Basset Y, Cizek L, Cuénoud P, Didham RK, Guilhaumon F, Missa O, et al. Arthropod diversity in a tropical forest. Science. 2012;338:1481–4.
Article
CAS
Google Scholar
van Huis A. The global impact of insects: Wageningen University, Wageningen UR; 2014.
Google Scholar
Khanzadeh F, Khaghaninia S, Maleki-Ravasan N, Oshaghi MA, Adler PH. Black flies (Diptera: Simuliidae) of the Aras River Basin: species composition and floral visitation. Acta Trop. 2020;209:105536.
Article
CAS
Google Scholar
Namaki-Khameneh R, Khaghaninia S, Disney RHL, Maleki-Ravasan N. The scuttle flies (Diptera: Phoridae) of Iran with the description of Mahabadphora aesthesphora as a new genus and species. PLoS One. 2021;16:e0257899.
Article
CAS
Google Scholar
Maleki-Ravasan N, Oshaghi MA, Afshar D, Arandian MH, Hajikhani S, Akhavan AA, et al. Aerobic bacterial flora of biotic and abiotic compartments of a hyperendemic Zoonotic Cutaneous Leishmaniasis (ZCL) focus. Parasites Vectors. 2015;8:1–22.
Article
Google Scholar
Maleki-Ravasan N, Oshaghi MA, Hajikhani S, Saeidi Z, Akhavan AA, Gerami-Shoar M, et al. Aerobic microbial community of insectary population of Phlebotomus papatasi. J Arthropod Borne Dis. 2014;8:69.
Google Scholar
Gupta A, Nair S. Dynamics of insect–microbiome interaction influence host and microbial symbiont. Front Microbiol. 2020:11:1357.
Douglas AE. Multiorganismal insects: diversity and function of resident microorganisms. Annu Rev Entomol. 2015;60:17.
Article
CAS
Google Scholar
Klepzig KD, Adams AS, Handelsman J, Raffa KF. Symbioses: a key driver of insect physiological processes, ecological interactions, evolutionary diversification, and impacts on humans. Environ Entomol. 2009;38:67–77.
Article
CAS
Google Scholar
Karami M, Moosa-Kazemi SH, Oshaghi MA, Vatandoost H, Sedaghat MM, Rajabnia R, et al. Wolbachia endobacteria in natural populations of Culex pipiens of Iran and its phylogenetic congruence. J Arthropod Borne Dis. 2016;10:347.
Google Scholar
Karimian F, Vatandoost H, Rassi Y, Maleki-Ravasan N, Mohebali M, Shirazi MH, et al. Aerobic midgut microbiota of sand fly vectors of zoonotic visceral leishmaniasis from northern Iran, a step toward finding potential paratransgenic candidates. Parasites Vectors. 2019;12:10.
Article
Google Scholar
Maleki-Ravasan N, Ahmadi N, Soroushzadeh Z, Raz AA, Zakeri S, Dinparast Djadid N. New insights into culturable and unculturable bacteria across the life history of medicinal maggots Lucilia sericata (Meigen) (Diptera: Calliphoridae). Front Microbiol. 2020;11:505.
Article
Google Scholar
Dehghankar M, Maleki-Ravasan N, Tahghighi A, Karimian F, Karami M. Bioactivities of rose-scented geranium nanoemulsions against the larvae of Anopheles stephensi and their gut bacteria. PLoS One. 2021;16:e0246470.
Article
CAS
Google Scholar
Wade W. Unculturable bacteria--the uncharacterized organisms that cause oral infections. J R Soc Med. 2002;95:81–3.
Google Scholar
Amann RI, Ludwig W, Schleifer KH. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev. 1995;59:143–69.
Article
CAS
Google Scholar
Ratzka C, Gross R, Feldhaar H. Endosymbiont tolerance and control within insect hosts. Insects. 2012;3:553–72.
Article
Google Scholar
Eleftherianos I, Atri J, Accetta J, Castillo J. Endosymbiotic bacteria in insects: guardians of the immune system? Front Physiol. 2013:4:46.
Dale C, Moran NA. Molecular interactions between bacterial symbionts and their hosts. Cell. 2006;126:453–65.
Article
CAS
Google Scholar
Skaljac M, Zanic K, Ban SG, Kontsedalov S, Ghanim M. Co-infection and localization of secondary symbionts in two whitefly species. BMC Microbiol. 2010;10:142.
Article
Google Scholar
Moran NA, Russell JA, Koga R, Fukatsu T. Evolutionary relationships of three new species of Enterobacteriaceae living as symbionts of aphids and other insects. Appl Environ Microbiol. 2005;71:3302–10.
Article
CAS
Google Scholar
Sacchi L, Genchi M, Clementi E, Bigliardi E, Avanzati AM, Pajoro M, et al. Multiple symbiosis in the leafhopper Scaphoideus titanus (Hemiptera: Cicadellidae): details of transovarial transmission of Cardinium sp. and yeast-like endosymbionts. Tissue Cell. 2008;40:231–42.
Article
CAS
Google Scholar
De Clerck C, Fujiwara A, Joncour P, Léonard S, Félix M-L, Francis F, et al. A metagenomic approach from aphid’s hemolymph sheds light on the potential roles of co-existing endosymbionts. Microbiome. 2015;3:63.
Article
Google Scholar
Bution ML, Caetano FH, Zara FJ. Contribution of the Malpighian tubules for the maintenance of symbiotic microorganisms in cephalotes ants. Micron. 2008;39:1179–83.
Article
CAS
Google Scholar
Dobson SL, Bourtzis K, Braig HR, Jones BF, Zhou W, Rousset F, et al. Wolbachia infections are distributed throughout insect somatic and germ line tissues. Insect Biochem Mol Biol. 1999;29:153–60.
Article
CAS
Google Scholar
Duron O, Hurst GDD. Arthropods and inherited bacteria: from counting the symbionts to understanding how symbionts count. BMC Bio. 2013;11:45.
Article
Google Scholar
Betz O, Irmler U, Klimaszewski J. Biology of rove beetles (Staphylinidae): Springer; 2018.
Book
Google Scholar
Vieira JS, Ribeiro-Costa CS, Caron E. Rove beetles of medical importance in Brazil (Coleoptera, Staphylinidae, Paederinae). Rev Bras Entomol. 2014;58:244–60.
Article
Google Scholar
Nikbakht N, Naderi M, Safa P. Faunal diversity of Paederus Fabricius, 1775 (Coleoptera: Staphylinidae) in Iran. Insecta Mundi. 2012;0267:1–9.
Google Scholar
Krinsky WL. Beetles (Coleoptera). In Medical and Veterinary Entomology; Mullen GR, Durden LA, Eds.; Elsevier Academic Press Inc.: London, UK, 2019; p. 129–143.
Frank JH, Thomas M: Rove beetles of the world, Staphylinidae (Insecta: Coleoptera: Staphylinidae). UF/IFAS Extension, University of Florida.2019. EENY-114.
Dettner K. Potential pharmaceuticals from insects and their co-occurring microorganisms. In: Insect Biotechnology. Volume 2. Dordrecht: Springer; 2011. p. 95–119.
Chapter
Google Scholar
Iserson KV, Walton EK. Nairobi fly (Paederus) dermatitis in South Sudan: a case report. Wilderness Environ Med. 2012;23:251–4.
Article
Google Scholar
Qadir SN, Raza N, Rahman SB. Paederus dermatitis in Sierra Leone. Dermatol Online J. 2006;12:9.
Article
Google Scholar
Mammino JJ. Paederus dermatitis: an outbreak on a medical mission boat in the Amazon. J Clin Aesthet Dermatol. 2011;4:44–6.
Google Scholar
Narquizian R, Kocienski PJ. “The pederin family of antitumor agents: structures, synthesis and biological activity”. in The Role of Natural Products in Drug Discovery, eds R Mulzer and R Bohlmann; New York, NY: Springer. 2000; p. 25–56.
Kellner RL, Dettner K. Differential efficacy of toxic pederin in deterring potential arthropod predators of Paederus (Coleoptera: Staphylinidae) offspring. Oecologia. 1996;107:293–300.
Article
Google Scholar
Hajheydari Z. An investigation of clinical and demographic features of Paederus dermatitis in Sari dermatological clinics form March to October 2002. J Maz Univ Med. 2004;14:97–104.
Google Scholar
Zargari O, Kimyai-Asadi A, Fathalikhani F, Panahi M. Paederus dermatitis in northern Iran: a report of 156 cases. Int J Dermatol. 2003;42:608–12.
Article
Google Scholar
Davoodi SM, Bakhtiyari P, Khoobdel M. Determination of Singe and symptoms of Paederus dermatitis in Behshahr hospital in 2000. J Mil Med. 2008;10:29–34.
Google Scholar
Kellner RLL. When do Paederus riparius rove beetles (Coleoptera : Staphylinidae) biosynthesize their unique hemolymph toxin pederin? J Zeitschrift für Naturforschung C. 1998;53:1081–6.
Article
CAS
Google Scholar
Kellner RLL, Dettner K. Allocation of pederin during lifetime of Paederus rove beetles (Coleoptera: Staphylinidae): Evidence for polymorphism of hemolymph toxin. J Chem Ecol. 1995;21:1719–33.
Article
CAS
Google Scholar
Kador M, Horn MA, Dettner K. Novel oligonucleotide probes for in situ detection of pederin-producing endosymbionts of Paederus riparius rove beetles (Coleoptera: Staphylinidae). FEMS Microbiol Lett. 2011;319:73–81.
Article
CAS
Google Scholar
Maleki-Ravasan N, Akhavan N, Raz A, Jafari M, Zakeri S, Dinparast Djadid N. Co-occurrence of pederin-producing and Wolbachia endobacteria in Paederus fuscipes Curtis, 1840 (Coleoptera: Staphilinidae) and its evolutionary consequences. Microbiologyopen. 2018;8:e777.
Google Scholar
Piel J, Höfer I, Hui D. Evidence for a symbiosis island involved in horizontal acquisition of pederin biosynthetic capabilities by the bacterial symbiont of Paederus fuscipes beetles. Bacteriol. 2004;186:1280–6.
Article
CAS
Google Scholar
Ge C, Hu J, Zhao Z, Hoffmann AA, Ma S, Shen L, et al. Phylogeny and density dynamics of Wolbachia infection of the health pest Paederus fuscipes Curtis (Coleoptera: Staphylinidae). Insects. 2020;11:625.
Article
Google Scholar
Jovel J, Patterson J, Wang W, Hotte N, O'Keefe S, Mitchel T, et al. Characterization of the gut microbiome using 16S or shotgun metagenomics. Front Microbiol. 2016;7:459.
Article
Google Scholar
Blackwelder RE. Checklist of the coleopterous insects of Mexico, Central America, the West Indies and South America. Bull U.S. Natl Mus. 1957;185:927–1492.
Article
Google Scholar
Thomas MC. American Beetles, Volume I: Archostemata, Myxophaga, Adephaga, Polyphaga: Staphyliniformia. Boca Raton: CRC Press; 2000.
Google Scholar
Triplehorn C A, Johnson N F. Borror and DeLong’s introduction to the study of insects ( 7th ed.). Blemont, CA: Thomson Brooks/Cole. 2005. Belmont, USA, 864 p.
Yu Y, Lee C, Kim J, Hwang S. Group-specific primer and probe sets to detect methanogenic communities using quantitative real-time polymerase chain reaction. Biotechnol Bioeng. 2005;89:670–9.
Article
CAS
Google Scholar
Mancini MV, Damiani C, Accoti A, Tallarita M, Nunzi E, Cappelli A, et al. Estimating bacteria diversity in different organs of nine species of mosquito by next generation sequencing. BMC Microbiol. 2018;18:126.
Article
CAS
Google Scholar
Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA, et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol. 2019;37:852–7.
Article
CAS
Google Scholar
Andrews S. FastQC: a quality control tool for high throughput sequence data. Cambridge: Babraham Bioinformatics, Babraham Institute; 2010.
Google Scholar
Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.journal. 2011;17:3.
Article
Google Scholar
Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–20.
Article
CAS
Google Scholar
Zhang J, Kobert K, Flouri T, Stamatakis A. PEAR: a fast and accurate Illumina Paired-End reAd mergeR. Bioinformatics. 2014;30:614–20.
Article
CAS
Google Scholar
Bokulich NA, Kaehler BD, Rideout JR, Dillon M, Bolyen E, Knight R, et al. Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2’s q2-feature-classifier plugin. Microbiome. 2018;6:90.
Article
Google Scholar
Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013;41:D590–6.
Article
CAS
Google Scholar
Shannon CE, Weaver W, Wiener N. The mathematical theory of communication. Physics Today. 1950;3:31–2.
Article
Google Scholar
Faith DP. Conservation evaluation and phylogenetic diversity. Biol Conserv. 1992;61:1–10.
Article
Google Scholar
Pielou EC. The measurement of diversity in different types of biological collections. J. Theor. Biol. 1966;13:131–44.
Article
Google Scholar
Sorensen TA. A method of establishing groups of equal amplitude in plant sociology based on similarity of species content and its application to analyses of the vegetation on Danish commons. Biol Skar. 1948;5:1–34.
Google Scholar
Jaccard P. Nouvelles recherches sur la distribution florale. Bull Soc Vaud Sci Nat. 1908;44:223–70.
Google Scholar
Lozupone C, Knight R. UniFrac: a new phylogenetic method for comparing microbial communities. Appl Environ Microbiol. 2005;71:8228–35.
Article
CAS
Google Scholar
Parks DH, Tyson GW, Hugenholtz P, Beiko RG. STAMP: statistical analysis of taxonomic and functional profiles. Bioinformatics. 2014;30:3123–4.
Article
CAS
Google Scholar
Krzywinski M, Schein J, Birol I, Connors J, Gascoyne R, Horsman D, et al. Circos: an information aesthetic for comparative genomics. Genome Res. 2009;19:1639–45.
Article
CAS
Google Scholar
Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13:2498–504.
Article
CAS
Google Scholar
Heberle H, Meirelles GV, da Silva FR, Telles GP, Minghim R. InteractiVenn: a web-based tool for the analysis of sets through Venn diagrams. BMC Bioinformatics. 2015;16:169.
Article
Google Scholar
Engel P, Moran NA. The gut microbiota of insects – diversity in structure and function. FEMS Microbiol Rev. 2013;37:699–735.
Article
CAS
Google Scholar
Yun JH, Roh SW, Whon TW, Jung MJ, Kim MS, Park DS, et al. Insect gut bacterial diversity determined by environmental habitat, diet, developmental stage, and phylogeny of host. Appl Environ Microbiol. 2014;80:5254–64.
Article
Google Scholar
Suárez-Moo P, Cruz-Rosales M, Ibarra-Laclette E, Desgarennes D, Huerta C, Lamelas A. Diversity and composition of the gut microbiota in the developmental stages of the dung beetle Copris incertus Say (Coleoptera, Scarabaeidae). Front Microbiol. 2020;11:1698.
Article
Google Scholar
Huang K, Wang J, Huang J, Zhang S, Vogler AP, Liu Q, et al. Host phylogeny and diet shape gut microbial communities within bamboo-feeding insects. Front Microbiol. 2021;12:633075.
Article
Google Scholar
Zhang Q, Zhang Z, Lu T, Yu Y, Penuelas J, Zhu Y-G, et al. Gammaproteobacteria, a core taxon in the guts of soil fauna, are potential responders to environmental concentrations of soil pollutants. Microbiome. 2021;9:196.
Article
Google Scholar
Gurung K, Wertheim B, Falcao Salles J. The microbiome of pest insects: it is not just bacteria. J Entomologia Experimentalis et Applicata. 2019;167:156–70.
Article
Google Scholar
Kwong WK, Steele MI, Moran NA. Genome sequences of Apibacter spp., gut symbionts of asian honey bees. Genome Biol Evol. 2018;10:1174–9.
Article
CAS
Google Scholar
Sun X, Yang Y, Zhang N, Shen Y, Ni J. Draft genome sequence of Dysgonomonas macrotermitis strain JCM 19375T, isolated from the gut of a termite. Genome Announc. 2015;3:e00963–15.
Article
Google Scholar
Minard G, Tran F-H, Tran-Van V, Goubert C, Bellet C, Lambert G, et al. French invasive Asian tiger mosquito populations harbor reduced bacterial microbiota and genetic diversity compared to Vietnamese autochthonous relatives. Front Microbiol. 2015:6:970.
Shukla SP, Sanders JG, Byrne MJ, Pierce NE. Gut microbiota of dung beetles correspond to dietary specializations of adults and larvae. Mol Ecol. 2016;25:6092–106.
Article
CAS
Google Scholar
Lee CM, Kim SY, Song J, Lee YS, Sim JS, Hahn BS. Isolation and characterization of a halotolerant and protease-resistant α-galactosidase from the gut metagenome of Hermetia illucens. Biotechnol. 2018;279:47–54.
CAS
Google Scholar
Bruno D, Bonelli M, De Filippis F, Di Lelio I, Tettamanti G, Casartelli M, et al. The intestinal microbiota of Hermetia illucens larvae is affected by diet and shows a diverse composition in the different midgut regions. J Appl Environ Microbiol. 2019;85:e01864–18.
Article
CAS
Google Scholar
McManus R, Ravenscraft A, Moore W. Bacterial associates of a gregarious riparian beetle with explosive defensive chemistry. Front Microbiol. 2018:9:2361.
Durand A-A, Bergeron A, Constant P, Buffet J-P, Déziel E, Guertin C. Surveying the endomicrobiome and ectomicrobiome of bark beetles: The case of Dendroctonus simplex. Sci Rep. 2015;5:17190.
Article
CAS
Google Scholar
Almeida LG, Moraes LAB, Trigo JR, Omoto C, Cônsoli FL. The gut microbiota of insecticide-resistant insects houses insecticide-degrading bacteria: a potential source for biotechnological exploitation. PloS one. 2017;12:e0174754.
Article
Google Scholar
Ziganshina EE, Mohammed WS, Shagimardanova EI, Vankov PY, Gogoleva NE, Ziganshin AM. Fungal, bacterial, and archaeal diversity in the digestive tract of several beetle larvae (Coleoptera). BioMed Res Int. 2018;2018:6765438.
Article
Google Scholar
Collins MD, Shah HN. Reclassification of Bacteroides termitidis Sebald (Holdeman and Moore) in a new genus Sebaldella, as Sebaldella termitidis comb. nov. Int J Sys Bact. 1986;36:349–50.
Article
Google Scholar
Goto S, Anbutsu H, Fukatsu T. Asymmetrical interactions between Wolbachia and Spiroplasma endosymbionts coexisting in the same insect host. Appl Environ Microbiol. 2006;72:4805–10.
Article
CAS
Google Scholar
Kikuchi Y, Hosokawa T, Fukatsu T. Insect-microbe mutualism without vertical transmission: a stinkbug acquires a beneficial gut symbiont from the environment every generation. Appl Environ Microbiol. 2007;73:4308–16.
Article
CAS
Google Scholar
Moran NA, McCutcheon JP, Nakabachi A. Genomics and evolution of heritable bacterial symbionts. Annu Rev Genet. 2008;42:165–90.
Article
CAS
Google Scholar
Gauthier J, Derome N, Rodrigues JM. Evenness-Richness Scatter Plots: a visual and insightful representation of Shannon entropy measurements for ecological community analysis. Msphere. 2021;6:e01019–20.
Article
CAS
Google Scholar
Kuczynski J, Liu Z, Lozupone C, McDonald D, Fierer N, Knight R. Microbial community resemblance methods differ in their ability to detect biologically relevant patterns. Nat Methods. 2010;7:813–9.
Article
CAS
Google Scholar
Witczak ZJ, Bommareddy A, VanWert AL. Pederin, psymberin and the structurally related mycalamides: synthetic aspects and biological activities. In: Kim S-K, editor. Handbook of Anticancer Drugs from Marine Origin. Cham: Springer International Publishing; 2015. p. 683–700.
Chapter
Google Scholar
Brunetti M, Magoga G, Gionechetti F, De Biase A, Montagna M. Does diet breadth affect the complexity of the phytophagous insect microbiota? The case study of Chrysomelidae. Environ Microbiol. 2022;8:3565-79.
Paniagua Voirol LR, Frago E, Kaltenpoth M, Hilker M, Fatouros NE. Bacterial symbionts in lepidoptera: their diversity, transmission, and impact on the host. Front Microbiol. 2018;9:556.
Article
Google Scholar
Vilanova C, Baixeras J, Latorre A, Porcar M. The generalist inside the specialist: gut bacterial communities of two insect species feeding on toxic plants are dominated by Enterococcus sp. Front Microbiol. 2016;7:1005.
Article
Google Scholar
Raziei T. Köppen-Geiger climate classification of Iran and investigation of its changes during 20th century. J Earth Space Phys. 2017;43:419–39.
Google Scholar
Arber W. Horizontal gene transfer among bacteria and its role in biological evolution. Life (Basel, Switzerland). 2014;4:217–24.
Google Scholar
Hacker J, Kaper JB. Pathogenicity islands and the evolution of microbes. Annu Rev Microbiol. 2000;54:641–79.
Article
CAS
Google Scholar
Ravenhall M, Škunca N, Lassalle F, Dessimoz C. Inferring horizontal gene transfer. PLoS Comput Biol. 2015;11:e1004095.
Article
Google Scholar
Vogan AA, Higgs PG. The advantages and disadvantages of horizontal gene transfer and the emergence of the first species. Biol Direct. 2011;6:1.
Article
CAS
Google Scholar
Dillon RJ, Dillon V. The gut bacteria of insects: nonpathogenic interactions. Ann Rev Entomol. 2004;49:71–92.
Article
CAS
Google Scholar
Wang X, He SW, Guo HB, Thin KK, Gao JS, Wang Y, et al. Pseudomonas rhizoryzae sp. nov., isolated from rice. Int J Syst Evol Microbiol. 2020;70:944–50.
Article
CAS
Google Scholar
Quibod IL, Grande G, Oreiro EG, Borja FN, Dossa GS, Mauleon R, et al. Rice-infecting Pseudomonas genomes are highly accessorized and harbor multiple putative virulence mechanisms to cause sheath brown rot. PLOS One. 2015;10:e0139256.
Article
Google Scholar
Kwong WK, Moran NA. Apibacter adventoris gen. nov., sp. nov., a member of the phylum Bacteroidetes isolated from honey bees. Int J Syst Evol Microbiol. 2016;66:1323–9.
Article
CAS
Google Scholar
Praet J, Aerts M, Brandt E, Meeus I, Smagghe G, Vandamme P. Apibacter mensalis sp. nov.: a rare member of the bumblebee gut microbiota. Int J Syst Evol Microbiol. 2016;66:1645–51.
Article
CAS
Google Scholar
Zhang W, Zhang X, Su Q, Tang M, Zheng H, Zhou X. Genomic features underlying the evolutionary transitions of Apibacter to honey bee gut symbionts. Insect Sci. 2022;29:259–75.
Article
CAS
Google Scholar
Hornung BVH, Zwittink RD, Kuijper EJ. Issues and current standards of controls in microbiome research. FEMS Microbiol Ecol. 2019;95:fiz045.
Salter SJ, Cox MJ, Turek EM, Calus ST, Cookson WO, Moffatt MF, et al. Reagent and laboratory contamination can critically impact sequence-based microbiome analyses. BMC Biol. 2014;12:87.
Article
Google Scholar
Song X, Yang T, Zhou C, Luo S, Dong M, Yan X, et al. Differences in microbiome composition and transcriptome profiles between male and female Paederus fuscipes harbouring pederin-producing bacteria. Insect Mol Biol. 2022;1-14.
Fratini E, Salvemini M, Lombardo F, Muzzi M, Molfini M, Gisondi S, et al. Unraveling the role of male reproductive tract and haemolymph in cantharidin-exuding Lydus trimaculatus and Mylabris variabilis (Coleoptera: Meloidae): a comparative transcriptomics approach. BMC Genomics. 2021;22:1–24.
Article
Google Scholar