Sommer F, Bäckhed F. The gut microbiota–masters of host development and physiology. Nat Rev Microbiol. 2013;11:227–38.
Article
CAS
Google Scholar
Davidson GL, Raulo A, Knowles SCL. Identifying microbiome-mediated behaviour in wild vertebrates. Trends Ecol Evol. 2020;35:972–80.
Article
Google Scholar
Round JL, Mazmanian SK. The gut microbiota shapes intestinal immune responses during health and disease. Nat Rev Immunol. 2009;9:313–23.
Article
CAS
Google Scholar
Davies CS, Worsley SF, Maher KH, Komdeur J, Burke T, Dugdale HL, et al. Immunogenetic variation shapes the gut microbiome in a natural vertebrate population. Microbiome. 2022;10:41.
Article
Google Scholar
Ren T, Boutin S, Humphries MM, Dantzer B, Gorrell JC, Coltman DW, et al. Seasonal, spatial, and maternal effects on gut microbiome in wild red squirrels. Microbiome. 2017;5:163.
Article
Google Scholar
Ren T, Grieneisen LE, Alberts SC, Archie EA, Wu M. Development, diet and dynamism: longitudinal and cross-sectional predictors of gut microbial communities in wild baboons: Gut microbiota in wild baboons. Environ Microbiol. 2016;18:1312–25.
Article
Google Scholar
Rosshart SP, Vassallo BG, Angeletti D, Hutchinson DS, Morgan AP, Takeda K, et al. Wild mouse gut microbiota promotes host fitness and improves disease resistance. Cell. 2017;171:1015-1028.e13.
Article
CAS
Google Scholar
Weldon L, Abolins S, Lenzi L, Bourne C, Riley EM, Viney M. The gut microbiota of wild mice. PLoS ONE. 2015;10:e0134643.
Article
Google Scholar
Worsley SF, Davies CS, Mannarelli M-E, Hutchings MI, Komdeur J, Burke T, et al. Gut microbiome composition, not alpha diversity, is associated with survival in a natural vertebrate population. Anim Microbiome. 2021;3:84.
Article
CAS
Google Scholar
Videvall E, Song SJ, Bensch HM, Strandh M, Engelbrecht A, Serfontein N, et al. Early-life gut dysbiosis linked to juvenile mortality in ostriches. Microbiome. 2020;8:147.
Article
CAS
Google Scholar
Leclaire S, Pineaux M, Blanchard P, White J, Hatch SA. Microbiota composition and diversity of multiple body sites vary according to reproductive performance in a seabird. Mol Ecol. 2022;00:1–18.
Comizzoli P, Power ML, Bornbusch SL, Muletz-Wolz CR. Interactions between reproductive biology and microbiomes in wild animal species. Anim Microbiome. 2021;3:87.
Article
CAS
Google Scholar
Huffnagle GB, Noverr MC. The emerging world of the fungal microbiome. Trends in Microbiol. 2013;21:334–41.
Article
CAS
Google Scholar
Sun B, Gu Z, Wang X, Huffman MA, Garber PA, Sheeran LK, et al. Season, age, and sex affect the fecal mycobiota of free-ranging Tibetan macaques (Macaca thibetana). Am J Primatol. 2018;80:e22880.
Article
Google Scholar
Bergner LM, Orton RJ, Benavides JA, Becker DJ, Tello C, Biek R, et al. Demographic and environmental drivers of metagenomic viral diversity in vampire bats. Mol Ecol. 2020;29:26–39.
Article
Google Scholar
Hicks AL, Lee KJ, Couto-Rodriguez M, Patel J, Sinha R, Guo C, et al. Gut microbiomes of wild great apes fluctuate seasonally in response to diet. Nat Commun. 2018;9:1786.
Article
Google Scholar
Yang S, Gao X, Meng J, Zhang A, Zhou Y, Long M, et al. Metagenomic analysis of bacteria, fungi, bacteriophages, and helminths in the gut of giant pandas. Front Microbiol. 2018;9:1717.
Article
Google Scholar
Li J, Heath IB. Chytridiomycetous gut fungi, oft overlooked contributors to herbivore digestion. Can J Microbiol. 1993;39:1003–13.
Article
CAS
Google Scholar
Jiang TT, Shao T-Y, Ang WXG, Kinder JM, Turner LH, Pham G, et al. Commensal fungi recapitulate the protective benefits of intestinal bacteria. Cell Host Microbe. 2017;22:809-816.e4.
Article
CAS
Google Scholar
van Tilburg BE, Pettersen VK, Gutierrez MW, Laforest-Lapointe I, Jendzjowsky NG, Cavin J-B, et al. Intestinal fungi are causally implicated in microbiome assembly and immune development in mice. Nat Commun. 2020;11:2577.
Article
Google Scholar
Yeung F, Chen Y-H, Lin J-D, Leung JM, McCauley C, Devlin JC, et al. Altered immunity of laboratory mice in the natural environment is associated with fungal colonization. Cell Host Microbe. 2020;27:809–822.e6.
Getzke F, Thiergart T, Hacquard S. Contribution of bacterial-fungal balance to plant and animal health. Curr Opin Microbiol. 2019;49:66–72.
Article
CAS
Google Scholar
Wheeler ML, Limon JJ, Bar AS, Leal CA, Gargus M, Tang J, et al. Immunological consequences of intestinal fungal dysbiosis. Cell Host Microbe. 2016;19:865–73.
Article
CAS
Google Scholar
Barelli C, Albanese D, Stumpf RM, Asangba A, Donati C, Rovero F, et al. The gut microbiota communities of wild arboreal and ground-feeding tropical primates are affected differently by habitat disturbance. mSystems. 2020;5:e00061–20.
Montoya-Ciriaco N, Gómez-Acata S, Muñoz-Arenas LC, Dendooven L, Estrada-Torres A, Díaz de la Vega-Pérez AH, et al. Dietary effects on gut microbiota of the mesquite lizard Sceloporus grammicus (Wiegmann, 1828) across different altitudes. Microbiome. 2020;8:6.
Article
CAS
Google Scholar
Clayton JB, Vangay P, Huang H, Ward T, Hillmann BM, Al-Ghalith GA, et al. Captivity humanizes the primate microbiome. Proc Natl Acad Sci USA. 2016;113:10376–81.
Article
CAS
Google Scholar
Bornbusch SL, Greene LK, Rahobilalaina S, Calkins S, Rothman RS, Clarke TA, et al. Gut microbiota of ring-tailed lemurs (Lemur catta) vary across natural and captive populations and correlate with environmental microbiota. Anim Microbiome. 2022;4:29.
Article
CAS
Google Scholar
San Juan PA, Castro I, Dhami MK. Captivity reduces diversity and shifts composition of the Brown Kiwi microbiome. Anim Microbiome. 2021;3:48.
Article
CAS
Google Scholar
Viney M. The gut microbiota of wild rodents: challenges and opportunities. Lab Anim. 2019;53:252–8.
Article
CAS
Google Scholar
Kreisinger J, Čížková D, Vohánka J, Piálek J. Gastrointestinal microbiota of wild and inbred individuals of two house mouse subspecies assessed using high-throughput parallel pyrosequencing. Mol Ecol. 2014;23:5048–60.
Article
CAS
Google Scholar
Underhill DM, Iliev ID. The mycobiota: interactions between commensal fungi and the host immune system. Nat Rev Immunol. 2014;14:405–16.
Article
CAS
Google Scholar
Radwan J, Babik W, Kaufman J, Lenz TL, Winternitz J. Advances in the evolutionary understanding of MHC polymorphism. Trends Genet. 2020;36:298–311.
Article
CAS
Google Scholar
Klein J. Natural history of the major histocompatibility complex. New York: Wiley; 1986.
Google Scholar
Spurgin LG, Richardson DS. How pathogens drive genetic diversity: MHC, mechanisms and misunderstandings. Proc R Soc B. 2010;277:979–88.
Article
CAS
Google Scholar
Blum JS, Wearsch PA, Cresswell P. Pathways of antigen processing. Annu Rev Immunol. 2013;31:443–73.
Article
CAS
Google Scholar
Hepworth MR, Monticelli LA, Fung TC, Ziegler CGK, Grunberg S, Sinha R, et al. Innate lymphoid cells regulate CD4+ T-cell responses to intestinal commensal bacteria. Nature. 2013;498:113–7.
Article
CAS
Google Scholar
Roland MM, Mohammed AD, Kubinak JL. How MHCII signaling promotes benign host-microbiota interactions. PLoS Pathog. 2020;16:e1008558.
Article
CAS
Google Scholar
Neefjes J, Jongsma MLM, Paul P, Bakke O. Towards a systems understanding of MHC class I and MHC class II antigen presentation. Nat Rev Immunol. 2011;11:823–36.
Article
CAS
Google Scholar
Biedrzycka A, O’Connor E, Sebastian A, Migalska M, Radwan J, Zając T, et al. Extreme MHC class I diversity in the sedge warbler (Acrocephalus schoenobaenus); selection patterns and allelic divergence suggest that different genes have different functions. BMC Evol Biol. 2017;17:159.
Article
Google Scholar
Bolnick DI, Snowberg LK, Caporaso JG, Lauber C, Knight R, Stutz WE. Major histocompatibility complex class IIb polymorphism influences gut microbiota composition and diversity. Mol Ecol. 2014;23:4831–45.
Article
CAS
Google Scholar
Montero BK, Wasimuddin, Schwensow N, Gillingham MAF, Ratovonamana YR, Rakotondranary SJ, et al. Evidence of MHC class I and II influencing viral and helminth infection via the microbiome in a non-human primate. PLoS Pathog. 2021;17:e1009675.
Article
CAS
Google Scholar
Savage AE, Zamudio KR. MHC genotypes associate with resistance to a frog-killing fungus. Proc Natl Acad Sci USA. 2011;108:16705–10.
Article
CAS
Google Scholar
Savage AE, Zamudio KR. Adaptive tolerance to a pathogenic fungus drives major histocompatibility complex evolution in natural amphibian populations. Proc Biol Sci. 2016;283:20153115.
Google Scholar
Belasen AM, Bletz MC, da Silva Leite D, Toledo LF, James TY. Long-term habitat fragmentation is associated with reduced MHC IIB diversity and increased infections in amphibian hosts. Front Ecol Evol. 2019;6:236.
Article
Google Scholar
Belasen AM, Riolo MA, Bletz MC, Lyra ML, Toledo LF, James TY. Geography, host genetics, and cross-domain microbial networks structure the skin microbiota of fragmented Brazilian Atlantic forest frog populations. Ecol Evol. 2021;11:9293–307.
Article
Google Scholar
Derakhshani H, Plaizier JC, De Buck J, Barkema HW, Khafipour E. Association of bovine major histocompatibility complex (BoLA) gene polymorphism with colostrum and milk microbiota of dairy cows during the first week of lactation. Microbiome. 2018;6:203.
Article
Google Scholar
Komdeur J, Piersma T, Kraaijeveld K, Kraaijeveld-Smit F, Richardson DS. Why Seychelles warblers fail to recolonize nearby islands: unwilling or unable to fly there?: reduced island colonization by Seychelles Warbler. Ibis. 2004;146:298–302.
Article
Google Scholar
Spurgin LG, Wright DJ, Velde M, Collar NJ, Komdeur J, Burke T, et al. Museum DNA reveals the demographic history of the endangered Seychelles warbler. Evol Appl. 2014;7:1134–43.
Article
Google Scholar
Richardson DS, Westerdahl H. MHC diversity in two Acrocephalus species: the outbred great reed warbler and the inbred Seychelles warbler. Mol Ecol. 2003;12:3523–9.
Article
CAS
Google Scholar
Brouwer L, Barr I, van de Pol M, Burke T, Komdeur J, Richardson DS. MHC-dependent survival in a wild population: evidence for hidden genetic benefits gained through extra-pair fertilizations. Mol Ecol. 2010;19:3444–55.
Article
Google Scholar
Davies CS, Taylor MI, Hammers M, Burke T, Komdeur J, Dugdale HL, et al. Contemporary evolution of the innate immune receptor gene TLR3 in an isolated vertebrate population. Mol Ecol. 2021;30:2528–42.
Gilroy DL, van Oosterhout C, Komdeur J, Richardson DS. Toll-like receptor variation in the bottlenecked population of the endangered Seychelles warbler. Anim Conserv. 2017;20:235–50.
Article
Google Scholar
Barton GM. Viral recognition by Toll-like receptors. Semin Immunol. 2007;19:33–40.
Article
CAS
Google Scholar
Komdeur J. Importance of habitat saturation and territory quality for evolution of cooperative breeding in the Seychelles warbler. Nature. 1992;358:493–5.
Article
Google Scholar
Hammers M, Kingma SA, Spurgin LG, Bebbington K, Dugdale HL, Burke T, et al. Breeders that receive help age more slowly in a cooperatively breeding bird. Nat Commun. 2019;10:1301.
Article
Google Scholar
Komdeur J, Pels MD. Rescue of the Seychelles warbler on Cousin Island, Seychelles: the role of habitat restoration. Biol Conserv. 2005;124:15–26.
Article
Google Scholar
Richardson DS, Jury FL, Blaakmeer K, Komdeur J, Burke T. Parentage assignment and extra-group paternity in a cooperative breeder: the Seychelles warbler (Acrocephalus sechellensis). Mol Ecol. 2001;10:2263–73.
Article
CAS
Google Scholar
Komdeur J, Daan S. Breeding in the monsoon: semi-annual reproduction in the Seychelles warbler (Acrocephalus sechellensis). J Ornithol. 2005;146:305–13.
Article
Google Scholar
Sparks AM, Spurgin LG, Velde M, Fairfield EA, Komdeur J, Burke T, et al. Telomere heritability and parental age at conception effects in a wild avian population. Mol Ecol. 2021;31:6324–38.
Brouwer L, Richardson DS, Eikenaar C, Komdeur J. The role of group size and environmental factors on survival in a cooperatively breeding tropical passerine. J Anim Ecol. 2006;75:1321–9.
Article
Google Scholar
Griffiths R, Double MC, Orr K, Dawson RJG. A DNA test to sex most birds. Mol Ecol. 1998;7:1071–5.
Article
CAS
Google Scholar
Coulon A. genhet: an easy-to-use R function to estimate individual heterozygosity. Mol Ecol Resour. 2010;10:167–9.
Article
CAS
Google Scholar
R Core Team. R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing; 2020.
Palmer JM, Jusino MA, Banik MT, Lindner DL. Non-biological synthetic spike-in controls and the AMPtk software pipeline improve mycobiome data. PeerJ. 2018;6:e4925.
Article
Google Scholar
D’Amore R, Ijaz UZ, Schirmer M, Kenny JG, Gregory R, Darby AC, et al. A comprehensive benchmarking study of protocols and sequencing platforms for 16S rRNA community profiling. BMC Genomics. 2016;17:55.
Article
Google Scholar
Ihrmark K, Bödeker ITM, Cruz-Martinez K, Friberg H, Kubartova A, Schenck J, et al. New primers to amplify the fungal ITS2 region - evaluation by 454-sequencing of artificial and natural communities. FEMS Microbiol Ecol. 2012;82:666–77.
Article
CAS
Google Scholar
White TJ, Innis MA, Gelfand DH, Sninsky JJ, editors. PCR protocols: a guide to methods and applications. San Diego: Academic Press; 1990.
Google Scholar
Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet j. 2011;17:10.
Article
Google Scholar
Joshi NA, Fass JN. Sickle: a sliding-window, adaptive, quality-based trimming tool for FastQ files. Available at https://github.com/najoshi/sickle. 2011.
Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA, et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol. 2019;37:852–7.
Article
CAS
Google Scholar
Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13:581–3.
Article
CAS
Google Scholar
Nilsson RH, Anslan S, Bahram M, Wurzbacher C, Baldrian P, Tedersoo L. Mycobiome diversity: high-throughput sequencing and identification of fungi. Nat Rev Microbiol. 2019;17:95–109.
Article
CAS
Google Scholar
Nilsson RH, Larsson K-H, Taylor AFS, Bengtsson-Palme J, Jeppesen TS, Schigel D, et al. The UNITE database for molecular identification of fungi: handling dark taxa and parallel taxonomic classifications. Nucleic Acids Res. 2019;47:D259–64.
Article
CAS
Google Scholar
McMurdie PJ, Holmes S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE. 2013;8:e61217.
Article
CAS
Google Scholar
Davis NM, Proctor DM, Holmes SP, Relman DA, Callahan BJ. Simple statistical identification and removal of contaminant sequences in marker-gene and metagenomics data. Microbiome. 2018;6:226.
Article
Google Scholar
Fredricks DN, Smith C, Meier A. Comparison of six DNA extraction methods for recovery of fungal DNA as assessed by quantitative PCR. J Clin Microbiol. 2005;43:5122–8.
Article
CAS
Google Scholar
Hsieh TC, Ma KH, Chao A. iNEXT: an R package for rarefaction and extrapolation of species diversity (Hill numbers). Methods Ecol Evol. 2016;7:1451–6.
Article
Google Scholar
Burnham KP, Anderson DR, Huyvaert KP. AIC model selection and multimodel inference in behavioral ecology: some background, observations, and comparisons. Behav Ecol Sociobiol. 2011;65:23–35.
Article
Google Scholar
Grueber CE, Nakagawa S, Laws RJ, Jamieson IG. Multimodel inference in ecology and evolution: challenges and solutions. J Evol Biol. 2011;24:699–711.
Article
CAS
Google Scholar
Gelman A, Yu-Sung S. arm: data analysis using regression and multilevel/hierarchical models. R package version 1.11–2. https://CRAN.R-project.org/package=arm. 2020.
Fox J, Weisberg S. An R companion to applied regression, third edition. Thousand Oaks CA: Sage; 2019. https://socialsciences.mcmaster.ca/jfox/Books/Companion/.
Hartig F. DHARMa: residual diagnostics for hierarchical (multi-level/mixed) regression models. R package version 031. 2019. http://florianhartig.github.io/DHARMa/.
Barton K. MuMIn: multi-model inference. R package version 1.44.3/r480. https://R-Forge.R-project.org/projects/mumin/. 2021.
Venables WN, Ripley BD. Modern applied statistics with S. 4th ed. New York: Springer; 2002.
Book
Google Scholar
Nowak MA, Tarczy-Hornoch K, Austyn JM. The optimal number of major histocompatibility complex molecules in an individual. Proc Natl Acad Sci USA. 1992;89:10896–9.
Article
CAS
Google Scholar
Lahti L, Shetty S. microbiome. R package version 1.14.0. 2012. http://microbiome.github.io.
Gloor GB, Macklaim JM, Pawlowsky-Glahn V, Egozcue JJ. Microbiome datasets are compositional: and this is not optional. Front Microbiol. 2017;8:2224.
Article
Google Scholar
Okansen J, Guillaume Blanchet F, Friendly M, Kindt R, Legendre P, McGlinn D, et al. vegan: community ecology package. R package version 2.5–7. https://CRAN.R-project.org/package=vegan. 2020.
Anderson MJ. A new method for non-parametric multivariate analysis of variance: non-parametric MANOVA for ecology. Austral Ecol. 2001;26:32–46.
Google Scholar
Lin H, Peddada SD. Analysis of compositions of microbiomes with bias correction. Nat Commun. 2020;11:3514.
Article
CAS
Google Scholar
Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Series B Stat Methodol. 1995;57:289–300.
Google Scholar
Harrison XA, McDevitt AD, Dunn JC, Griffiths SM, Benvenuto C, Birtles R, et al. Fungal microbiomes are determined by host phylogeny and exhibit widespread associations with the bacterial microbiome. Proc R Soc B. 2021;288:20210552.
Article
CAS
Google Scholar
Nash AK, Auchtung TA, Wong MC, Smith DP, Gesell JR, Ross MC, et al. The gut mycobiome of the Human Microbiome Project healthy cohort. Microbiome. 2017;5:153.
Article
Google Scholar
Sun B, Xia Y, Garber PA, Amato KR, Gomez A, Xu X, et al. Captivity is associated with gut mycobiome composition in Tibetan macaques (Macaca thibetana). Front Microbiol. 2021;12:665853.
Article
Google Scholar
Raimondi S, Amaretti A, Gozzoli C, Simone M, Righini L, Candeliere F, et al. Longitudinal survey of fungi in the human gut: ITS profiling, phenotyping, and colonization. Front Microbiol. 2019;10:1575.
Article
Google Scholar
Hallen-Adams HE, Kachman SD, Kim J, Legge RM, Martínez I. Fungi inhabiting the healthy human gastrointestinal tract: a diverse and dynamic community. Fungal Ecol. 2015;15:9–17.
Article
Google Scholar
Hoffmann C, Dollive S, Grunberg S, Chen J, Li H, Wu GD, et al. Archaea and fungi of the human gut microbiome: correlations with diet and bacterial residents. PLoS ONE. 2013;8:e66019.
Article
CAS
Google Scholar
Li J, Li L, Jiang H, Yuan L, Zhang L, Ma J, et al. Fecal bacteriome and mycobiome in bats with diverse diets in South China. Curr Microbiol. 2018;75:1352–61.
Article
CAS
Google Scholar
Bensch K, Braun U, Groenewald JZ, Crous PW. The genus Cladosporium. Stud Mycol. 2012;72:1–401.
Article
CAS
Google Scholar
Chen L, Zhang L, Li Z-H, Hui F-L. Sympodiomycopsis yantaiensis sp. nov., a basidiomycetous yeast isolated from insect frass. Int J Syst Evol Microbiol. 2013;63:3501–5.
Article
CAS
Google Scholar
Wei Y-H, Liou G-Y, Liu H-Y, Lee F-L. Sympodiomycopsis kandeliae sp. nov., a basidiomycetous anamorphic fungus from mangroves, and reclassification of Sympodiomycopsis lanaiensis as Jaminaea lanaiensis comb. nov. Int J Syst Evol Microbiol. 2011;61:469–73.
Article
CAS
Google Scholar
Song SJ, Sanders JG, Delsuc F, Metcalf J, Amato K, Taylor MW, et al. Comparative analyses of vertebrate gut microbiomes reveal convergence between birds and bats. mBio. 2020;11:e02901-19. https://doi.org/10.1128/mBio.02901-19.atom.
Article
CAS
Google Scholar
Youngblut ND, Reischer GH, Walters W, Schuster N, Walzer C, Stalder G, et al. Host diet and evolutionary history explain different aspects of gut microbiome diversity among vertebrate clades. Nat Commun. 2019;10:2200.
Article
Google Scholar
Bodawatta KH, Koane B, Maiah G, Sam K, Poulsen M, Jønsson KA. Species-specific but not phylosymbiotic gut microbiomes of New Guinean passerine birds are shaped by diet and flight-associated gut modifications. Proc R Soc B. 2021;288:rspb.2021.0446, 20210446.
Lavrinienko A, Scholier T, Bates ST, Miller AN, Watts PC. Defining gut mycobiota for wild animals: a need for caution in assigning authentic resident fungal taxa. Anim Microbiome. 2021;3:75.
Article
CAS
Google Scholar
Fiers WD, Gao IH, Iliev ID. Gut mycobiota under scrutiny: fungal symbionts or environmental transients? Curr Opin Microbiol. 2019;50:79–86.
Article
CAS
Google Scholar
Zhang C, Derrien M, Levenez F, Brazeilles R, Ballal SA, Kim J, et al. Ecological robustness of the gut microbiota in response to ingestion of transient food-borne microbes. ISME J. 2016;10:2235–45.
Article
Google Scholar
Santus W, Devlin JR, Behnsen J. Crossing kingdoms: how the mycobiota and fungal-bacterial interactions impact host health and disease. Infect Immun. 2021;89:e00648-e720.
Article
CAS
Google Scholar
Tedersoo L, Lindahl B. Fungal identification biases in microbiome projects: fungal identification biases in microbiome projects. Environ Microbiol Rep. 2016;8:774–9.
Article
Google Scholar
Tedersoo L, Anslan S, Bahram M, Põlme S, Riit T, Liiv I, et al. Shotgun metagenomes and multiple primer pair-barcode combinations of amplicons reveal biases in metabarcoding analyses of fungi. MycoKeys. 2015;10:1–43.
Article
Google Scholar
Li S, Deng Y, Wang Z, Zhang Z, Kong X, Zhou W, et al. Exploring the accuracy of amplicon-based internal transcribed spacer markers for a fungal community. Mol Ecol Resour. 2020;20:170–84.
Article
CAS
Google Scholar
Vargas-Gastélum L, Romero-Olivares AL, Escalante AE, Rocha-Olivares A, Brizuela C, Riquelme M. Impact of seasonal changes on fungal diversity of a semi-arid ecosystem revealed by 454 pyrosequencing. FEMS Microbiol Ecol. 2015;91:fiv044.
Murillo T, Schneider D, Fichtel C, Daniel R. Dietary shifts and social interactions drive temporal fluctuations of the gut microbiome from wild redfronted lemurs. ISME Commun. 2022;2:3.
Article
Google Scholar
Komdeur J. Seasonal timing of reproduction in a tropical bird, the Seychelles warbler: a field experiment using translocation. J Biol Rhythms. 1996;11:333–46.
Article
CAS
Google Scholar
Escallón C, Belden LK, Moore IT. The cloacal microbiome changes with the breeding season in a wild bird. Int Org Biol. 2019;1:oby009.
Google Scholar
Escallón C, Becker MH, Walke JB, Jensen RV, Cormier G, Belden LK, et al. Testosterone levels are positively correlated with cloacal bacterial diversity and the relative abundance of Chlamydiae in breeding male rufous-collared sparrows. Funct Ecol. 2017;31:192–203.
Article
Google Scholar
Chi W-C, Chen W, He C-C, Guo S-Y, Cha H-J, Tsang LM, et al. A highly diverse fungal community associated with leaves of the mangrove plant Acanthus ilicifolius var. xiamenensis revealed by isolation and metabarcoding analyses. PeerJ. 2019;7:7293.
Article
Google Scholar
Khan SA, Hamayun M, Yoon H, Kim H-Y, Suh S-J, Hwang S-K, et al. Plant growth promotion and Penicillium citrinum. BMC Microbiol. 2008;8:231.
Article
Google Scholar
Visagie CM, Houbraken J, Frisvad JC, Hong S-B, Klaassen CHW, Perrone G, et al. Identification and nomenclature of the genus Penicillium. Stud Mycol. 2014;78:343–71.
Article
CAS
Google Scholar
Costello EK, Stagaman K, Dethlefsen L, Bohannan BJM, Relman DA. The application of ecological theory toward an understanding of the human microbiome. Science. 2012;336:1255–62.
Article
CAS
Google Scholar
Uren Webster TM, Rodriguez-Barreto D, Castaldo G, Gough P, Consuegra S, Garcia de Leaniz C. Environmental plasticity and colonisation history in the Atlantic salmon microbiome: a translocation experiment. Mol Ecol. 2020;29:886–98.
Article
Google Scholar
Brown TJ, Spurgin LG, Dugdale HL, Komdeur J, Burke T, Richardson DS. Causes and consequences of telomere lengthening in a wild vertebrate population. Mol Ecol. 2021;31:5933–45.
van de Crommenacker J, Komdeur J, Burke T, Richardson DS. Spatio-temporal variation in territory quality and oxidative status: a natural experiment in the Seychelles warbler (Acrocephalus sechellensis): territory quality-related oxidative costs in a wild passerine. J Anim Ecol. 2011;80:668–80.
Article
Google Scholar
Noguera JC, Aira M, Pérez-Losada M, Domínguez J, Velando A. Glucocorticoids modulate gastrointestinal microbiome in a wild bird. R Soc open sci. 2018;5:171743.
Article
Google Scholar
Knutie SA. Food supplementation affects gut microbiota and immunological resistance to parasites in a wild bird species. J Appl Ecol. 2020;57:536–47.
Article
CAS
Google Scholar
Madden AA, Oliverio AM, Kearns PJ, Henley JB, Fierer N, Starks PTB, et al. Chronic stress and captivity alter the cloacal microbiome of a wild songbird. J Exp Biol. 2022;225:jeb243176.
Article
Google Scholar
Richardson DS, Komdeur J, Burke T. Inbreeding in the Seychelles warbler: environment-dependent maternal effects. Evolution. 2004;58:2037–48.
Google Scholar
Brouwer L, Komdeur J, Richardson DS. Heterozygosity-fitness correlations in a bottlenecked island species: a case study on the Seychelles warbler. Mol Ecol. 2007;16:3134–44.
Article
CAS
Google Scholar
Bebbington K, Spurgin LG, Fairfield EA, Dugdale HL, Komdeur J, Burke T, et al. Telomere length reveals cumulative individual and transgenerational inbreeding effects in a passerine bird. Mol Ecol. 2016;25:2949–60.
Article
CAS
Google Scholar
Levitz SM. Interactions of Toll-like receptors with fungi. Microbes Infect. 2004;6:1351–5.
Article
CAS
Google Scholar
Khan AA, Yurkovetskiy L, O’Grady K, Pickard JM, de Pooter R, Antonopoulos DA, et al. Polymorphic immune mechanisms regulate commensal repertoire. Cell Rep. 2019;29:541-550.e4.
Article
CAS
Google Scholar
Gaigher A, Burri R, San-Jose LM, Roulin A, Fumagalli L. Lack of statistical power as a major limitation in understanding MHC-mediated immunocompetence in wild vertebrate populations. Mol Ecol. 2019;28:5115–32.
Article
Google Scholar
Slippers B, Crous PW, Jami F, Groenewald JZ, Wingfield MJ. Diversity in the Botryosphaeriales: looking back, looking forward. Fungal Biol. 2017;121:307–21.
Article
Google Scholar
da Silva RT, Guimarães DA, Camargo ZP, Rodrigues AM, Maceira JP, Bernardes-Engemann AR, et al. Cutaneous murine model of infection caused by Neoscytalidium dimidiatum: a preliminary study of an emerging human pathogen. Med Mycol. 2016;54:890–8.
Article
Google Scholar
Hamad I, Raoult D, Bittar F. Repertory of eukaryotes (eukaryome) in the human gastrointestinal tract: taxonomy and detection methods. Parasite Immunol. 2016;38:12–36.
Article
CAS
Google Scholar
Parfrey LW, Walters WA, Knight R. Microbial eukaryotes in the human microbiome: ecology, evolution, and future directions. Front Microbio. 2011;2:153.
Shuai M, Fu Y, Zhong H-L, Gou W, Jiang Z, Liang Y, et al. Mapping the human gut mycobiome in middle-aged and elderly adults: multiomics insights and implications for host metabolic health. Gut. 2022;71:1812–20.
Zhang W, Collins A, Gibson J, Tapper WJ, Hunt S, Deloukas P, et al. Impact of population structure, effective bottleneck time, and allele frequency on linkage disequilibrium maps. Proc Natl Acad Sci USA. 2004;101:18075–80.
Article
CAS
Google Scholar
Lenz TL. Computational prediction of MHC ii-antigen binding supports divergent allele advantage and explains trans-species polymorphism. Evolution. 2011;65:2380–90.
Article
Google Scholar
Tipton L, Müller CL, Kurtz ZD, Huang L, Kleerup E, Morris A, et al. Fungi stabilize connectivity in the lung and skin microbial ecosystems. Microbiome. 2018;6:12.
Article
Google Scholar