Trivedi P, Leach JE, Tringe SG, Sa T, Singh BK. Plant-microbiome interactions: from community assembly to plant health. Nat Rev Microbiol. 2020;18(11):607–21.
Article
CAS
Google Scholar
Qu Q, Zhang Z, Peijnenburg W, Liu W, Lu T, Hu B, et al. Rhizosphere microbiome assembly and its impact on plant growth. J Agric Food Chem. 2020;68(18):5024–38.
Article
CAS
Google Scholar
Zhao M, Zhao J, Yuan J, Hale L, Wen T, Huang Q, et al. Root exudates drive soil-microbe-nutrient feedbacks in response to plant growth. Plant Cell Environ. 2021;44(2):613–28.
Article
CAS
Google Scholar
Rolfe SA, Griffiths J, Ton J. Crying out for help with root exudates: adaptive mechanisms by which stressed plants assemble health-promoting soil microbiomes. Curr Opin Microbiol. 2019;49:73–82.
Article
CAS
Google Scholar
Sasse J, Martinoia E, Northen T. Feed your friends: do plant exudates shape the root microbiome? Trends Plant Sci. 2018;23(1):25–41.
Article
CAS
Google Scholar
Vives-Peris V, de Ollas C, Gómez-Cadenas A, Pérez-Clemente RM. Root exudates: from plant to rhizosphere and beyond. Plant Cell Rep. 2020;39(1):3–17.
Article
CAS
Google Scholar
Cesco S, Neumann G, Tomasi N, Pinton R, Weisskopf L. Release of plant-borne flavonoids into the rhizosphere and their role in plant nutrition. Plant Soil. 2010;329(1):1–25.
Article
CAS
Google Scholar
Yuan J, Zhao J, Wen T, Zhao M, Li R, Goossens P, et al. Root exudates drive the soil-borne legacy of aboveground pathogen infection. Microbiome. 2018;6(1):156.
Article
Google Scholar
Wen T, Zhao M, Yuan J, Kowalchuk GA, Shen Q. Root exudates mediate plant defense against foliar pathogens by recruiting beneficial microbes. Soil Ecol Lett. 2021;3(1):42–51.
Article
CAS
Google Scholar
Jacoby RP, Chen L, Schwier M, Koprivova A, Kopriva S. Recent advances in the role of plant metabolites in shaping the root microbiome. F1000Research. 2020:9.
Chen Q, Jiang T, Liu YX, Liu H, Zhao T, Liu Z, et al. Recently duplicated sesterterpene (C25) gene clusters in Arabidopsis thaliana modulate root microbiota. Sci China Life Sci. 2019;62(7):947–58.
Article
CAS
Google Scholar
Huang AC, Jiang T, Liu YX, Bai YC, Reed J, Qu B, et al. A specialized metabolic network selectively modulates Arabidopsis root microbiota. Science. 2019;364(6440).
Stringlis IA, Yu K, Feussner K, de Jonge R, Van Bentum S, Van Verk MC, et al. MYB72-dependent coumarin exudation shapes root microbiome assembly to promote plant health. Proc Natl Acad Sci U S A. 2018;115(22):E5213–e5222.
Article
CAS
Google Scholar
Harbort CJ, Hashimoto M, Inoue H, Niu Y, Guan R, Rombolà AD, et al. Root-secreted coumarins and the microbiota interact to improve iron nutrition in Arabidopsis. Cell Host Microbe. 2020;28(6):825–837.e826.
Article
CAS
Google Scholar
Alseekh S. Perez de Souza L, Benina M, Fernie AR: The style and substance of plant flavonoid decoration; towards defining both structure and function. Phytochemistry. 2020;174:112347.
Article
CAS
Google Scholar
Tan H, Man C, Xie Y, Yan J, Chu J, Huang J. A crucial role of GA-regulated flavonol biosynthesis in root growth of Arabidopsis. Mol Plant. 2019;12(4):521–37.
Article
CAS
Google Scholar
Mo Y, Nagel C, Taylor LP. Biochemical complementation of chalcone synthase mutants defines a role for flavonols in functional pollen. Proc Natl Acad Sci U S A. 1992;89(15):7213–7.
Article
CAS
Google Scholar
Pollak PE, Vogt T, Mo Y, Taylor LP. Chalcone synthase and flavonol accumulation in stigmas and anthers of petunia hybrida. Plant Physiol. 1993;102(3):925–32.
Article
CAS
Google Scholar
Wang L, Lam PY, Lui ACW, Zhu FY, Chen MX, Liu H, et al. Flavonoids are indispensable for complete male fertility in rice. J Exp Bot. 2020;71(16):4715–28.
Article
CAS
Google Scholar
Muhlemann JK, Younts TLB, Muday GK. Flavonols control pollen tube growth and integrity by regulating ROS homeostasis during high-temperature stress. Proc Natl Acad Sci U S A. 2018;115(47):E11188–e11197.
Article
CAS
Google Scholar
del Río JC, Rencoret J, Prinsen P, Martínez ÁT, Ralph J, Gutiérrez A. Structural characterization of wheat straw lignin as revealed by analytical pyrolysis, 2D-NMR, and reductive cleavage methods. J Agric Food Chem. 2012;60(23):5922–35.
Article
Google Scholar
Lan W, Lu F, Regner M, Zhu Y, Rencoret J, Ralph SA, et al. Tricin, a flavonoid monomer in monocot lignification. Plant Physiol. 2015;167(4):1284–95.
Article
CAS
Google Scholar
Lam PY, Lui ACW, Wang L, Liu H, Umezawa T, Tobimatsu Y, et al. Tricin biosynthesis and bioengineering, vol. 12; 2021.
Google Scholar
Falcone Ferreyra ML, Rius SP, Casati P. Flavonoids: biosynthesis, biological functions, and biotechnological applications. Front Plant Sci. 2012;3:222.
Article
CAS
Google Scholar
Kong C, Xu X, Zhou B, Hu F, Zhang C, Zhang M. Two compounds from allelopathic rice accession and their inhibitory activity on weeds and fungal pathogens. Phytochemistry. 2004;65(8):1123–8.
Article
CAS
Google Scholar
Chabot S, Bel-Rhlid R, Chênevert R, Piché Y. Hyphal growth promotion in vitro of the VA mycorrhizal fungus, Gigaspora margarita Becker & Hall, by the activity of structurally specific flavonoid compounds under CO(2) -enriched conditions. New Phytol. 1992;122(3):461–7.
Article
CAS
Google Scholar
Liu Q, Xu R, Yan Z, Jin H, Cui H, Lu L, et al. Phytotoxic allelochemicals from roots and root exudates of Trifolium pratense. J Agric Food Chem. 2013;61(26):6321–7.
Article
CAS
Google Scholar
Waiss AC, Chan BG, Elliger CA, Wiseman BR, McMillian WW, Widstrom NW, et al. Maysin, a flavone glycoside from corn silks with antibiotic activity toward corn earworm. J Econ Entomol. 1979;72(2):256–8.
Article
CAS
Google Scholar
Ryan KG, Swinny EE, Markham KR, Winefield C. Flavonoid gene expression and UV photoprotection in transgenic and mutant Petunia leaves. Phytochemistry. 2002;59(1):23–32.
Article
CAS
Google Scholar
van de Staaij J, de Bakker NV, Oosthoek A, Broekman R, van Beem A, Stroetenga M, et al. Flavonoid concentrations in three grass species and a sedge grown in the field and under controlled environment conditions in response to enhanced UV-B radiation. J Photochem Photobiol B. 2002;66(1):21–9.
Article
Google Scholar
Agati G, Biricolti S, Guidi L, Ferrini F, Fini A, Tattini M. The biosynthesis of flavonoids is enhanced similarly by UV radiation and root zone salinity in L. vulgare leaves. J Plant Physiol. 2011;168(3):204–12.
Article
CAS
Google Scholar
Nakabayashi R, Mori T, Saito K. Alternation of flavonoid accumulation under drought stress in Arabidopsis thaliana. Plant Signal Behav. 2014;9(8):e29518.
Article
Google Scholar
Nakabayashi R, Yonekura-Sakakibara K, Urano K, Suzuki M, Yamada Y, Nishizawa T, et al. Enhancement of oxidative and drought tolerance in Arabidopsis by overaccumulation of antioxidant flavonoids. Plant J. 2014;77(3):367–79.
Article
CAS
Google Scholar
Jørgensen K, Rasmussen AV, Morant M, Nielsen AH, Bjarnholt N, Zagrobelny M, et al. Metabolon formation and metabolic channeling in the biosynthesis of plant natural products. Curr Opin Plant Biol. 2005;8(3):280–91.
Article
Google Scholar
Saslowsky D, Winkel-Shirley B. Localization of flavonoid enzymes in Arabidopsis roots. Plant J Cell Mol Biol. 2001;27(1):37–48.
Article
CAS
Google Scholar
Saslowsky DE, Warek U, Winkel BS. Nuclear localization of flavonoid enzymes in Arabidopsis. J Biol Chem. 2005;280(25):23735–40.
Article
CAS
Google Scholar
Zhao J. Flavonoid transport mechanisms: how to go, and with whom. Trends Plant Sci. 2015;20(9):576–85.
Article
CAS
Google Scholar
Ichino T, Fuji K, Ueda H, Takahashi H, Koumoto Y, Takagi J, et al. GFS9/TT9 contributes to intracellular membrane trafficking and flavonoid accumulation in Arabidopsis thaliana. Plant J. 2014;80(3):410–23.
Article
CAS
Google Scholar
Thompson EP, Wilkins C, Demidchik V, Davies JM, Glover BJ. An Arabidopsis flavonoid transporter is required for anther dehiscence and pollen development. J Exp Bot. 2010;61(2):439–51.
Article
CAS
Google Scholar
Marinova K, Pourcel L, Weder B, Schwarz M, Barron D, Routaboul JM, et al. The Arabidopsis MATE transporter TT12 acts as a vacuolar flavonoid/H+ -antiporter active in proanthocyanidin-accumulating cells of the seed coat. Plant Cell. 2007;19(6):2023–38.
Article
CAS
Google Scholar
Banasiak J, Biala W, Staszków A, Swarcewicz B, Kepczynska E, Figlerowicz M, et al. A Medicago truncatula ABC transporter belonging to subfamily G modulates the level of isoflavonoids. J Exp Bot. 2013;64(4):1005–15.
Article
CAS
Google Scholar
Marrs KA, Alfenito MR, Lloyd AM, Walbot V. A glutathione S-transferase involved in vacuolar transfer encoded by the maize gene Bronze-2. Nature. 1995;375(6530):397–400.
Article
CAS
Google Scholar
Mueller LA, Goodman CD, Silady RA, Walbot V. AN9, a petunia glutathione S-transferase required for anthocyanin sequestration, is a flavonoid-binding protein. Plant Physiol. 2000;123(4):1561–70.
Article
CAS
Google Scholar
Buer CS, Muday GK, Djordjevic MA. Flavonoids are differentially taken up and transported long distances in Arabidopsis. Plant Physiol. 2007;145(2):478–90.
Article
CAS
Google Scholar
Buer CS, Muday GK. The transparent testa4 mutation prevents flavonoid synthesis and alters auxin transport and the response of Arabidopsis roots to gravity and light. Plant Cell. 2004;16(5):1191–205.
Article
CAS
Google Scholar
Pillai BV, Swarup S. Elucidation of the flavonoid catabolism pathway in Pseudomonas putida PML2 by comparative metabolic profiling. Appl Environ Microbiol. 2002;68(1):143–51.
Article
CAS
Google Scholar
Del Valle I, Webster TM, Cheng HY, Thies JE, Kessler A, Miller MK, et al. Soil organic matter attenuates the efficacy of flavonoid-based plant-microbe communication. Sci Adv. 2020;6(5):eaax8254.
Article
Google Scholar
Okutani F, Hamamoto S, Aoki Y, Nakayasu M, Nihei N, Nishimura T, et al. Rhizosphere modelling reveals spatiotemporal distribution of daidzein shaping soybean rhizosphere bacterial community. Plant Cell Environ. 2020;43(4):1036–46.
Article
CAS
Google Scholar
Sugiyama A, Yazaki K. Flavonoids in plant rhizospheres: secretion, fate and their effects on biological communication. Plant Biotechnol. 2014;31(5):431–43.
Article
CAS
Google Scholar
Hassan S, Mathesius U. The role of flavonoids in root-rhizosphere signalling: opportunities and challenges for improving plant-microbe interactions. J Exp Bot. 2012;63(9):3429–44.
Article
CAS
Google Scholar
Zhang J, Zhang N, Liu YX, Zhang X, Hu B, Qin Y, et al. Root microbiota shift in rice correlates with resident time in the field and developmental stage. Sci China Life Sci. 2018;61(6):613–21.
Article
Google Scholar
Mathesius U: The role of the flavonoid pathway in Medicago truncatula in root nodule formation. A review. 2020:434–8.
Siciliano I, Amaral Carneiro G, Spadaro D, Garibaldi A, Gullino ML. Jasmonic acid, abscisic acid, and salicylic acid are involved in the phytoalexin responses of rice to fusarium fujikuroi, a high gibberellin producer pathogen. J Agric Food Chem. 2015;63(37):8134–42.
Article
CAS
Google Scholar
Hasegawa M, Mitsuhara I, Seo S, Okada K, Yamane H, Iwai T, et al. Analysis on blast fungus-responsive characters of a flavonoid phytoalexin sakuranetin; accumulation in infected rice leaves, antifungal activity and detoxification by fungus. Molecules. 2014;19(8):11404–18.
Article
Google Scholar
Katsumata S, Toshima H, Hasegawa M. Xylosylated detoxification of the rice flavonoid phytoalexin sakuranetin by the rice sheath blight fungus Rhizoctonia solani. Molecules. 2018;23(2).
Du Y, Chu H, Wang M, Chu IK, Lo C. Identification of flavone phytoalexins and a pathogen-inducible flavone synthase II gene (SbFNSII) in sorghum. J Exp Bot. 2010;61(4):983–94.
Article
CAS
Google Scholar
Wang L, Lui ACW, Lam PY, Liu G, Godwin ID, Lo C. Transgenic expression of flavanone 3-hydroxylase redirects flavonoid biosynthesis and alleviates anthracnose susceptibility in sorghum. Plant Biotechnol J. 2020;18(11):2170–2.
Article
CAS
Google Scholar
Long L, Liu J, Gao Y, Xu FC, Zhao JR, Li B, et al. Flavonoid accumulation in spontaneous cotton mutant results in red coloration and enhanced disease resistance. Plant Physiol Biochem. 2019;143:40–9.
Article
CAS
Google Scholar
Bai Q, Duan B, Ma J, Fen Y, Sun S, Long Q, et al. Coexpression of PalbHLH1 and PalMYB90 genes from Populus alba enhances pathogen resistance in Poplar by increasing the flavonoid content. Front Plant Sci. 2019;10:1772.
Article
Google Scholar
Karre S, Kumar A, Yogendra K, Kage U, Kushalappa A, Charron JB. HvWRKY23 regulates flavonoid glycoside and hydroxycinnamic acid amide biosynthetic genes in barley to combat Fusarium head blight. Plant Mol Biol. 2019;100(6):591–605.
Article
CAS
Google Scholar
Górniak I, Bartoszewski R, Króliczewski JJPR. Comprehensive review of antimicrobial activities of plant flavonoids. 2019;18(1):241–72.
Vargas P, Felipe A, Michán C, Gallegos MT. Induction of Pseudomonas syringae pv. tomato DC3000 MexAB-OprM multidrug efflux pump by flavonoids is mediated by the repressor PmeR. Mol Plant-Microbe Interact. 2011;24(10):1207–19.
Article
CAS
Google Scholar
Vargas P, Farias GA, Nogales J, Prada H, Carvajal V, Barón M, et al. Plant flavonoids target Pseudomonas syringae pv. tomato DC3000 flagella and type III secretion system. Environ Microbiol Rep. 2013;5(6):841–50.
Article
CAS
Google Scholar
Santamaría-Hernando S, Senovilla M, González-Mula A, Martínez-García PM, Nebreda S, Rodríguez-Palenzuela P, et al. The Pseudomonas syringae pv. tomato DC3000 PSPTO_0820 multidrug transporter is involved in resistance to plant antimicrobials and bacterial survival during tomato plant infection. PLoS One. 2019;14(6):e0218815.
Article
Google Scholar
Zhou H, Lin J, Johnson A, Morgan RL, Zhong W, Ma W. Pseudomonas syringae type III effector HopZ1 targets a host enzyme to suppress isoflavone biosynthesis and promote infection in soybean. Cell Host Microbe. 2011;9(3):177–86.
Article
CAS
Google Scholar
Chen J, Ullah C, Reichelt M, Gershenzon J, Hammerbacher A. Sclerotinia sclerotiorum circumvents flavonoid defenses by catabolizing flavonol glycosides and aglycones. Plant Physiol. 2019;180(4):1975–87.
Article
CAS
Google Scholar
Bowater L, Fairhurst SA, Just VJ, Bornemann S. Bacillus subtilis YxaG is a novel Fe-containing quercetin 2,3-dioxygenase. FEBS Lett. 2004;557(1-3):45–8.
Article
CAS
Google Scholar
Banfalvi Z, Nieuwkoop A, Schell M, Besl L, Stacey G. Regulation of nod gene expression in Bradyrhizobium japonicum. Mol Gen Genet. 1988;214(3):420–4.
Article
CAS
Google Scholar
Hartwig UA, Joseph CM, Phillips DA. Flavonoids released naturally from Alfalfa seeds enhance growth rate of Rhizobium meliloti. Plant Physiol. 1991;95(3):797–803.
Article
CAS
Google Scholar
Subramanian S, Stacey G, Yu O. Endogenous isoflavones are essential for the establishment of symbiosis between soybean and Bradyrhizobium japonicum. Plant J. 2006;48(2):261–73.
Article
CAS
Google Scholar
Zhang J, Subramanian S, Zhang Y, Yu O. Flavone synthases from Medicago truncatula are flavanone-2-hydroxylases and are important for nodulation. Plant Physiol. 2007;144(2):741–51.
Article
CAS
Google Scholar
Liu Y, Yin X, Xiao J, Tang L, Zheng Y. Interactive influences of intercropping by nitrogen on flavonoid exudation and nodulation in faba bean. Sci Rep. 2019;9(1):4818.
Article
Google Scholar
Zhang J, Subramanian S, Stacey G, Yu O. Flavones and flavonols play distinct critical roles during nodulation of Medicago truncatula by Sinorhizobium meliloti. Plant J. 2009;57(1):171–83.
Article
CAS
Google Scholar
Mathesius U, Schlaman HR, Spaink HP, Of Sautter C, Rolfe BG, Djordjevic MA. Auxin transport inhibition precedes root nodule formation in white clover roots and is regulated by flavonoids and derivatives of chitin oligosaccharides. Plant J. 1998;14(1):23–34.
Article
CAS
Google Scholar
Ng JL, Hassan S, Truong TT, Hocart CH, Laffont C, Frugier F, et al. Flavonoids and auxin transport inhibitors rescue symbiotic nodulation in the Medicago truncatula cytokinin perception mutant cre1. Plant Cell. 2015;27(8):2210–26.
Article
CAS
Google Scholar
Laplaze L, Gherbi H, Frutz T, Pawlowski K, Franche C, Macheix JJ, et al. Flavan-containing cells delimit Frankia-infected compartments in Casuarina glauca nodules. Plant Physiol. 1999;121(1):113–22.
Article
CAS
Google Scholar
Benoit LF, Berry AM. Flavonoid-like compounds from seeds of red alder (Alnus rubra) influence host nodulation by Frankia (Actinomycetales). Physiol Plant. 1997;99(4):588–93.
Article
CAS
Google Scholar
Popovici J, Comte G, Bagnarol E, Alloisio N, Fournier P, Bellvert F, et al. Differential effects of rare specific flavonoids on compatible and incompatible strains in the Myrica gale-Frankia actinorhizal symbiosis. Appl Environ Microbiol. 2010;76(8):2451–60.
Article
CAS
Google Scholar
Hocher V, Alloisio N, Auguy F, Fournier P, Doumas P, Pujic P, et al. Transcriptomics of actinorhizal symbioses reveals homologs of the whole common symbiotic signaling cascade. Plant Physiol. 2011;156(2):700–11.
Article
CAS
Google Scholar
Abdel-Lateif K, Vaissayre V, Gherbi H, Verries C, Meudec E, Perrine-Walker F, et al. Silencing of the chalcone synthase gene in Casuarina glauca highlights the important role of flavonoids during nodulation. New Phytol. 2013;199(4):1012–21.
Article
CAS
Google Scholar
Tedersoo L, Bahram M, Zobel M. How mycorrhizal associations drive plant population and community biology. Science. 2020;367(6480).
Zipfel C, Oldroyd GE. Plant signalling in symbiosis and immunity. Nature. 2017;543(7645):328–36.
Article
CAS
Google Scholar
Mori N, Nishiuma K, Sugiyama T, Hayashi H, Akiyama K. Carlactone-type strigolactones and their synthetic analogues as inducers of hyphal branching in arbuscular mycorrhizal fungi. Phytochemistry. 2016;130:90–8.
Article
CAS
Google Scholar
Poulin MJ, Bel-Rhlid R, Piché Y, Chênevert R. Flavonoids released by carrot (Daucus carota) seedlings stimulate hyphal development of vesicular-arbuscular mycorrhizal fungi in the presence of optimal CO2 enrichment. J Chem Ecol. 1993;19(10):2317–27.
Article
CAS
Google Scholar
Tsai SM, Phillips DA. Flavonoids released naturally from alfalfa promote development of symbiotic glomus spores in vitro. Appl Environ Microbiol. 1991;57(5):1485–8.
Article
CAS
Google Scholar
Tian B, Pei Y, Huang W, Ding J, Siemann E. Increasing flavonoid concentrations in root exudates enhance associations between arbuscular mycorrhizal fungi and an invasive plant. ISME J. 2021;15(7):1919–30.
Article
CAS
Google Scholar
Mechri B, Tekaya M, Cheheb H, Attia F, Hammami M. Accumulation of flavonoids and phenolic compounds in olive tree roots in response to mycorrhizal colonization: a possible mechanism for regulation of defense molecules. J Plant Physiol. 2015;185:40–3.
Article
CAS
Google Scholar
Zubek S, Rola K, Szewczyk A, Majewska ML, Turnau K. Enhanced concentrations of elements and secondary metabolites in Viola tricolor L. induced by arbuscular mycorrhizal fungi. Plant Soil. 2015;390(1):129–42.
Article
CAS
Google Scholar
Eftekhari M, Alizadeh M, Ebrahimi P. Evaluation of the total phenolics and quercetin content of foliage in mycorrhizal grape (Vitis vinifera L.) varieties and effect of postharvest drying on quercetin yield. Ind Crop Prod. 2012;38:160–5.
Article
CAS
Google Scholar
Kamali S, Mehraban A. Nitroxin and arbuscular mycorrhizal fungi alleviate negative effects of drought stress on Sorghum bicolor yield through improving physiological and biochemical characteristics. Plant Signal Behav. 2020;15(11):1813998.
Article
Google Scholar
Lugtenberg B, Kamilova F. Plant-growth-promoting rhizobacteria. Annu Rev Microbiol. 2009;63:541–56.
Article
CAS
Google Scholar
Nazari F, Safaie N, Soltani BM, Shams-Bakhsh M, Sharifi M. Bacillus subtilis affects miRNAs and flavanoids production in Agrobacterium-tobacco interaction. Plant Physiol Biochem. 2017;118:98–106.
Article
CAS
Google Scholar
Yu XQ, Yan X, Zhang MY, Zhang LQ, He YX. Flavonoids repress the production of antifungal 2,4-DAPG but potentially facilitate root colonization of the rhizobacterium Pseudomonas fluorescens. Environ Microbiol. 2020;22(12):5073–89.
Article
CAS
Google Scholar
Tiwari S, Singh P, Tiwari R, Meena KK, Yandigeri M, Singh DP, et al. Salt-tolerant rhizobacteria-mediated induced tolerance in wheat (Triticum aestivum) and chemical diversity in rhizosphere enhance plant growth. Biol Fertil Soils. 2011;47(8):907.
Article
CAS
Google Scholar
Qin S, Feng WW, Zhang YJ, Wang TT, Xiong YW, Xing K. Diversity of bacterial microbiota of coastal halophyte limonium sinense and amelioration of salinity stress damage by symbiotic plant growth-promoting actinobacterium glutamicibacter halophytocola KLBMP 5180. Appl Environ Microbiol. 2018;84(19).
Xiong YW, Li XW, Wang TT, Gong Y, Zhang CM, Xing K, et al. Root exudates-driven rhizosphere recruitment of the plant growth-promoting rhizobacterium Bacillus flexus KLBMP 4941 and its growth-promoting effect on the coastal halophyte Limonium sinense under salt stress. Ecotoxicol Environ Saf. 2020;194:110374.
Article
CAS
Google Scholar
El-Esawi MA, Al-Ghamdi AA, Ali HM, Alayafi AA. Azospirillum lipoferum FK1 confers improved salt tolerance in chickpea (Cicer arietinum L.) by modulating osmolytes, antioxidant machinery and stress-related genes expression. Environ Exp Bot. 2019;159:55–65.
Article
CAS
Google Scholar
El-Esawi MA, Alaraidh IA, Alsahli AA, Alamri SA, Ali HM, Alayafi AA. Bacillus firmus (SW5) augments salt tolerance in soybean (Glycine max L.) by modulating root system architecture, antioxidant defense systems and stress-responsive genes expression. Plant Physiol Biochem. 2018;132:375–84.
Article
CAS
Google Scholar
Asghari B, Khademian R, Sedaghati B. Plant growth promoting rhizobacteria (PGPR) confer drought resistance and stimulate biosynthesis of secondary metabolites in pennyroyal (Mentha pulegium L.) under water shortage condition. Sci Hortic. 2020;263:109132.
Article
CAS
Google Scholar
He D, Singh SK, Peng L, Kaushal R, Vílchez JI, Shao C, et al. Flavonoid-attracted Aeromonas sp. from the Arabidopsis root microbiome enhances plant dehydration resistance. ISME J. 2022.
Alexander A, Singh VK, Mishra A, Jha B. Plant growth promoting rhizobacterium Stenotrophomonas maltophilia BJ01 augments endurance against N2 starvation by modulating physiology and biochemical activities of Arachis hypogea. PLoS One. 2019;14(9):e0222405.
Article
CAS
Google Scholar
Yu P, He X, Baer M, Beirinckx S, Tian T, Moya YAT, et al. Plant flavones enrich rhizosphere Oxalobacteraceae to improve maize performance under nitrogen deprivation. Nat Plants. 2021;7(4):481–99.
Article
CAS
Google Scholar
Yan D, Tajima H, Cline LC, Fong RY, Ottaviani JI, Shapiro HY, et al. Genetic modification of flavone biosynthesis in rice enhances biofilm formation of soil diazotrophic bacteria and biological nitrogen fixation. Plant Biotechnol J. 2022.
Trinh CS, Jeong CY, Lee WJ, Truong HA, Chung N, Han J, et al. Paenibacillus pabuli strain P7S promotes plant growth and induces anthocyanin accumulation in Arabidopsis thaliana. Plant Physiol Biochem. 2018;129:264–72.
Article
CAS
Google Scholar
Salla TD, da Silva R, Astarita LV, Santarém ER. Streptomyces rhizobacteria modulate the secondary metabolism of Eucalyptus plants. Plant Physiol Biochem. 2014;85:14–20.
Article
CAS
Google Scholar
Miotto-Vilanova L, Courteaux B, Padilla R, Rabenoelina F, Jacquard C, Clément C, et al. Impact of Paraburkholderia phytofirmans PsJN on grapevine phenolic metabolism. Int J Mol Sci. 2019;20(22).
Von Bodman SB, Bauer WD, Coplin DL. Quorum sensing in plant-pathogenic bacteria. Annu Rev Phytopathol. 2003;41:455–82.
Article
Google Scholar
Rao JR, Cooper JE. Rhizobia catabolize nod gene-inducing flavonoids via C-ring fission mechanisms. J Bacteriol. 1994;176(17):5409–13.
Article
CAS
Google Scholar
Schaefer AL, Greenberg EP, Oliver CM, Oda Y, Huang JJ, Bittan-Banin G, et al. A new class of homoserine lactone quorum-sensing signals. Nature. 2008;454(7204):595–9.
Article
CAS
Google Scholar
Pérez-Montaño F, Guasch-Vidal B, González-Barroso S, López-Baena FJ, Cubo T, Ollero FJ, et al. Nodulation-gene-inducing flavonoids increase overall production of autoinducers and expression of N-acyl homoserine lactone synthesis genes in rhizobia. Res Microbiol. 2011;162(7):715–23.
Article
Google Scholar
Mathesius U, Mulders S, Gao M, Teplitski M, Caetano-Anolles G, Rolfe BG, et al. Extensive and specific responses of a eukaryote to bacterial quorum-sensing signals. Proc Natl Acad Sci U S A. 2003;100(3):1444–9.
Article
CAS
Google Scholar
Han S, Li D, Trost E, Mayer KF, Vlot AC, Heller W, et al. Systemic responses of barley to the 3-hydroxy-decanoyl-homoserine lactone producing plant beneficial endophyte Acidovorax radicis N35. Front Plant Sci. 1868;2016:7.
Google Scholar
Paczkowski JE, Mukherjee S, McCready AR, Cong JP, Aquino CJ, Kim H, et al. Flavonoids suppress Pseudomonas aeruginosa virulence through allosteric inhibition of quorum-sensing receptors. J Biol Chem. 2017;292(10):4064–76.
Article
CAS
Google Scholar
Hernando-Amado S, Alcalde-Rico M, Gil-Gil T, Valverde JR, Martínez JL. Naringenin inhibition of the Pseudomonas aeruginosa quorum sensing response is based on its time-dependent competition with N-(3-Oxo-dodecanoyl)-L-homoserine lactone for LasR binding. Front Mol Biosci. 2020;7:25.
Article
CAS
Google Scholar
Vandeputte OM, Kiendrebeogo M, Rajaonson S, Diallo B, Mol A, El Jaziri M, et al. Identification of catechin as one of the flavonoids from Combretum albiflorum bark extract that reduces the production of quorum-sensing-controlled virulence factors in Pseudomonas aeruginosa PAO1. Appl Environ Microbiol. 2010;76(1):243–53.
Article
CAS
Google Scholar
Mu Y, Zeng H, Chen W. Quercetin inhibits biofilm formation by decreasing the production of eps and altering the composition of EPS in Staphylococcus epidermidis. Front Microbiol. 2021;12:631058.
Article
Google Scholar
Schütz V, Frindte K, Cui J, Zhang P, Hacquard S, Schulze-Lefert P, et al. Differential impact of plant secondary metabolites on the soil microbiota. Front Microbiol. 2021;12:666010.
Article
Google Scholar
White LJ, Ge X, Brözel VS, Subramanian S. Root isoflavonoids and hairy root transformation influence key bacterial taxa in the soybean rhizosphere. Environ Microbiol. 2017;19(4):1391–406.
Article
CAS
Google Scholar
Yang G, Hong S, Yang P, Sun Y, Wang Y, Zhang P, et al. Discovery of an ene-reductase for initiating flavone and flavonol catabolism in gut bacteria. Nat Commun. 2021;12(1):790.
Article
CAS
Google Scholar
Kim M, Lee J, Han J. Deglycosylation of isoflavone C-glycosides by newly isolated human intestinal bacteria. J Sci Food Agric. 2015;95(9):1925–31.
Article
CAS
Google Scholar
Kim M, Kim N, Han J. Deglycosylation of flavonoid O-glucosides by human intestinal bacteria Enterococcus sp. MRG-2 and Lactococcus sp. MRG-IF-4. Applied. Biol Chem. 2016;59(3):443–9.
CAS
Google Scholar
Burapan S, Kim M, Han J. Demethylation of polymethoxyflavones by human gut bacterium, Blautia sp. MRG-PMF1. J Agric Food Chem. 2017;65(8):1620–9.
Article
CAS
Google Scholar
Ivey KL, Chan AT, Izard J, Cassidy A, Rogers GB, Rimm EB. Role of dietary flavonoid compounds in driving patterns of microbial community assembly. mBio. 2019;10(5).
York A. Your microbiome is what you eat. Nat Rev Microbiol. 2019;17(12):721.
Article
CAS
Google Scholar
Choe U, Li Y, Gao B, Yu L, Wang TTY, Sun J, et al. Chemical compositions of cold-pressed broccoli, carrot, and cucumber seed flours and their in vitro gut microbiota modulatory, anti-inflammatory, and free radical scavenging properties. J Agric Food Chem. 2018;66(35):9309–17.
Article
CAS
Google Scholar
Shi T, Bian X, Yao Z, Wang Y, Gao W, Guo C. Quercetin improves gut dysbiosis in antibiotic-treated mice. Food Funct. 2020;11(9):8003–13.
Article
CAS
Google Scholar
Shabbir U, Rubab M, Daliri EB, Chelliah R, Javed A, Oh DH. Curcumin, quercetin, catechins and metabolic diseases: the role of gut microbiota. Nutrients. 2021;13(1).
Wang L, Huang G, Hou R, Qi D, Wu Q, Nie Y, et al. Multi-omics reveals the positive leverage of plant secondary metabolites on the gut microbiota in a non-model mammal. Microbiome. 2021;9(1):192.
Article
Google Scholar
Clocchiatti A, Hannula SE, van den Berg M, Hundscheid MPJ, de Boer W. Evaluation of phenolic root exudates as stimulants of saptrophic fungi in the rhizosphere. Front Microbiol. 2021;12:644046.
Article
Google Scholar
Catalán M, Ferreira J, Carrasco-Pozo C. The microbiota-derived metabolite of quercetin, 3,4-dihydroxyphenylacetic acid prevents malignant transformation and mitochondrial dysfunction induced by hemin in colon cancer and normal colon epithelia cell lines. Molecules. 2020;25(18).
Li M, Wei Z, Wang J, Jousset A, Friman VP, Xu Y, et al. Facilitation promotes invasions in plant-associated microbial communities. Ecol Lett. 2019;22(1):149–58.
Article
Google Scholar
Bhardwaj D, Ansari MW, Sahoo RK, Tuteja N. Biofertilizers function as key player in sustainable agriculture by improving soil fertility, plant tolerance and crop productivity. Microb Cell Factories. 2014;13:66.
Article
Google Scholar
Shaw LJ, Morris P, Hooker JE. Perception and modification of plant flavonoid signals by rhizosphere microorganisms. Environ Microbiol. 2006;8(11):1867–80.
Article
CAS
Google Scholar
Tohge T, de Souza LP, Fernie AR. Current understanding of the pathways of flavonoid biosynthesis in model and crop plants. J Exp Bot. 2017;68(15):4013–28.
Article
CAS
Google Scholar