
PubMed Central
Google Scholar
Toh MC, Allen-Vercoe E. The human gut microbiota with reference to autism spectrum disorder: considering the whole as more than a sum of its parts. Microb Ecol Health Dis. 2015;26:26309.
PubMed
Google Scholar
Bolte ER. Autism and Clostridium tetani. Med Hypotheses. 1998;51:133–44.
Article
PubMed
CAS
Google Scholar
Bonder MJ, Tigchelaar EF, Cai X, Trynka G, Cenit CM, Hrdlickova B, Zhong H, Vatanen T, Gevers D, Wijmenga C, Wang Y, Zhernakova A. The influence of a short-term gluten-free diet on the human gut microbiome. Genome Med. 2016;8:1–11.
Article
CAS
Google Scholar
De Angelis M, Francavilla R, Piccolo M, Blanken LME, Kruithof CJ, Verhulst F, White T, Jaddoe WV, Tiemeier H, McGrath JJ. Autism spectrum disorders and intestinal microbiota. Gut Microbes. 2015;6:207–13.
Article
PubMed
PubMed Central
CAS
Google Scholar
Neis EPJG, Dejong CHC, Rensen SS. The role of microbial amino acid metabolism in host metabolism. Nutrients. 2015;7:2930–46.
Article
PubMed
PubMed Central
CAS
Google Scholar
Tuohy KM, Venuti P, Cuca S, Furlanello C, Gasperotti M, Mancini A, Ceppa F, Cavalieriy D, De Filippo C, Vrhovsek U, Menaz P, Del Rioz D, Fava F. Diet and the gut microbiota - how the gut:brain axis impacts on autism. In: Tuohy KM, Del Rio D, editors. Diet-microbe interactions in the gut - effect on human health and disease. USA: Elsevier; 2015. p. 225–45.
MacFabe DF, Rodríguez-Capote K, Hoffman JE, Franklin AE, Mohammad-Asef Y, Taylor AR, Boon F, Cain PD, Kavaliers M, Possmayer F, Ossenkopp KP. A novel rodent model of autism: intraventricular infusions of propionic acid increase locomotor activity and induce neuroinflammation and oxidative stress in discrete regions of adult rat brain. Am J Biochem Biotechnol. 2008;4:146–66.
Article
CAS
Google Scholar
Allen AP, Hutch W, Borre YE, Kennedy PJ, Temko A, Boylan G, Murphy E, Cryan JF, Dinan TG, Clarke G. Bifidobacterium longum 1714 as a translational psychobiotic: modulation of stress, electrophysiology and neurocognition in healthy volunteers. Trans Psych. 2016;6:e939.
Article
CAS
Google Scholar
Mego M, Manichanh C, Accarino A, Campos D, Pozuelo M, Varela E, Vulevic J, Tzortzis G, Gibson GR, Guarner F, Azpiroz F. Metabolic adaptation of colonic microbiota to galactooligosaccharides: a proof-of-concept-study. Aliment Pharmacol Ther. 2017;45:670–80.
Article
PubMed
CAS
Google Scholar
DeCastro M, Nankova BB, Shah P, Patel P, Mally PV, Mishra R, La Gamma EF. Short chain fatty acids regulate tyrosine hydroxylase gene expression through a cAMP-dependent signaling pathway. Mol Brain Research. 2005;142:28–38.
Article
PubMed
CAS
Google Scholar
Shah P, Nankova BB, Parab S, La Gamma EF. Short chain fatty acids induce TH gene expression via ERK-dependent phoshorylation of CREB protein. Brain Res. 2007;1107:13–23.
Article
CAS
Google Scholar
Parab S, Nankova BB, La Gamma EF. Differential regulation of the tyrosine hydroxylase and enkephalin neuropeptide transmitter genes in rat PC12 cells by short chain fatty acids: concentration-dependent effects on trascription and RNA stability. Brain Res. 2007;1132:42–50.
Article
PubMed
CAS
Google Scholar
Nankova BB, Chua J, Mishra R, Kobasiuk DC, La Gamma EF. Nicotinic induction of preproenkephalin and tyrosine hydroxylase gene expression in butyrate-differentiated rat PC12 cell:a model for adaptation to gut-derived environement signals. Pediatr Res. 2002;53:113–8.
Article
Google Scholar
Patel P, Nankova BB, La Gamma EF. Butyrate, a gut-derived environmental signal, regulates tyrosine hydroxylase gene expression via a novel promoter element. Develop Brain Res. 2005;160:53–62.
Article
CAS
Google Scholar
Nankova BB, Agarwal R, Macfabe DF, La Gamma EF. Enteric bacterial metabolites propionic and butyric acid modulate gene expression, including CREB-dependent catecholaminergic neurotransmission, in PC12 cells - possible relevance to autism spectrum disorders. PLoS One. 2014;9:e103740.
Article
PubMed
PubMed Central
Google Scholar
Marchesi JR, Holmes E, Khan F, Kochhar S, Scanlan P, Shanahan F, Wilson ID, Wang Y. Rapid and noninvasive metabonomic characterization of inflammatory bowel disease. J Prot Res. 2007;6:546–51.
Article
CAS
Google Scholar
Wang HB, Wang PY, Wang X, Wan YL, Liu YC. Butyrate enhances intestinal epithelial barrier fuction via up-regulation og tigh juction protein claudin-1 transcription. Dig Dis Sci. 2012;57:3126–35.
Article
PubMed
CAS
Google Scholar
Wang L, Angley MT, Gerber JP, Soric MJ. A review of candidate urinary biomarkers for autism spectrum disorder. Biomarkers. 2011a;16:537–52.
Article
PubMed
CAS
Google Scholar
Fukuhara K, Ohno A, Ota Y, Senoo Y, Maekawa K, Okuda H, Kurihara M, Okuno A, Niida S, Saito Y, Takikawa O. NMR-based metabolomics of urine in a mouse model of Alzheimer’s disease: identification of oxidative stress biomarkers. J Clin Biochem Nutr. 2013;52:133–8.
Article
PubMed
PubMed Central
CAS
Google Scholar
Cai H, Li H, Yan XZ, Sun B, Zhang Q, Yan M, Zhang WY, Jiang P, Zhu RH, Liu YP, Fang PF, Xu P, Yuan HY, Zhang XH, Hu L, Yang W, Ye HS. Metabolomic analysis of biochemical changes in the plasma and urine of first-episode neuroleptic-naïve schizophrenia patients after treatment with risperidone. J Proteome Res. 2012;11:4338–50.
Article
PubMed
CAS
Google Scholar
Lewis SJ, Heaton KW. Stool form scale as a useful guide to intestinal transit time. Scand J Gastroenterol. 1997;32:920–4.
Article
PubMed
CAS
Google Scholar
Geier AD, Kern JK, Geier MR. A comparison of autism treatment evaluation chechlist (ATEC) and the childhood autism rating scale (CARS) for the quantitative evaluation of autism. J Ment Health Res Intellect Disabil. 2013;6:255–67.
Article
PubMed
PubMed Central
Google Scholar
Auyeung B, Baron-Cohen S, Wheelwright S, Allison C. The autism spectrum quotient: children’s version (AQ-child). J Autism Dev Disord. 2008;38:1230–40.
Article
PubMed
Google Scholar
Auyeung B, Wheelwright S, Allison C, Atkison M, Samarawickrema N, Baron-Cohen S. The children’s empathy quotient and systemizing quotient: sex differences in typical development and in autism spectrum conditions. J Autism Dev Disord. 2009;39:1509–21.
Article
PubMed
Google Scholar
Nauta MH, Scholing A, Rapee RM, Abbott M, Spence SH, Waters A. A parent-report measure of children’s anxiety: psychometric properties and comparison with child-report in a clinic and normal sample. Behav Res Ther. 2004;42:813–39.
Article
PubMed
Google Scholar
Candela M, Biagi E, Soverini M, Consolandi C, Quercia S, Severgnini M, Peano C, Turroni S, Rampelli S, Pozzilli P, Pianesi M, Fallucca F, Brigidi P. Modulation of gut microbiota dysbioses in type 2 diabetic patients by macrobiotic Ma-Pi 2 diet. Br J Nutr. 2016;116:80–93.
Article
PubMed
PubMed Central
CAS
Google Scholar
Grimaldi R, Swann RJ, Vulevic J, Gibson GR, Costabile C. Fermentation properties and potential prebiotic activity of Bimuno® galacto-oligosaccharide (65% galacto-oligosaccharide content) on in vitro gut microbiota parameters. Br J Nutr. 2016;116:480–6.
Article
PubMed
PubMed Central
CAS
Google Scholar
Langendijk PS, Schut F, Jansen GJ, Raangs GC, Kamphuis GR, Wilkinson MHF, Welling GW. Quantitative fluorescence in situ hybridization of Bifidobacterium spp. with genus-specific 16S rRNA-targeted probes and its application in fecal samples. Appl Environ Microbiol. 1995;61:3069–75.
PubMed
PubMed Central
CAS
Google Scholar
Daims H, Brühl A, Amann R, Schleifer KH, Wagner M. The domain-specific probe EUB338 is insufficient for the detection of all Bacteria: development and evaluation of a more comprehensive probe set. Syst Appl Microbiol. 1999;22:434–44.
Article
PubMed
CAS
Google Scholar
Edgar RC. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods. 2013;10:996–8.
Article
PubMed
CAS
Google Scholar
McDonald D, Price MN, Goodrich J, Nawrocki EP, DeSantis TZ, Probst A, Andersen GL, Knight R, Hugenholtz P. An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea. ISME J. 2012;6:610–8.
Article
PubMed
CAS
Google Scholar
Paulson JN, Stine OC, Bravo HC, Pop M. Differential abundance analysis for microbial marker-gene surveys. Nat Methods. 2013;10:1200–2.
Article
PubMed
PubMed Central
CAS
Google Scholar
Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman F, Costello EK, Fierer N, Gonzalez-Peña A, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone CA, Mcdonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Turnbaugh PJ, Walters WA, Widmann J, Yatsunenko T, Zaneveld J, Knight R. QIIME allows analysis of high-throughput community sequencing data. Nat Meth. 2010;7:335–6.
Article
CAS
Google Scholar
Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Wagner H. Vegan: community ecology package. R software package. 2015.