Bäckhed F, Manchester JK, Semenkovich CF, Gordon JI. Mechanisms underlying the resistance to diet-induced obesity in germ-free mice. Proc Natl Acad Sci U S A. 2007;104:979–84.
Article
Google Scholar
Bäckhed F, Ding H, Wang T, Hooper LV, Koh GY, Nagy A, et al. The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci U S A. 2004;101:15718–23 Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=524219&tool=pmcentrez&rendertype=abstract [cited 20 Mar 2014].
Article
Google Scholar
Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature. 2006;444:1027–31 Available from: http://www.ncbi.nlm.nih.gov/pubmed/17183312 [cited 10 Jul 2014].
Article
Google Scholar
Ridaura VK, Faith JJ, Rey FE, Cheng J, Duncan AE, Kau AL, et al. Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science. 2013;341:1241214. https://doi.org/10.1126/science.1241214 American Association for the Advancement of Science. [cited 17 Jun 2021].
Article
CAS
Google Scholar
Zhang L, Bahl MI, Roager HM, Fonvig CE, Hellgren LI, Frandsen HL, et al. Environmental spread of microbes impacts the development of metabolic phenotypes in mice transplanted with microbial communities from humans. ISME J. 2017;11:676–90 Available from: https://pubmed.ncbi.nlm.nih.gov/27858930/ Nature Publishing Group [cited 1 Oct 2020].
Article
Google Scholar
Duca FA, Sakar Y, Lepage P, Devime F, Langelier B, Doré J, et al. Replication of obesity and associated signaling pathways through transfer of microbiota from obese-prone rats. Diabetes. 2014;63:1624–36 Available from: https://diabetes.diabetesjournals.org/content/63/5/1624. American Diabetes Association Inc. [cited 7 Jun 2021].
Article
CAS
Google Scholar
Ley RE, Bäckhed F, Turnbaugh P, Lozupone CA, Knight RD, Gordon JI. Obesity alters gut microbial ecology. Proc Natl Acad Sci U S A. 2005;102:11070–5 Available from: https://pubmed.ncbi.nlm.nih.gov/16033867/ [cited 16 Jun 2021].
Article
CAS
Google Scholar
Murphy EF, Cotter PD, Healy S, Marques TM, O’Sullivan O, Fouhy F, et al. Composition and energy harvesting capacity of the gut microbiota: relationship to diet, obesity and time in mouse models. Gut. 2010;59:1635–42 Available from: https://pubmed.ncbi.nlm.nih.gov/20926643/ [cited 16 Jun 2021].
Article
CAS
Google Scholar
Magne F, Gotteland M, Gauthier L, Zazueta A, Pesoa S, Navarrete P, et al. The firmicutes/bacteroidetes ratio: A relevant marker of gut dysbiosis in obese patients? Nutrients. 2020;12(5):1474 Available from: /pmc/articles/PMC7285218/. MDPI AG [cited 16 Jun 2021].
Article
CAS
Google Scholar
Arumugam M, Raes J, Pelletier E, Paslier DL, Yamada T, Mende DR, et al. Enterotypes of the human gut microbiome. Nature. 2011;473:174–80.
Article
CAS
Google Scholar
Falony G, Joossens M, Vieira-Silva S, Wang J, Darzi Y, Faust K, et al. Population-level analysis of gut microbiome variation. Science. 2016;352:560–4 Available from: http://www.ncbi.nlm.nih.gov/pubmed/27126039 [cited 29 Apr 2016].
Article
CAS
Google Scholar
Costea PI, Hildebrand F, Manimozhiyan A, Bäckhed F, Blaser MJ, Bushman FD, et al. Enterotypes in the landscape of gut microbial community composition. Nat Microbiol. 2017;3:8–16. https://doi.org/10.1038/s41564-017-0072-8 Nature Publishing Group [cited 16 Jun 2021].
Article
CAS
Google Scholar
Roager HM, Licht TR, Poulsen SK, Larsen TM, Bahl MI. Microbial enterotypes, inferred by the prevotella-to-bacteroides ratio, remained stable during a 6-month randomized controlled diet intervention with the new nordic diet. Appl Environ Microbiol. 2014;80:1142–9 Available from: http://www.ncbi.nlm.nih.gov/pubmed/24296500 [cited 25 Jan 2014].
Article
Google Scholar
Vieira-Silva S, Falony G, Darzi Y, Lima-Mendez G, Garcia Yunta R, Okuda S, et al. Species-function relationships shape ecological properties of the human gut microbiome. Nat Microbiol. 2016;1:1–8 Available from: www.nature.com/naturemicrobiology. Nature Publishing Group [cited 16 Jun 2021].
Article
Google Scholar
Vandeputte D, Falony G, Vieira-Silva S, Tito RY, Joossens M, Raes J. Stool consistency is strongly associated with gut microbiota richness and composition, enterotypes and bacterial growth rates. Gut. 2015;65:57–62. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26069274. [cited 13 Jun 2015].
Roager HM, Hansen LBS, Bahl MI, Frandsen HL, Carvalho V, Gøbel RJ, et al. Colonic transit time is related to bacterial metabolism and mucosal turnover in the gut. Nat Microbiol. 2016;1:16093 Available from: http://www.nature.com/articles/nmicrobiol201693. Nature Publishing Group.
Article
CAS
Google Scholar
Nestel N, Hvass JD, Bahl MI, Hansen LH, Krych L, Nielsen DS, et al. The Gut Microbiome and Abiotic Factors as Potential Determinants of Postprandial Glucose Responses: A Single-Arm Meal Study. Front Nutr. 2021;7:594850 Available from: https://pubmed.ncbi.nlm.nih.gov/33585532/ Frontiers Media S.A. [cited 4 May 2021].
Article
Google Scholar
Müller M, Hermes GDA, Canfora EE, Smidt H, Masclee AAM, Zoetendal EXG, et al. Distal colonic transit is linked to gut microbiota diversity and microbial fermentation in humans with slow colonic transit. Am J Physiol Gastrointest Liver Physiol. 2020;318:G361–9 Available from: https://pubmed.ncbi.nlm.nih.gov/31869241/. American Physiological Society [cited 16 Jun 2021].
Article
Google Scholar
Procházková N, Falony G, Dragsted LO, Licht TR, Raes J, Roager HM. Advancing human gut microbiota research by considering gut transit time. Gut. 2022;0:gutjnl-2022-328166 Available from: https://gut.bmj.com/content/early/2022/09/28/gutjnl-2022-328166. BMJ Publishing Group [cited 30 Sep 2022].
Article
Google Scholar
Ibrügger S, Gøbel R, Vestergaard H, Licht T, Frøkiær H, Linneberg A, et al. Two randomized cross-over trials assessing the impact of dietary gluten or wholegrain on the gut microbiome and host metabolic health. J Clin Trials. 2014;4:2167–0870 Available from: http://omicsgroup.org/journals/two-randomized-crossover-trials-assessing-the-impact-of-dietary-gluten-or-wholegrain-on-the-gut-microbiome-and-host-metabolic-health-2167-0870.1000178.php&&aid=30184 [cited 8 Jan 2015].
Article
Google Scholar
Hansen LBS, Roager HM, Søndertoft NB, Gøbel RJ, Kristensen M, Vallès-Colomer M, et al. A low-gluten diet induces changes in the intestinal microbiome of healthy Danish adults. Nat Commun. 2018;9:4630 Available from: http://www.nature.com/articles/s41467-018-07019-x [cited 24 Apr 2019].
Article
Google Scholar
Roager HM, Vogt JK, Kristensen M, Hansen LBS, Ibrügger S, Mærkedahl RB, et al. Whole grain-rich diet reduces body weight and systemic low-grade inflammation without inducing major changes of the gut microbiome: a randomised cross-over trial. Gut. 2019;68:83–93 Available from: http://www.ncbi.nlm.nih.gov/pubmed/29097438 [cited 24 Apr 2019].
Article
CAS
Google Scholar
Biltoft-Jensen A, Matthiessen J, Rasmussen LB, Fagt S, Groth MV, Hels O. Validation of the Danish 7-day pre-coded food diary among adults: energy intake v. energy expenditure and recording length. Br J Nutr. 2009;102:1838–46 Available from: http://www.ncbi.nlm.nih.gov/pubmed/19650967 [cited 6 Jun 2016].
Article
CAS
Google Scholar
Søndertoft NB, Vogt JK, Arumugam M, Kristensen M, Gøbel RJ, Fan Y, et al. The intestinal microbiome is a co-determinant of the postprandial plasma glucose response. PLoS One. 2020;15:e0238648 Available from: /pmc/articles/PMC7500969/. Public Library of Science [cited 17 Jun 2021].
Article
Google Scholar
Meslier V, Laiola M, Roager HM, de Filippis F, Roume H, Quinquis B, et al. Mediterranean diet intervention in overweight and obese subjects lowers plasma cholesterol and causes changes in the gut microbiome and metabolome independently of energy intake. Gut. 2020;69:1258–68. https://doi.org/10.1136/gutjnl-2019-320438 Available from: http://gut.bmj.com/lookup/doi/10.1136/gutjnl-2019-320438. BMJ Publishing Group [cited 20 Feb 2020].
Article
CAS
Google Scholar
Motulsky HJ, Brown RE. Detecting outliers when fitting data with nonlinear regression – a new method based on robust nonlinear regression and the false discovery rate. BMC Bioinformatics. 2006;7:1–20 Available from: https://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-7-123. BioMed Central [cited 6 Aug 2021].
Article
Google Scholar
ter Braak C, Smilauer P. Canoco reference manual and user’s guide: software for ordination, version 5.0. Ithaca: Microcomputer Power; 2012. Available from: https://research.wur.nl/en/publications/canoco-reference-manual-and-users-guide-software-for-ordination-v [cited 7 Jul 2021]
Google Scholar
Lund J, Gerhart-Hines Z, Clemmensen C. Role of Energy Excretion in Human Body Weight Regulation. Trends Endocrinol Metab. 2020;31:705–8 Available from: https://pubmed.ncbi.nlm.nih.gov/32674987/ [cited 12 Jan 2022].
Article
CAS
Google Scholar
Christensen L, Vuholm S, Roager HM, Nielsen DS, Krych L, Kristensen M, et al. Prevotella abundance predicts weight loss success in healthy, overweight adults consuming a whole-grain diet ad libitum: a post hoc analysis of a 6-wk randomized controlled trial. J Nutr. 2019;149:2174–81.
Article
Google Scholar
Hjorth MF, Roager HM, Larsen TM, Poulsen SK, Licht TR, Bahl MI, et al. Pre-treatment microbial Prevotella-to-Bacteroides ratio, determines body fat loss success during a 6-month randomized controlled diet intervention. Int J Obes. 2018;42:580–3.
Article
CAS
Google Scholar
Wu GD, Chen J, Hoffmann C, Bittinger K, Chen YY, Keilbaugh SA, et al. Linking long-term dietary patterns with gut microbial enterotypes. Science. 2011;334:105–8 American Association for the Advancement of Science.
Article
CAS
Google Scholar
Bergström A, Skov TH, Bahl MI, Roager HM, Christensen LB, Ejlerskov KT, et al. Establishment of intestinal microbiota during early life: a longitudinal, explorative study of a large cohort of Danish infants. Appl Environ Microbiol. 2014;80:2889–900.
Article
Google Scholar
Lewis SJ, Heaton KW. Increasing butyrate concentration in the distal colon by accelerating intestinal transit. Gut. 1997;41:245–51 Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1891451&tool=pmcentrez&rendertype=abstract [cited 16 Nov 2015].
Article
CAS
Google Scholar
Macfarlane GT, Macfarlane S. Bacteria, colonic fermentation, and gastrointestinal health. J AOAC Int. 2012;95:50–60 Available from: http://www.ncbi.nlm.nih.gov/pubmed/22468341. [cited 14 Sep 2015].
Article
CAS
Google Scholar
el Oufir L, Barry JL, Flourié B, Cherbut C, Cloarec D, Bornet F, et al. Relationships between transit time in man and in vitro fermentation of dietary fiber by fecal bacteria. Eur J Clin Nutr. 2000;54:603–9 Available from: https://pubmed.ncbi.nlm.nih.gov/10951507/ [cited 12 Jan 2022].
Article
CAS
Google Scholar
Pianka ER. On r- and K-Selection. Am Nat. 1970;104:592–7.
Article
Google Scholar