Thamizhvanan S, Sivakumar S, Santhosh Kumar S, Vinoth Kumar D, Suryakodi S, Balaji K, et al. Multiple infections caused by white spot syndrome virus and Enterocytozoon hepatopenaei in pond-reared Penaeus vannamei in India and multiplex PCR for their simultaneous detection. J Fish Dis. 2019;42(3):447–54. https://doi.org/10.1111/jfd.12956.
Article
PubMed
CAS
Google Scholar
Dhar AK, Robles-Sikisaka R, Saksmerprome V, Lakshman DK. Biology, genome organization, and evolution of parvoviruses in marine shrimp. Adv Virus Res. 2014;89:85–139. https://doi.org/10.1016/B978-0-12-800172-1.00003-3.
Article
PubMed
Google Scholar
Lafferty KD, Harvell CD, Conrad JM, Friedman CS, Kent ML, Kuris AM, et al. Infectious diseases affect marine fisheries and aquaculture economics. Ann Rev Mar Sci. 2015;7:471–96. https://doi.org/10.1146/annurev-marine-010814-015646.
Article
PubMed
Google Scholar
Zheng Z, Li R, Aweya JJ, Yao D, Wang F, Li S, et al. The PirB toxin protein from Vibrio parahaemolyticus induces apoptosis in hemocytes of Penaeus vannamei. Virulence. 2021;12(1):481–92. https://doi.org/10.1080/21505594.2021.1872171.
Article
PubMed
PubMed Central
CAS
Google Scholar
Wu H, Chen Y, Yang Q, Peng C, Wang X, Zhang M, et al. A reversible valve-assisted chip coupling with integrated sample treatment and CRISPR/Cas12a for visual detection of Vibrio parahaemolyticus. Biosens Bioelectron. 2021;188:113352. https://doi.org/10.1016/j.bios.2021.113352.
Article
PubMed
CAS
Google Scholar
Prithvisagar KS, Krishna Kumar B, Kodama T, Rai P, Iida T, Karunasagar I, et al. Whole genome analysis unveils genetic diversity and potential virulence determinants in Vibrio parahaemolyticus associated with disease outbreak among cultured Litopenaeus vannamei (Pacific white shrimp) in India. Virulence. 2021;12(1):1936–49. https://doi.org/10.1080/21505594.2021.1947448.
Article
PubMed
PubMed Central
CAS
Google Scholar
Walker PJ, Mohan CV. Viral disease emergence in shrimp aquaculture: origins, impact and the effectiveness of health management strategies. Rev Aquac. 2009;1(2):125–54. https://doi.org/10.1111/j.1753-5131.2009.01007.x.
Article
PubMed
PubMed Central
Google Scholar
Kibenge FS. Emerging viruses in aquaculture. Curr Opin Virol. 2019;34:97–103. https://doi.org/10.1016/j.coviro.2018.12.008.
Article
PubMed
Google Scholar
Phuthaworn C, Nguyen NH, Quinn J, Knibb W. Moderate heritability of hepatopancreatic parvovirus titre suggests a new option for selection against viral diseases in banana shrimp (Fenneropenaeus merguiensis) and other aquaculture species. Genet Sel Evol. 2016;48(1):64. https://doi.org/10.1186/s12711-016-0243-8.
Article
PubMed
PubMed Central
CAS
Google Scholar
Byers JE. Marine parasites and disease in the era of global climate change. Ann Rev Mar Sci. 2021;13:397–420. https://doi.org/10.1146/annurev-marine-031920-100429.
Article
PubMed
Google Scholar
Babu B, Sathiyaraj G, Mandal A, Kandan S, Biju N, Palanisamy S, et al. Surveillance of disease incidence in shrimp farms located in the east coastal region of India and in vitro antibacterial efficacy of probiotics against Vibrio parahaemolyticus. J Invertebr Pathol. 2021;179:107536. https://doi.org/10.1016/j.jip.2021.107536.
Article
PubMed
CAS
Google Scholar
Li F, Xiang J. Recent advances in researches on the innate immunity of shrimp in China. Dev Comp Immunol. 2013;39(1-2):11–26. https://doi.org/10.1016/j.dci.2012.03.016.
Article
PubMed
CAS
Google Scholar
Liang F, Sun C, Li S, Hou T, Li C. Therapeutic effect and immune mechanism of chitosan-gentamicin conjugate on Pacific white shrimp (Litopenaeus vannamei) infected with Vibrio parahaemolyticus. Carbohydr Polym. 2021;269:118334. https://doi.org/10.1016/j.carbpol.2021.118334.
Article
PubMed
CAS
Google Scholar
Hao SL, Yang WX. KIFC1 is essential for normal spermatogenesis and its depletion results in early germ cell apoptosis in the Kuruma shrimp, Penaeus (Marsupenaeus) japonicus. Aging (Albany N Y). 2019;11(24):12773–92. https://doi.org/10.18632/aging.102601.
Article
CAS
Google Scholar
Aweya JJ, Zheng ZH, Zheng XY, Yao DF, Zhang YL. The expanding repertoire of immune-related molecules with antimicrobial activity in penaeid shrimps: a review. Rev Aquac. 2021;13(4):1907–37. https://doi.org/10.1111/raq.12551.
Article
Google Scholar
Li C, Yang MC, Hong PP, Zhao XF, Wang JX. Metabolomic profiles in the intestine of shrimp infected by white spot syndrome virus and antiviral function of the metabolite linoleic acid in shrimp. J Immunol. 2021;206(9):2075–87. https://doi.org/10.4049/jimmunol.2001318.
Article
PubMed
CAS
Google Scholar
Alfaro AC, Nguyen TV, Bayot B, Rodriguez Leon JA, Dominguez-Borbor C, Sonnenholzner S. Metabolic responses of whiteleg shrimp to white spot syndrome virus (WSSV). J Invertebr Pathol. 2021;180:107545. https://doi.org/10.1016/j.jip.2021.107545.
Article
PubMed
CAS
Google Scholar
Wang ZY, Zhang YL, Yao DF, Zhao YZ, Tran NT, Li SK, et al. Metabolic reprogramming in crustaceans: a vital immune and environmental response strategy. Rev Aquac. 2021;14(3):1094–119. https://doi.org/10.1111/raq.12640.
Article
Google Scholar
Liu S, Zhang P, Liu Y, Gao X, Hua J, Li W. Metabolic regulation protects mice against Klebsiella pneumoniae lung infection. Exp Lung Res. 2018;44(6):302–11. https://doi.org/10.1080/01902148.2018.1538396.
Article
PubMed
CAS
Google Scholar
Ayres JS. Immunometabolism of infections. Nat Rev Immunol. 2020;20(2):79–80. https://doi.org/10.1038/s41577-019-0266-9.
Article
PubMed
CAS
Google Scholar
Kim CH. Immune regulation by microbiome metabolites. Immunology. 2018;154(2):220–9. https://doi.org/10.1111/imm.12930 Epub 2018 Apr 17.
Article
PubMed
PubMed Central
CAS
Google Scholar
O'Neill LA, Kishton RJ, Rathmell J. A guide to immunometabolism for immunologists. Nat Rev Immunol. 2016;16(9):553–65. https://doi.org/10.1038/nri.2016.70.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zevini A, Ferrari M, Olagnier D, Hiscott J. Dengue virus infection and Nrf2 regulation of oxidative stress. Curr Opin Virol. 2020;43:35–40. https://doi.org/10.1016/j.coviro.2020.07.015.
Article
PubMed
CAS
Google Scholar
Zaslona Z, O'Neill LAJ. Cytokine-like roles for metabolites in immunity. Mol Cell. 2020;78(5):814–23. https://doi.org/10.1016/j.molcel.2020.04.002.
Article
PubMed
CAS
Google Scholar
Yang MJ, Cheng ZX, Jiang M, Zeng ZH, Peng B, Peng XX, et al. Boosted TCA cycle enhances survival of zebrafish to Vibrio alginolyticus infection. Virulence. 2018;9(1):634–44. https://doi.org/10.1080/21505594.2017.1423188.
Article
PubMed
PubMed Central
CAS
Google Scholar
Das S, Saha T, Shaha C. Tissue/biofluid specific molecular cartography of Leishmania donovani infected BALB/c mice: deciphering systemic reprogramming. Front Cell Infect Microbiol. 2021;11:694470. https://doi.org/10.3389/fcimb.2021.694470.
Article
PubMed
PubMed Central
CAS
Google Scholar
Prince LR, Bianchi SM, Vaughan KM, Bewley MA, Marriott HM, Walmsley SR, et al. Subversion of a lysosomal pathway regulating neutrophil apoptosis by a major bacterial toxin, pyocyanin. J Immunol. 2008;180(5):3502–11. https://doi.org/10.4049/jimmunol.180.5.3502.
Article
PubMed
CAS
Google Scholar
Pardo J, Urban C, Galvez EM, Ekert PG, Muller U, Kwon-Chung J, et al. The mitochondrial protein Bak is pivotal for gliotoxin-induced apoptosis and a critical host factor of Aspergillus fumigatus virulence in mice. J Cell Biol. 2006;174(4):509–19. https://doi.org/10.1083/jcb.200604044.
Article
PubMed
PubMed Central
CAS
Google Scholar
Fu X, Guo X, Wu S, Lin Q, Liu L, Liang H, et al. Non-targeted UHPLC-Q-TOF/MS-based metabolomics reveals a metabolic shift from glucose to glutamine in CPB cells during ISKNV infection cycle. Metabolites. 2019;9(9). https://doi.org/10.3390/metabo9090174.
Zhang X, Tang X, Tran NT, Huang Y, Gong Y, Zhang Y, et al. Innate immune responses and metabolic alterations of mud crab (Scylla paramamosain) in response to Vibrio parahaemolyticus infection. Fish Shellfish Immunol. 2019;87:166–77. https://doi.org/10.1016/j.fsi.2019.01.011.
Article
PubMed
CAS
Google Scholar
Kumar R, Ng TH, Chang CC, Tung TC, Lin SS, Lo CF, et al. Bile acid and bile acid transporters are involved in the pathogenesis of acute hepatopancreatic necrosis disease in white shrimp Litopenaeus vannamei. Cell Microbiol. 2020;22(1):e13127. https://doi.org/10.1111/cmi.13127.
Article
PubMed
CAS
Google Scholar
He ST, Lee DY, Tung CY, Li CY, Wang HC. Glutamine metabolism in both the oxidative and reductive directions is triggered in shrimp immune cells (hemocytes) at the WSSV genome replication stage to benefit virus replication. Front Immunol. 2019;10:2102. https://doi.org/10.3389/fimmu.2019.02102.
Article
PubMed
PubMed Central
CAS
Google Scholar
Huang Z, Aweya JJ, Zhu C, Tran NT, Hong Y, Li S, et al. Modulation of crustacean innate immune response by amino acids and their metabolites: inferences from other species. Front Immunol. 2020;11:574721. https://doi.org/10.3389/fimmu.2020.574721.
Article
PubMed
PubMed Central
CAS
Google Scholar
Pamblanco M, Portoles M, Paredes C, Ten A, Comin J. Free amino acids in preterm and term milk from mothers delivering appropriate- or small-for-gestational-age infants. Am J Clin Nutr. 1989;50(4):778–81. https://doi.org/10.1093/ajcn/50.4.778.
Article
PubMed
CAS
Google Scholar
Guo YY, Li BY, Peng WQ, Guo L, Tang QQ. Taurine-mediated browning of white adipose tissue is involved in its anti-obesity effect in mice. J Biol Chem. 2019;294(41):15014–24. https://doi.org/10.1074/jbc.RA119.009936.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ripps H, Shen W. Review: taurine: a “very essential” amino acid. Mol Vis. 2012;18:2673–86.
PubMed
PubMed Central
CAS
Google Scholar
Stacy A, Andrade-Oliveira V, McCulloch JA, Hild B, Oh JH, Perez-Chaparro PJ, et al. Infection trains the host for microbiota-enhanced resistance to pathogens. Cell. 2021;184(3):615–27 e17. https://doi.org/10.1016/j.cell.2020.12.011.
Article
PubMed
PubMed Central
CAS
Google Scholar
Levy M, Thaiss CA, Zeevi D, Dohnalova L, Zilberman-Schapira G, Mahdi JA, et al. Microbiota-modulated metabolites shape the intestinal microenvironment by regulating NLRP6 inflammasome signaling. Cell. 2015;163(6):1428–43. https://doi.org/10.1016/j.cell.2015.10.048.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zhou J, Lu Y, Wu W, Feng Y. Taurine promotes the production of CD4(+)CD25(+)FOXP3(+) Treg cells through regulating IL-35/STAT1 pathway in a mouse allergic rhinitis model. Allergy Asthma Clin Immunol. 2021;17(1):59. https://doi.org/10.1186/s13223-021-00562-1.
Article
PubMed
PubMed Central
CAS
Google Scholar
Luo H, Geng CJ, Miao SM, Wang LH, Li Q. Taurine attenuates the damage of lupus nephritis mouse via inactivation of the NF-kappaB pathway. Ann Palliat Med. 2021;10(1):137–47. https://doi.org/10.21037/apm-20-2087.
Article
PubMed
Google Scholar
Miao J, Zhang J, Zheng L, Yu X, Zhu W, Zou S. Taurine attenuates Streptococcus uberis-induced mastitis in rats by increasing T regulatory cells. Amino Acids. 2012;42(6):2417–28. https://doi.org/10.1007/s00726-011-1047-3.
Article
PubMed
CAS
Google Scholar
Fazzino F, Obregón F, Lima L. Taurine and proliferation of lymphocytes in physically restrained rats. J Biomed Sci. 2010;17(Suppl 1):S24. https://doi.org/10.1186/1423-0127-17-s1-s24.
Article
PubMed
PubMed Central
Google Scholar
Yu YR, Ni XQ, Huang J, Zhu YH, Qi YF. Taurine drinking ameliorates hepatic granuloma and fibrosis in mice infected with Schistosoma japonicum. Int J Parasitol Drugs Drug Resist. 2016;6(1):35–43. https://doi.org/10.1016/j.ijpddr.2016.01.003.
Article
PubMed
PubMed Central
CAS
Google Scholar
Lan R, Wan Z, Xu Y, Wang Z, Fu S, Zhou Y, et al. Taurine reprograms mammary-gland metabolism and alleviates inflammation induced by Streptococcus uberis in mice. Front Immunol. 2021;12:696101. https://doi.org/10.3389/fimmu.2021.696101.
Article
PubMed
PubMed Central
CAS
Google Scholar
Miao J, Zheng L, Zhang J, Ma Z, Zhu W, Zou S. The effect of taurine on the toll-like receptors/nuclear factor kappa B (TLRs/NF-kappaB) signaling pathway in Streptococcus uberis-induced mastitis in rats. Int Immunopharmacol. 2011;11(11):1740–6. https://doi.org/10.1016/j.intimp.2011.06.008.
Article
PubMed
CAS
Google Scholar
Zhang M, Li M, Wang R, Qian Y. Effects of acute ammonia toxicity on oxidative stress, immune response and apoptosis of juvenile yellow catfish Pelteobagrus fulvidraco and the mitigation of exogenous taurine. Fish Shellfish Immunol. 2018;79:313–20. https://doi.org/10.1016/j.fsi.2018.05.036.
Article
PubMed
CAS
Google Scholar
Li M, Lai H, Li Q, Gong S, Wang R. Effects of dietary taurine on growth, immunity and hyperammonemia in juvenile yellow catfish Pelteobagrus fulvidraco fed all-plant protein diets. Aquaculture. 2016;450:349–55.
Article
CAS
Google Scholar
Yang MJ, Xu D, Yang DX, Li L, Peng XX, Chen ZG, et al. Malate enhances survival of zebrafish against Vibrio alginolyticus infection in the same manner as taurine. Virulence. 2020;11(1):349–64. https://doi.org/10.1080/21505594.2020.1750123.
Article
PubMed
PubMed Central
CAS
Google Scholar
Dong J, Cheng R, Yang Y, Zhao Y, Wu G, Zhang R, et al. Effects of dietary taurine on growth, non-specific immunity, anti-oxidative properties and gut immunity in the Chinese mitten crab Eriocheir sinensis. Fish Shellfish Immunol. 2018;82:212–9. https://doi.org/10.1016/j.fsi.2018.08.029.
Article
PubMed
CAS
Google Scholar
Martins N, Magalhaes R, Castro C, Couto A, Diaz-Rosales P, Oliva-Teles A, et al. Taurine modulates hepatic oxidative status and gut inflammatory markers of European seabass (Dicentrarchus labrax) fed plant feedstuffs-based diets. Amino Acids. 2019;51(9):1307–21. https://doi.org/10.1007/s00726-019-02769-4.
Article
PubMed
CAS
Google Scholar
Jiang M, Chen ZG, Zheng J, Peng B. Metabolites-enabled survival of crucian carps infected by Edwardsiella tarda in high water temperature. Front Immunol. 2019;10:1991. https://doi.org/10.3389/fimmu.2019.01991.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zheng Z, Aweya JJ, Bao S, Yao D, Li S, Tran NT, et al. The microbial composition of penaeid shrimps’ hepatopancreas is modulated by hemocyanin. J Immunol. 2021;207(11):2733–43. https://doi.org/10.4049/jimmunol.2100746.
Article
PubMed
CAS
Google Scholar
Lee C-T, Chen I-T, Yang Y-T, Ko T-P, Huang Y-T, Huang J-Y, et al. The opportunistic marine pathogen Vibrio parahaemolyticus becomes virulent by acquiring a plasmid that expresses a deadly toxin. Proc Natl Acad Sci U S A. 2015;112(34):10798–803.
Article
PubMed
PubMed Central
CAS
Google Scholar
Maiti B, Shekar M, Khushiramani R, Karunasagar I, Karunasagar I. Evaluation of RAPD-PCR and protein profile analysis to differentiate Vibrio harveyi strains prevalent along the southwest coast of India. J Genet. 2009;88(3):273–9. https://doi.org/10.1007/s12041-009-0040-z.
Article
PubMed
CAS
Google Scholar
Siboni N, Balaraju V, Carney R, Labbate M, Seymour JR. Spatiotemporal dynamics of Vibrio spp. within the Sydney Harbour Estuary. Front Microbiol. 2016;7:460. https://doi.org/10.3389/fmicb.2016.00460.
Article
PubMed
PubMed Central
Google Scholar
Nayak RR, Alexander M, Deshpande I, Stapleton-Gray K, Rimal B, Patterson AD, et al. Methotrexate impacts conserved pathways in diverse human gut bacteria leading to decreased host immune activation. Cell Host Microbe. 2021;29(3):362–77 e11. https://doi.org/10.1016/j.chom.2020.12.008.
Article
PubMed
PubMed Central
CAS
Google Scholar
Dangtip S, Sirikharin R, Sanguanrut P, Thitamadee S, Sritunyalucksana K, Taengchaiyaphum S, et al. AP4 method for two-tube nested PCR detection of AHPND isolates of Vibrio parahaemolyticus. Aquac Rep. 2015;2:158–62. https://doi.org/10.1016/j.aqrep.2015.10.002.
Article
Google Scholar
Haldar S, Neogi SB, Kogure K, Chatterjee S, Chowdhury N, Hinenoya A, et al. Development of a haemolysin gene-based multiplex PCR for simultaneous detection of Vibrio campbellii, Vibrio harveyi and Vibrio parahaemolyticus. Lett Appl Microbiol. 2010;50(2):146–52. https://doi.org/10.1111/j.1472-765X.2009.02769.x.
Article
PubMed
CAS
Google Scholar
Tran L, Nunan L, Redman RM, Mohney LL, Pantoja CR, Fitzsimmons K, et al. Determination of the infectious nature of the agent of acute hepatopancreatic necrosis syndrome affecting penaeid shrimp. Dis Aquat Organ. 2013;105(1):45–55. https://doi.org/10.3354/dao02621.
Article
PubMed
Google Scholar
Cheng ZX, Ma YM, Li H, Peng XX. N-acetylglucosamine enhances survival ability of tilapias infected by Streptococcus iniae. Fish Shellfish Immunol. 2014;40(2):524–30. https://doi.org/10.1016/j.fsi.2014.08.008.
Article
PubMed
CAS
Google Scholar
Guo C, Huang XY, Yang MJ, Wang S, Ren ST, Li H, et al. GC/MS-based metabolomics approach to identify biomarkers differentiating survivals from death in crucian carps infected by Edwardsiella tarda. Fish Shellfish Immunol. 2014;39(2):215–22. https://doi.org/10.1016/j.fsi.2014.04.017.
Article
PubMed
CAS
Google Scholar
Zhao X, Wu C, Peng X, Li H. Interferon-alpha2b against microbes through promoting biosynthesis of unsaturated fatty acids. J Proteome Res. 2014;13(9):4155–63. https://doi.org/10.1021/pr500592x.
Article
PubMed
CAS
Google Scholar
Haug K, Cochrane K, Nainala VC, Williams M, Chang J, Jayaseelan KV, et al. MetaboLights: a resource evolving in response to the needs of its scientific community. Nucleic Acids Res. 2020;48(D1):D440–D4. https://doi.org/10.1093/nar/gkz1019.
Article
PubMed
CAS
Google Scholar
Sreekumar A, Poisson LM, Rajendiran TM, Khan AP, Cao Q, Yu J, et al. Metabolomic profiles delineate potential role for sarcosine in prostate cancer progression. Nature. 2009;457(7231):910–4. https://doi.org/10.1038/nature07762.
Article
PubMed
PubMed Central
CAS
Google Scholar
Aweya JJ, Zhuang K, Liu Y, Fan J, Yao D, Wang F, et al. The ARM repeat domain of hemocyanin interacts with MKK4 to modulate antimicrobial peptides expression. iScience. 2022;25(3):103958. https://doi.org/10.1016/j.isci.2022.103958.
Article
PubMed
PubMed Central
CAS
Google Scholar
Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol. 2011;29(7):644–52. https://doi.org/10.1038/nbt.1883.
Article
PubMed
PubMed Central
CAS
Google Scholar
Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods. 2008;5(7):621–8. https://doi.org/10.1038/nmeth.1226.
Article
PubMed
CAS
Google Scholar
Reiner A, Yekutieli D, Benjamini Y. Identifying differentially expressed genes using false discovery rate controlling procedures. Bioinformatics. 2003;19(3):368–75. https://doi.org/10.1093/bioinformatics/btf877.
Article
PubMed
CAS
Google Scholar
Chen C, Chen H, Zhang Y, Thomas HR, Frank MH, He Y, et al. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Mol Plant. 2020;13(8):1194–202. https://doi.org/10.1016/j.molp.2020.06.009.
Article
PubMed
CAS
Google Scholar
Ye J, Zhang Y, Cui H, Liu J, Wu Y, Cheng Y, et al. WEGO 2.0: a web tool for analyzing and plotting GO annotations, 2018 update. Nucleic Acids Res. 2018;46(W1):W71–W5. https://doi.org/10.1093/nar/gky400.
Article
PubMed
PubMed Central
CAS
Google Scholar
Moriya Y, Itoh M, Okuda S, Yoshizawa AC, Kanehisa M. KAAS: an automatic genome annotation and pathway reconstruction server. Nucleic Acids Res. 2007;35(Web Server issue):W182–5. https://doi.org/10.1093/nar/gkm321.
Article
PubMed
PubMed Central
Google Scholar
Xia J, Sinelnikov IV, Han B, Wishart DS. MetaboAnalyst 3.0--making metabolomics more meaningful. Nucleic Acids Res. 2015;43(W1):W251–7. https://doi.org/10.1093/nar/gkv380.
Article
PubMed
PubMed Central
CAS
Google Scholar
Huang Z, Zhang Y, Zheng X, Liu Z, Yao D, Zhao Y, et al. Functional characterization of arginine metabolic pathway enzymes in the antibacterial immune response of penaeid shrimp. Dev Comp Immunol. 2022;127:104293. https://doi.org/10.1016/j.dci.2021.104293.
Article
PubMed
CAS
Google Scholar
Soto-Rodriguez SA, Gomez-Gil B, Lozano-Olvera R, Betancourt-Lozano M, Morales-Covarrubias MS. Field and experimental evidence of Vibrio parahaemolyticus as the causative agent of acute hepatopancreatic necrosis disease of cultured shrimp (Litopenaeus vannamei) in Northwestern Mexico. Appl Environ Microbiol. 2015;81(5):1689–99.
Article
PubMed
PubMed Central
Google Scholar
Khimmakthong U, Sukkarun P. The spread of Vibrio parahaemolyticus in tissues of the Pacific white shrimp Litopenaeus vannamei analyzed by PCR and histopathology. Microb Pathog. 2017;113:107–12. https://doi.org/10.1016/j.micpath.2017.10.028.
Article
PubMed
Google Scholar
Vogt G. Functional cytology of the hepatopancreas of decapod crustaceans. J Morphol. 2019;280(9):1405–44. https://doi.org/10.1002/jmor.21040.
Article
PubMed
CAS
Google Scholar
Roszer T. The invertebrate midintestinal gland (“hepatopancreas”) is an evolutionary forerunner in the integration of immunity and metabolism. Cell Tissue Res. 2014;358(3):685–95. https://doi.org/10.1007/s00441-014-1985-7 Epub 2014 Sep 2.
Article
PubMed
CAS
Google Scholar
Li G, Lin J, Zhang C, Gao H, Lu H, Gao X, et al. Microbiota metabolite butyrate constrains neutrophil functions and ameliorates mucosal inflammation in inflammatory bowel disease. Gut Microbes. 2021;13(1):1968257. https://doi.org/10.1080/19490976.2021.1968257.
Article
PubMed
PubMed Central
CAS
Google Scholar
Kim CJ, Kovacs-Nolan JA, Yang C, Archbold T, Fan MZ, Mine Y. l-Tryptophan exhibits therapeutic function in a porcine model of dextran sodium sulfate (DSS)-induced colitis. J Nutr Biochem. 2010;21(6):468–75. https://doi.org/10.1016/j.jnutbio.2009.01.019.
Article
PubMed
CAS
Google Scholar
Bronte V, Zanovello P. Regulation of immune responses by L-arginine metabolism. Nat Rev Immunol. 2005;5(8):641–54. https://doi.org/10.1038/nri1668.
Article
PubMed
CAS
Google Scholar
Ananieva EA, Powell JD, Hutson SM. Leucine metabolism in T cell activation: mTOR signaling and beyond. Adv Nutr. 2016;7(4):798S–805S. https://doi.org/10.3945/an.115.011221.
Article
PubMed
PubMed Central
CAS
Google Scholar
Xie S-W, Tian L-X, Li Y-M, Zhou W, Zeng S-L, Yang H-J, et al. Effect of proline supplementation on anti-oxidative capacity, immune response and stress tolerance of juvenile Pacific white shrimp, Litopenaeus vannamei. Aquaculture. 2015;448:105–11. https://doi.org/10.1016/j.aquaculture.2015.05.040.
Article
CAS
Google Scholar
Crab R, Lambert A, Defoirdt T, Bossier P, Verstraete W. The application of bioflocs technology to protect brine shrimp (Artemia franciscana) from pathogenic Vibrio harveyi. J Appl Microbiol. 2010;109(5):1643–9. https://doi.org/10.1111/j.1365-2672.2010.04791.x.
Article
PubMed
CAS
Google Scholar
Safari R, Hoseinifar SH, Dadar M, Doan HV. Enrichment of common carp (Cyprinus carpio) diet with malic acid: effects on skin mucosal immunity, antioxidant defecne and growth performance. Ann Anim Sci. 2020;21:561–73.
Article
Google Scholar
Gong Q, Yang D, Jiang M, Zheng J, Peng B. L-aspartic acid promotes fish survival against Vibrio alginolyticus infection through nitric oxide-induced phagocytosis. Fish Shellfish Immunol. 2020;97:359–66. https://doi.org/10.1016/j.fsi.2019.12.061.
Article
PubMed
CAS
Google Scholar
Hasko G, Kuhel DG, Nemeth ZH, Mabley JG, Stachlewitz RF, Virag L, et al. Inosine inhibits inflammatory cytokine production by a posttranscriptional mechanism and protects against endotoxin-induced shock. J Immunol. 2000;164(2):1013–9. https://doi.org/10.4049/jimmunol.164.2.1013.
Article
PubMed
CAS
Google Scholar
Li G, Xie C, Wang Q, Wan D, Zhang Y, Wu X, et al. Uridine/UMP metabolism and their function on the gut in segregated early weaned piglets. Food Funct. 2019;10(7):4081–9. https://doi.org/10.1039/c9fo00360f.
Article
PubMed
CAS
Google Scholar
Tattoli I, Sorbara MT, Vuckovic D, Ling A, Soares F, Carneiro LA, et al. Amino acid starvation induced by invasive bacterial pathogens triggers an innate host defense program. Cell Host Microbe. 2012;11(6):563–75. https://doi.org/10.1016/j.chom.2012.04.012.
Article
PubMed
CAS
Google Scholar
Chen JY, Zhou JK, Pan W. Immunometabolism: towards a better understanding the mechanism of parasitic infection and immunity. Front Immunol. 2021;12:661241. https://doi.org/10.3389/fimmu.2021.661241.
Article
PubMed
PubMed Central
CAS
Google Scholar
Thaker SK, Chapa T, Garcia G Jr, Gong D, Schmid EW, Arumugaswami V, et al. Differential metabolic reprogramming by Zika virus promotes cell death in human versus mosquito cells. Cell Metab. 2019;29(5):1206–16 e4. https://doi.org/10.1016/j.cmet.2019.01.024.
Article
PubMed
PubMed Central
CAS
Google Scholar
Scholnick DA, Burnett KG, Burnett LE. Impact of exposure to bacteria on metabolism in the penaeid shrimp Litopenaeus vannamei. Biol Bull. 2006;211(1):44–9. https://doi.org/10.2307/4134576.
Article
PubMed
Google Scholar
O'Brien JP, Goldenberg DL, Rice PA. Disseminated gonococcal infection: a prospective analysis of 49 patients and a review of pathophysiology and immune mechanisms. Medicine (Baltimore). 1983;62(6):395–406.
Article
PubMed
CAS
Google Scholar
Buijs N, Wörner EA, Brinkmann SJ, Luttikhold J, van der Meij BS, Houdijk AP, et al. Novel nutritional substrates in surgery. Proc Nutr Soc. 2013;72(3):277–87. https://doi.org/10.1017/s0029665112003047.
Article
PubMed
Google Scholar
Takagi S, Murata H, Goto T, Hayashi M, Hatate H, Endo M, et al. Hemolytic suppression roles of taurine in yellowtail Seriola quinqueradiata fed non-fishmeal diet based on soybean protein. Fish Sci. 2010;72(3):546–55.
Article
Google Scholar
Sinniger V, Pellissier S, Fauvelle F, Trocme C, Hoffmann D, Vercueil L, et al. A 12-month pilot study outcomes of vagus nerve stimulation in Crohn’s disease. Neurogastroenterol Motil. 2020;32(10):e13911. https://doi.org/10.1111/nmo.13911.
Article
PubMed
CAS
Google Scholar
Huisman H, Wynveen P, Nichkova M, Kellermann G. Novel ELISAs for screening of the biogenic amines GABA, glycine, beta-phenylethylamine, agmatine, and taurine using one derivatization procedure of whole urine samples. Anal Chem. 2010;82(15):6526–33. https://doi.org/10.1021/ac100858u.
Article
PubMed
CAS
Google Scholar
Piao J, Meng F, Fang H, Piao F, Jin B, Li M, et al. Effect of taurine on thymus differentiation of Dex-induced immunosuppressive mice. Adv Exp Med Biol. 2019;1155:381–90. https://doi.org/10.1007/978-981-13-8023-5_36.
Article
PubMed
CAS
Google Scholar
Erdem A, Sevgili AM, Akbiyik F, Atilla P, Cakar N, Balkanci ZD, et al. The effect of taurine on mesenteric blood flow and organ injury in sepsis. Amino Acids. 2008;35(2):403–10. https://doi.org/10.1007/s00726-007-0622-0.
Article
PubMed
CAS
Google Scholar
Lopreiato V, Mezzetti M, Cattaneo L, Ferronato G, Minuti A, Trevisi E. Role of nutraceuticals during the transition period of dairy cows: a review. J Anim Sci Biotechnol. 2020;11:96. https://doi.org/10.1186/s40104-020-00501-x.
Article
PubMed
PubMed Central
Google Scholar
Kim C, Cha YN. Taurine chloramine produced from taurine under inflammation provides anti-inflammatory and cytoprotective effects. Amino Acids. 2014;46(1):89–100. https://doi.org/10.1007/s00726-013-1545-6.
Article
PubMed
CAS
Google Scholar
Yu YR, Liu XC, Zhang JS, Ji CY, Qi YF. Taurine drinking attenuates the burden of intestinal adult worms and muscle larvae in mice with Trichinella spiralis infection. Parasitol Res. 2013;112(10):3457–63. https://doi.org/10.1007/s00436-013-3525-x.
Article
PubMed
Google Scholar
Zhai N, Wang H, Chen Y, Li H, Viktor K, Huang K, et al. Taurine attenuates OTA-promoted PCV2 replication through blocking ROS-dependent autophagy via inhibiting AMPK/mTOR signaling pathway. Chem Biol Interact. 2018;296:220–8. https://doi.org/10.1016/j.cbi.2018.10.005.
Article
PubMed
CAS
Google Scholar
Fang H, Meng F, Piao F, Jin B, Li M, Li W. Effect of taurine on intestinal microbiota and immune cells in Peyer’s patches of immunosuppressive mice. Adv Exp Med Biol. 2019;1155:13–24. https://doi.org/10.1007/978-981-13-8023-5_2.
Article
PubMed
CAS
Google Scholar
De la Fuente M, Hernanz A, Viniegra S, Miquel J. Sulfur-containing antioxidants increase in vitro several functions of lymphocytes from mice. Int Immunopharmacol. 2011;11(6):661–9. https://doi.org/10.1016/j.intimp.2011.01.008.
Article
PubMed
CAS
Google Scholar
Muhling J, Campos ME, Sablotzki A, Krull M, Dehne MG, Gonther J, et al. Effects of propofol and taurine on intracellular free amino acid profiles and immune function markers in neutrophils in vitro. Clin Chem Lab Med. 2002;40(2):111–21. https://doi.org/10.1515/CCLM.2002.020.
Article
PubMed
CAS
Google Scholar
Marcinkiewicz J, Walczewska M. Neutrophils as sentinel cells of the immune system: a role of the MPO-halide-system in innate and adaptive immunity. Curr Med Chem. 2020;27(17):2840–51. https://doi.org/10.2174/0929867326666190819123300.
Article
PubMed
CAS
Google Scholar
Sartori T, Galvao Dos Santos G, Nogueira-Pedro A, Makiyama E, Rogero MM, Borelli P, et al. Effects of glutamine, taurine and their association on inflammatory pathway markers in macrophages. Inflammopharmacology. 2018;26(3):829–38. https://doi.org/10.1007/s10787-017-0406-4.
Article
PubMed
CAS
Google Scholar
Maita M, Maekawa J, Satoh KI, Futami K, Satoh S. Disease resistance and hypocholesterolemia in yellowtail Seriola quinqueradiata fed a non-fishmeal diet. Fish Sci. 2010;72(3):513–9.
Article
Google Scholar