Franco M, Contreras C, Cortes P, Chappell MA, Soto-Gamboa M, Nespolo RF. Aerobic power, huddling and the efficiency of torpor in the South American marsupial, Dromiciops gliroides. Biol open. 2012;1(12):1178–84.
Vickery WL, Millar JS. The energetics of huddling by endotherms. Oikos. 1984;43(1):88–93.
Article
Google Scholar
Cornwallis CK, Botero CA, Rubenstein DR, Downing PA, West SA, Griffin AS. Cooperation facilitates the colonization of harsh environments. Nat Ecol Evol. 2017;1(3):57.
Article
PubMed
Google Scholar
Glancy J, Gross R, Stone JV, Wilson SP. A self-organising model of thermoregulatory huddling. PLoS Comput Biol. 2015;11(9):e1004283.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ebensperger LA. A review of the evolutionary causes of rodent group-living. Acta Theriol. 2001;46(2):115–44.
Article
Google Scholar
Gilbert C, McCafferty D, Le Maho Y, Martrette JM, Giroud S, Blanc S, et al. One for all and all for one: the energetic benefits of huddling in endotherms. Biol Rev. 2010;85(3):545–69.
PubMed
Google Scholar
Boratynski JS, Willis CK, Jefimow M, Wojciechowski MS. Huddling reduces evaporative water loss in torpid Natterer's bats, Myotis nattereri. Comp Biochem Physiol A Mol Integr Physiol. 2015;179:125–32.
Article
PubMed
CAS
Google Scholar
Nunez-Villegas M, Bozinovic F, Sabat P. Interplay between group size, huddling behavior and basal metabolism: an experimental approach in the social degu. J Exp Biol. 2014;217(6):997–1002.
Article
PubMed
Google Scholar
Hayes JP, Speakman JR, Racey PA. The contributions of local heating and reducing exposed surface-area to the energetic benefits of huddling by short-tailed field voles (Microtus agrestis). Physiol Zool. 1992;65(4):742–62.
Article
Google Scholar
Canals M, Rosenmann M, Bozinovic F. Geometrical aspects of the energetic effectiveness of huddling in small mammals. Acta Theriol. 1997;42(3):321–8.
Article
Google Scholar
Ley RE, Hamady M, Lozupone C, Turnbaugh PJ, Ramey RR, Bircher JS, et al. Evolution of mammals and their gut microbes. Science. 2008;320(5883):1647–51.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ley RE, Lozupone CA, Hamady M, Knight R, Gordon JI. Worlds within worlds: evolution of the vertebrate gut microbiota. Nat Rev Microbiol. 2008;6(10):776–88.
Article
PubMed
PubMed Central
CAS
Google Scholar
Savage DC. Microbial ecology of the gastrointestinal tract. Annu Rev Microbiol. 1977;31:107–33.
Article
PubMed
CAS
Google Scholar
Pennisi E. How do gut microbes help herbivores? Counting the ways Science. 2017;355(6322):236.
Article
PubMed
CAS
Google Scholar
Kohl KD, Weiss RB, Cox J, Dale C, Dearing MD. Gut microbes of mammalian herbivores facilitate intake of plant toxins. Ecol Lett. 2014;17(10):1238–46.
Article
PubMed
Google Scholar
Ridaura VK, Faith JJ, Rey FE, Cheng JY, Duncan AE, Kau AL, et al. Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science. 2013;341(6150):1079–U49.
Article
CAS
Google Scholar
Koren O, Goodrich JK, Cullender TC, Spor A, Laitinen K, Backhed HK, et al. Host remodeling of the gut microbiome and metabolic changes during pregnancy. Cell. 2012;150(3):470–80.
Article
PubMed
PubMed Central
CAS
Google Scholar
Sommer F, Stahlman M, Ilkayeva O, Arnemo JM, Kindberg J, Josefsson J, et al. The gut microbiota modulates energy metabolism in the hibernating brown bear Ursus arctos. Cell Rep. 2016;14(7):1655–61.
Article
PubMed
CAS
Google Scholar
Maurice CF, Knowles SCL, Ladau J, Pollard KS, Fenton A, Pedersen AB, et al. Marked seasonal variation in the wild mouse gut microbiota. Isme J. 2015;9(11):2423–34.
Article
PubMed
PubMed Central
CAS
Google Scholar
Carey HV, Walters WA, Knight R. Seasonal restructuring of the ground squirrel gut microbiota over the annual hibernation cycle. Am J Phys. 2013;304(1):R33–42.
Article
CAS
Google Scholar
Amato KR, Leigh SR, Kent A, Mackie RI, Yeoman CJ, Stumpf RM, et al. The gut microbiota appears to compensate for seasonal diet variation in the wild black howler monkey (Alouatta pigra). Microb Ecol. 2015;69(2):434–43.
Article
PubMed
CAS
Google Scholar
Li H, Li TT, Beasley DE, Hedenec P, Xiao ZS, Zhang SH, et al. Diet diversity is associated with beta but not alpha diversity of pika gut microbiota. Front Microbiol. 2016;7:1169.
PubMed
PubMed Central
Google Scholar
Subramanian S, Huq S, Yatsunenko T, Haque R, Mahfuz M, Alam MA, et al. Persistent gut microbiota immaturity in malnourished Bangladeshi children. Nature. 2014;510(7505):417–21.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ussar S, Griffin NW, Bezy O, Fujisaka S, Vienberg S, Softic S, et al. Interactions between gut microbiota, host genetics and diet modulate the predisposition to obesity and metabolic syndrome. Cell Metab. 2016;23(3):564–6.
Article
CAS
Google Scholar
Bailey MT, Walton JC, Dowd SE, Weil ZM, Nelson RJ. Photoperiod modulates gut bacteria composition in male Siberian hamsters (Phodopus sungorus). Brain Behav Immun. 2010;24(4):577–84.
Article
PubMed
CAS
Google Scholar
Chevalier C, Stojanovic O, Colin DJ, Suarez-Zamorano N, Tarallo V, Veyrat-Durebex C, et al. Gut microbiota orchestrates energy homeostasis during cold. Cell. 2015;163(6):1360–74.
Article
PubMed
CAS
Google Scholar
Zietak M, Kovatcheva-Datchary P, Markiewicz LH, Stahlman M, Kozak LP, Backhed F. Altered microbiota contributes to reduced diet-induced obesity upon cold exposure. Cell Metab. 2016;23(6):1216–23.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zheng P, Zeng B, Zhou C, Liu M, Fang Z, Xu X, et al. Gut microbiome remodeling induces depressive-like behaviors through a pathway mediated by the host's metabolism. Mol Psychiatry. 2016;21(6):786–96.
Article
PubMed
CAS
Google Scholar
Hoban AE, Stilling RM, MM G, Moloney RD, Shanahan F, Dinan TG, et al. Microbial regulation of microRNA expression in the amygdala and prefrontal cortex. Microbiome. 2017;5(1):102.
Article
PubMed
PubMed Central
Google Scholar
Kim HJ, Li H, Collins JJ, Ingber DE. Contributions of microbiome and mechanical deformation to intestinal bacterial overgrowth and inflammation in a human gut-on-a-chip. PNAS. 2016;113(1):E7–E15.
Article
PubMed
CAS
Google Scholar
Strober W. Impact of the gut microbiome on mucosal inflammation. Trends Immunol. 2013;34(9):423–30.
Article
PubMed
PubMed Central
CAS
Google Scholar
Thaiss CA, Zmora N, Levy M, Elinav E. The microbiome and innate immunity. Nature. 2016;535(7610):65–74.
Article
PubMed
CAS
Google Scholar
Kabouridis PS, Lasrado R, McCallum S, Chng SH, Snippert HJ, Clevers H, et al. Microbiota controls the homeostasis of glial cells in the gut lamina propria. Neuron. 2015;85(2):289–95.
Article
PubMed
PubMed Central
CAS
Google Scholar
Yano JM, Yu K, Donaldson GP, Shastri GG, Ann P, Ma L, et al. Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis. Cell. 2015;161(2):264–76.
Article
PubMed
PubMed Central
CAS
Google Scholar
Goyal MS, Venkatesh S, Milbrandt J, Gordon JI, Raichle ME. Feeding the brain and nurturing the mind: linking nutrition and the gut microbiota to brain development. PNAS. 2015;112(46):14105–12.
Article
PubMed
CAS
Google Scholar
Han B, Sivaramakrishnan P, Lin CJ, Neve IAA, He J, Tay LWR, et al. Microbial genetic composition tunes host longevity. Cell. 2017;169(7):1249–62. e13
Article
PubMed
PubMed Central
CAS
Google Scholar
Heintz C, Mair W. You are what you host: microbiome modulation of the aging process. Cell. 2014;156(3):408–11.
Article
PubMed
PubMed Central
CAS
Google Scholar
Li SS, Zhu A, Benes V, Costea PI, Hercog R, Hildebrand F, et al. Durable coexistence of donor and recipient strains after fecal microbiota transplantation. Science. 2016;352:586–9.
Article
PubMed
CAS
Google Scholar
McShae WJ. Social tolerance and proximate mechanisms of dispersal among winter groups of meadow voles. Anim Behav. 1990;39:346–51.
Article
Google Scholar
Li XS, Wang DH. Regulation of body weight and thermogenesis in seasonally acclimatized Brandt's voles (Microtus brandti). Horm Behav. 2005;48(3):321–8.
Article
PubMed
Google Scholar
Zhang XY, Wang DH. Energy metabolism, thermogenesis and body mass regulation in Brandt's voles (Lasiopodomys brandtii) during cold acclimation and rewarming. Horm Behav. 2006;50(1):61–9.
Article
PubMed
CAS
Google Scholar
Zhang J, Zhong WQ. On the colonial structure of Brandt's vole in burrow units. Acta Theriol Sin. 1981;1(1):51–6.
Google Scholar
Zhang XY, Wang DH. Thermogenesis, food intake and serum leptin in cold-exposed lactating Brandt's voles Lasiopodomys brandtii. J Exp Biol. 2007;210(3):512–21.
Article
PubMed
Google Scholar
Wang JM, Wang DH. Comparison of nonshivering thermogenesis induced by dosages of norepinephrine from 3 allometric equations in Brandt's voles (Lasiopodomys brandtii). Acta Theriol Sin. 2006;26:84–8.
Google Scholar
Chi QS, Wang DH. Thermal physiology and energetics in male desert hamsters (Phodopus roborovskii) during cold acclimation. J Comp Physiol B. 2011;181(1):91–103.
Article
PubMed
Google Scholar
Goverse G, Molenaar R, Macia L, Tan J, Erkelens MN, Konijn T, et al. Diet-derived short chain fatty acids stimulate intestinal epithelial cells to induce mucosal tolerogenic dendritic cells. J Immunol. 2017;198(5):2172–81.
Article
PubMed
CAS
Google Scholar
Rasmussen KE, Pedersen-Bjergaard S, Krogh M, Ugland HG, Gronhaug T. Development of a simple in-vial liquid-phase microextraction device for drag analysis compatible with capillary gas chromatography, capillary electrophoresis and high-performance liquid chromatography. J Chromatogr A. 2000;873(1):3–11.
Article
PubMed
CAS
Google Scholar
Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Huntley J, Fierer N, et al. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J. 2012;6(8):1621–4.
Article
PubMed
PubMed Central
CAS
Google Scholar
Magoc T, Salzberg SL. FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics. 2011;27(21):2957–63.
Article
PubMed
PubMed Central
CAS
Google Scholar
Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods. 2010;7(5):335–6.
Article
PubMed
PubMed Central
CAS
Google Scholar
Edgar RC. Search and clustering orders of magnitude faster than BLAST. Bioinformatics. 2010;26(19):2460–1.
Article
PubMed
CAS
Google Scholar
Cole JR, Wang Q, Cardenas E, Fish J, Chai B, Farris RJ, et al. The ribosomal database project: improved alignments and new tools for rRNA analysis. Nucleic Acids Res. 2009;37(Database issue):D141–5.
Article
PubMed
CAS
Google Scholar
Parks DH, Beiko RG. Identifying biologically relevant differences between metagenomic communities. Bioinformatics. 2010;26(6):715–21.
Article
PubMed
CAS
Google Scholar
Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS, et al. Metagenomic biomarker discovery and explanation. Genome Biol. 2011;12(6):R60.
Article
PubMed
PubMed Central
Google Scholar
McNab BK. The physiological ecology of vertebrates. Ithaca: Cornell Univ Press; 2002.
Google Scholar
Li QF, Sun RY, Huang CX, Wang ZK, Liu XT, Hou JJ, et al. Cold adaptive thermogenesis in small mammals from different geographical zones of China. Comp Biochem Physiol A. 2001;129(4):949–61.
Article
CAS
Google Scholar
Wunder BA, Dobkin DS, Gettinger RD. Shifts of thermogenesis in the prairie vole (Microtus ochrogaster): strategies for survival in a seasonal environment. Oecologia. 1977;29(1):11–26.
Article
PubMed
Google Scholar
Wang JM, Zhang YM, Wang DH. Seasonal regulations of energetics, serum concentrations of leptin, and uncoupling protein 1 content of brown adipose tissue in root voles (Microtus oeconomus) from the Qinghai-Tibetan plateau. J Comp Physiol B. 2006;176(7):663–71.
Article
PubMed
CAS
Google Scholar
Gębczyński M. Social regulation of body temperature in the bank vole. Acta Theriol Sin. 1969;14:427–40.
Article
Google Scholar
Andrews RV, Phillips D, Makihara D. Metabolic and thermoregulatory consequences of social behaviors between Microtus townsendii. Comp Biochem Physiol A. 1987;87(2):345–8.
Article
PubMed
CAS
Google Scholar
Scantlebury M, Bennett NC, Speakman JR, Pillay N, Schradin C. Huddling in groups leads to daily energy savings in free-living African four-striped grass mice, Rhabdomys pumilio. Funct Ecol. 2006;20(1):166–73.
Article
Google Scholar
Prychodko W. Effect of aggregation of laboratory mice (Mus musculus) on food-intake at different temperatures. Ecology. 1958;39(3):500–3.
Article
Google Scholar
Springer SD, Gregory PA, Barrett GW. Importance of social grouping on bioenergetics of the golden mouse Ochrotomys nuttalli. J Mammal. 1981;62(3):628–30.
Article
Google Scholar
Kauffman AS, Paul MJ, Butler MP, Zucker I. Huddling, locomotor, and nest-building behaviors of furred and furless Siberian hamsters. Physiol Behav. 2003;79(2):247–56.
Article
PubMed
CAS
Google Scholar
Wang D, Wang Z, Wang Y, Yang J. Seasonal changes of thermogenesis in Mongolian gerbils (Meriones unguiculatus) and Brandt's voles (Microtus brandti). Comp Biochem Physiol A. 2003;134:S96.
Google Scholar
Bennett AF, Ruben JA. Endothermy and activity in vertebrates. Science. 1979;206:649–54.
Article
PubMed
CAS
Google Scholar
Kojima S, Alberts JR. Warmth from skin-to-skin contact with mother is essential for the acquisition of filial huddling preference in preweanling rats. Dev Psychobiol. 2011;53(8):813–27.
Article
PubMed
Google Scholar
Fortin D, Gauthier G, Larochelle J. Body temperature and resting behavior of greater snow goose goslings in the high Arctic. Condor. 2000;102(1):163–71.
Article
Google Scholar
Gilbert C, Maho YL, Perret M, Ancel A. Body temperature changes induced by huddling in breeding male emperor penguins. Am J Phys. 2007;292(1):R176–85.
CAS
Google Scholar
Glanville EJ, Seebacher F. Advantage to lower body temperatures for a small mammal (Rattus fuscipes) experiencing chronic cold. J Mammal. 2010;91(5):1197–204.
Article
Google Scholar
Zhang Z, Xu D, Wang L, Hao J, Wang J, Zhou X, et al. Convergent evolution of rumen microbiomes in high-altitude mammals. Curr Biol. 2016;25:1873–9.
Article
CAS
Google Scholar
Brinig MM, Lepp PW, Ouverney CC, Armitage GC, Relman DA. Prevalence of bacteria of division TM7 in human subgingival plaque and their association with disease. Appl Environ Microb. 2003;69(3):1687–94.
Article
CAS
Google Scholar
Jaeschke H, Schaarschmidt J, Eszlinger M, Huth S, Puttinger R, Rittinger O, et al. A newly discovered TSHR variant (L665F) associated with nonautoimmune hyperthyroidism in an Austrian family induces constitutive TSHR activation by steric repulsion between TM1 and TM7. J Clin Endocr Metab. 2014;99(10):E2051–E9.
Article
PubMed
CAS
Google Scholar
Cho I, Yamanishi S, Cox L, Methe BA, Zavadil J, Li K, et al. Antibiotics in early life alter the murine colonic microbiome and adiposity. Nature. 2012;488(7413):621–6.
Article
PubMed
PubMed Central
CAS
Google Scholar
Meehan CJ, Beiko RG. A phylogenomic view of ecological specialization in the Lachnospiraceae, a family of digestive tract-associated bacteria. Genome Biol Evol. 2014;6(3):703–13.
Article
PubMed
PubMed Central
CAS
Google Scholar
Fan WG, Huo GC, Li XM, Yang LJ, Duan CC, Wang TT, et al. Diversity of the intestinal microbiota in different patterns of feeding infants by Illumina high-throughput sequencing. World J Microb Biotechnol. 2013;29(12):2365–72.
Article
Google Scholar
Pedersen C, Gallagher E, Horton F, Ellis RJ, Ijaz UZ, Wu HH, et al. Host-microbiome interactions in human type 2 diabetes following prebiotic fibre (galacto-oligosaccharide) intake. Br J Nutr. 2016;116(11):1869–77.
Article
PubMed
CAS
Google Scholar
Chayama Y, Ando L, Tamura Y, Miura M, Yamaguchi Y. Decreases in body temperature and body mass constitute pre-hibernation remodelling in the Syrian golden hamster, a facultative mammalian hibernator. Roy Soc Open Sci. 2016;3(4):160002.
Article
CAS
Google Scholar
Carey HV, Andrews MT, Martin SL. Mammalian hibernation: cellular and molecular responses to depressed metabolism and low temperature. Physiol Rev. 2003;83(4):1153–81.
Article
PubMed
CAS
Google Scholar
Dill-McFarland KA, Neil KL, Zeng A, Sprenger RJ, Kurtz CC, Suen G, et al. Hibernation alters the diversity and composition of mucosa-associated bacteria while enhancing antimicrobial defence in the gut of 13-lined ground squirrels. Mol Ecol. 2014;23(18):4658–69.
Article
PubMed
CAS
Google Scholar
Chi QS, Wan XR, Geiser F, Wang DH. Fasting-induced daily torpor in desert hamsters (Phodopus roborovskii). Comp Biochem Physiol A. 2016;199:71–7.
Article
CAS
Google Scholar
Szelenyi Z, Hummel Z, Szolcsanyi J, Davis JB. Daily body temperature rhythm and heat tolerance in TRPV1 knockout and capsaicin pretreated mice. Eur J Neurosci. 2004;19(5):1421–4.
Article
PubMed
CAS
Google Scholar
Leone V, Gibbons SM, Martinez K, Hutchison AL, Huang EY, Cham CM, et al. Effects of diurnal variation of gut microbes and high-fat feeding on host circadian clock function and metabolism. Cell Host Microbe. 2015;17(5):681–9.
Article
PubMed
PubMed Central
CAS
Google Scholar
Thaiss CA, Levy M, Korem T, Dohnalova L, Shapiro H, Jaitin DA, et al. Microbiota diurnal rhythmicity programs host transcriptome oscillations. Cell. 2016;167(6):1495–510. e12
Article
PubMed
CAS
Google Scholar
Bestion E, Jacob S, Zinger L, Di Gesu L, Richard M, White J, et al. Climate warming reduces gut microbiota diversity in a vertebrate ectotherm. Nat Ecol Evol. 2017;1:0161.
Article
Google Scholar
Obata Y, Pachnis V. The effect of microbiota and the immune system on the development and organization of the enteric nervous system. Gastroenterology. 2016;151(5):836–44.
Article
PubMed
PubMed Central
CAS
Google Scholar
Psichas A, Sleeth ML, Murphy KG, Brooks L, Bewick GA, Hanyaloglu AC, et al. The short chain fatty acid propionate stimulates GLP-1 and PYY secretion via free fatty acid receptor 2 in rodents. Int J Obes. 2015;39(3):424–9.
Article
CAS
Google Scholar
Perry RJ, Peng L, Barry NA, Cline GW, Zhang D, Cardone RL, et al. Acetate mediates a microbiome-brain-beta-cell axis to promote metabolic syndrome. Nature. 2016;534(7606):213–7.
Article
PubMed
PubMed Central
CAS
Google Scholar
Hong J, Jia Y, Pan S, Jia L, Li H, Han Z, et al. Butyrate alleviates high fat diet-induced obesity through activation of adiponectin-mediated pathway and stimulation of mitochondrial function in the skeletal muscle of mice. Oncotarget. 2016;7(35):56071–82.
Article
PubMed
PubMed Central
Google Scholar
Chambers ES, Viardot A, Psichas A, Morrison DJ, Murphy KG, Zac-Varghese SEK, et al. Effects of targeted delivery of propionate to the human colon on appetite regulation, body weight maintenance and adiposity in overweight adults. Gut. 2015;64(11):1744–54.
Article
PubMed
CAS
Google Scholar
Hu JM, Kyrou I, Tan BK, Dimitriadis GK, Ramanjaneya M, Tripathi G, et al. Short-chain fatty acid acetate stimulates adipogenesis and mitochondrial biogenesis via GPR43 in brown adipocytes. Endocrinology. 2016;157:1881–94.
Article
PubMed
CAS
Google Scholar
Li Z, Yi CX, Katiraei S, Kooijman S, Zhou E, Chung CK, et al. Butyrate reduces appetite and activates brown adipose tissue via the gut-brain neural circuit. Gut. 2017; https://doi.org/10.1136/gutjnl-2017-314050.