Shu WS, Huang LN. Microbial diversity in extreme environments. Nat Rev Microbiol. 2021;20:219–35.
Article
Google Scholar
Rothschild LJ, Mancinelli RL. Life in extreme environments. Nature. 2001;409:1092–101.
Article
CAS
Google Scholar
Schmid AK, Allers T. DiRuggiero J. SnapShot: microbial extremophiles. Cell. 2020;180:818.
Article
CAS
Google Scholar
Liu YQ, Ji MK, Yu T, Zaugg J, Anesio AM, Zhang ZH, et al. A genome and gene catalog of glacier microbiomes. Nat Biotechnol. 2022. https://doi.org/10.1038/s41587-022-01367-2.
Louca S, Polz MF, Mazel F, Albright MBN, Huber JA, O’Connor MI, et al. Function and functional redundancy in microbial systems. Nat Ecol Evol. 2018;2:936–43.
Article
Google Scholar
Coelho LP, Alves R, del Río ÁR, Myers PN, Cantalapiedra CP, Giner-Lamia J, et al. Towards the biogeography of prokaryotic genes. Nature. 2022;601:252–6.
Article
CAS
Google Scholar
Hug LA, Baker BJ, Anantharaman K, Brown CT, Probst AJ, Castelle CJ, et al. A new view of the tree of life. Nat Microbiol. 2016;1:16048.
Article
CAS
Google Scholar
Torsvik V, Øvreås L, Thingstad TF. Prokaryotic diversity--magnitude, dynamics, and controlling factors. Science. 2002;296:1064–6.
Article
CAS
Google Scholar
von Mering C, Hugenholtz P, Raes J, Tringe SG, Doerks T, Jensen LJ, et al. Quantitative phylogenetic assessment of microbial communities in diverse environments. Science. 2007;315:1126–30.
Article
Google Scholar
Maistrenko OM, Mende DR, Luetge M, Hildebrand F, Schmidt TSB, Li SS, et al. Disentangling the impact of environmental and phylogenetic constraints on prokaryotic within-species diversity. ISME J. 2020;14:1247–59.
Article
Google Scholar
Liu YQ, Yao TD, Kang SC, Jiao NZ, Zeng YH, Huang SJ, et al. Microbial community structure in major habitats above 6000 m on Mount Everest. Chin Sci Bull. 2007;52:2350–7.
Article
Google Scholar
Moore K, Semple J, Cristofanelli P, Bonasoni P, Stocchi P. Environmental conditions at the South Col of Mount Everest and their impact on hypoxia and hypothermia experienced by mountaineers. Extrem Physiol Med. 2012;1:2–2.
Article
Google Scholar
Merino N, Aronson HS, Bojanova DP, Feyhl-Buska J, Wong ML, Zhang S, et al. Living at the extremes: extremophiles and the limits of life in a planetary context. Front Microbiol. 2019;10:780.
Article
Google Scholar
Zhang SH, Hou SG, Yang GL, Wang JH. Bacterial community in the East Rongbuk Glacier, Mt. Qomolangma (Everest) by culture and culture-independent methods. Microbiol Res. 2010;165:336–45.
Article
CAS
Google Scholar
Liu YQ, Fang PC, Guo BX, Ji MK, Liu PF, Mao GN, et al. A comprehensive dataset of microbial abundance, dissolved organic carbon, and nitrogen in Tibetan Plateau glaciers. Earth Syst Sci Data. 2022;14:2303–14.
Article
Google Scholar
Liu YQ, Yao TD, Jiao NZ, Tian LD, Hu AY, Yu WS, et al. Microbial diversity in the snow, a moraine lake and a stream in Himalayan glacier. Extremophiles. 2011;15:411–21.
Article
Google Scholar
Liu YQ, Yao TD, Jiao NZ, Kang SC, Zeng YH, Huang SJ. Microbial community structure in moraine lakes and glacial meltwaters, Mount Everest: Microbial diversity in lakes of Mount Everest. FEMS Microbiol Lett. 2006;265:98–105.
Article
CAS
Google Scholar
Morvan T, Lemoine C, Gaillard F, Hamelin G, Trinkler B, Carteaux L, et al. A comprehensive dataset on nitrate, Nitrite and dissolved organic carbon leaching losses from a 4-year Lysimeter study. Data Brief. 2020;32:106029.
Article
Google Scholar
Liu YQ, Yao TD, Kang SC, Jiao NZ, Zeng YH, Shi Y, et al. Seasonal variation of snow microbial community structure in the East Rongbuk glacier. Mt Everest Sci Bull. 2006;51:1476–86.
Article
CAS
Google Scholar
Battista JR. AGAINST ALL ODDS: The survival strategies of Deinococcus radiodurans. Annu Rev Microbiol. 1997;51:203–24.
Article
CAS
Google Scholar
Chen P, Zhou H, Huang YY, Xie Z, Zhang MJ, Wei YL, et al. Revealing the full biosphere structure and versatile metabolic functions in the deepest ocean sediment of the Challenger Deep. Genome Biol. 2021;22:207.
Article
CAS
Google Scholar
Xiao X, Zhang Y, Wang FP. Hydrostatic pressure is the universal key driver of microbial evolution in the deep ocean and beyond. Environ Microbiol Rep. 2021;13:68–72.
Article
Google Scholar
Yancey PH. Cellular responses in marine animals to hydrostatic pressure. J Exp Zool A Ecol Integr Physiol. 2020;333:398–420.
Article
CAS
Google Scholar
Qin QL, Wang ZB, Su HN, Chen XL, Miao J, Wang XJ, et al. Oxidation of trimethylamine to trimethylamine N -oxide facilitates high hydrostatic pressure tolerance in a generalist bacterial lineage. Sci Adv. 2021;7:eabf9941.
Article
CAS
Google Scholar
Yin QJ, Zhang WJ, Qi XQ, Zhang SD, Jiang T, Li XG, et al. High hydrostatic pressure inducible trimethylamine N-oxide reductase improves the pressure tolerance of piezosensitive bacteria Vibrio fluvialis. Front Microbiol. 2017;8:2646.
Article
Google Scholar
Nunoura T, Nishizawa M, Hirai M, Shimamura S, Harnvoravongchai P, Koide O, et al. Microbial diversity in sediments from the bottom of the Challenger Deep, the Mariana Trench. Microbes Environ. 2018;33:186–94.
Article
Google Scholar
Nunoura T, Takaki Y, Hirai M, Shimamura S, Makabe A, Koide O, et al. Hadal biosphere: insight into the microbial ecosystem in the deepest ocean on earth. Proc Natl Acad Sci U S A. 2015;112:E1230–6.
Article
CAS
Google Scholar
Zhou YL, Mara P, Cui GJ, Edgcomb VP, Wang Y. Microbiomes in the Challenger Deep slope and bottom-axis sediments. Nat Commun. 2022;13:1515.
Article
CAS
Google Scholar
Luo M, Gieskes J, Chen LY, Shi XF, Chen DF. Provenances, distribution, and accumulation of organic matter in the southern Mariana Trench rim and slope: implication for carbon cycle and burial in hadal trenches. Mar Geol. 2017;386:98–106.
Article
CAS
Google Scholar
Glud RN, Wenzhöfer F, Middelboe M, Oguri K, Turnewitsch R, Canfield DE, et al. High rates of microbial carbon turnover in sediments in the deepest oceanic trench on Earth. Nat Geosci. 2013;6:284–8.
Article
CAS
Google Scholar
Hodson A, Anesio AM, Tranter M, Fountain A, Osborn M, Priscu J, et al. Glacial ecosystems. Ecol Monogr. 2008;78:41–67.
Article
Google Scholar
Takai K. Recent topics on deep-sea microbial communities in microbes and environments. Microbes Environ. 2019;34:345–6.
Article
Google Scholar
Natarajan VP, Zhang XX, Morono Y, Inagaki F, Wang FP. A modified sds-based DNA extraction method for high quality environmental DNA from seafloor environments. Front Microbiol. 2016;7:986.
Article
Google Scholar
Lang JD, Zhu RR, Sun X, Zhu SY, Li TB, Shi XL, et al. Evaluation of the MGISEQ-2000 sequencing platform for Illumina target capture sequencing libraries. Front Genet. 2021;12:730519.
Article
CAS
Google Scholar
Joshi NA, Fass JN. Sickle: A sliding-window, adaptive, quality-based trimming tool for FastQ files (Version 1.33). 2011. https://github.com/najoshi/sickle.
Ewels P, Magnusson M, Lundin S, Käller M. MultiQC: summarize analysis results for multiple tools and samples in a single report. Bioinformatics. 2016;32:3047–8.
Article
CAS
Google Scholar
Gruber-Vodicka HR, Seah BKB, Pruesse E. phyloFlash: rapid small-subunit rRNA profiling and targeted assembly from metagenomes. MSystems. 2020;5:e00920.
Article
CAS
Google Scholar
Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013;41:D590–6.
Article
CAS
Google Scholar
Li D, Liu CM, Luo R, Sadakane K, Lam TW. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics. 2015;31:1674–6.
Article
CAS
Google Scholar
Bushnell B. BBMap: a fast, accurate, splice-aware aligner. 2014. https://escholarship.org/uc/item/1h3515gn.
Hyatt D, Chen GL, LoCascio PF, Land ML, Larimer FW, Hauser LJ. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics. 2010;11:119.
Article
Google Scholar
Hyatt D, LoCascio PF, Hauser LJ, Uberbacher EC. Gene and translation initiation site prediction in metagenomic sequences. Bioinformatics. 2012;28:2223–30.
Article
CAS
Google Scholar
Aramaki T, Blanc-Mathieu R, Endo H, Ohkubo K, Kanehisa M, Goto S, et al. KofamKOALA: KEGG Ortholog assignment based on profile HMM and adaptive score threshold. Bioinformatics. 2020;36:2251–2.
Article
CAS
Google Scholar
Liao Y, Smyth GK, Shi W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics. 2014;30:923–30.
Article
CAS
Google Scholar
Kang DD, Li F, Kirton ES, Thomas A, Egan RS, An H, et al. MetaBAT 2: an adaptive binning algorithm for robust and efficient genome reconstruction from metagenome assemblies; 2019. https://doi.org/10.7717/peerj.7359.
Book
Google Scholar
Wu YW, Simmons BA, Singer SW. MaxBin 2.0: an automated binning algorithm to recover genomes from multiple metagenomic datasets. Bioinformatics. 2016;32:605–7.
Article
CAS
Google Scholar
Sieber CMK, Probst AJ, Sharrar A, Thomas BC, Hess M, Tringe SG, et al. Recovery of genomes from metagenomes via a dereplication, aggregation and scoring strategy. Nat Microbiol. 2018;3:836–43.
Article
CAS
Google Scholar
Olm MR, Brown CT, Brooks B, Banfield JF. dRep: a tool for fast and accurate genomic comparisons that enables improved genome recovery from metagenomes through de-replication. ISME J. 2017;11:2864–8.
Article
CAS
Google Scholar
Bowers RM, Kyrpides NC, Stepanauskas R, Harmon-Smith M, Doud D, Reddy TBK, et al. Minimum information about a single amplified genome (MISAG) and a metagenome-assembled genome (MIMAG) of bacteria and archaea. Nat Biotechnol. 2017;35:725–31.
Article
CAS
Google Scholar
Parks DH, Chuvochina M, Chaumeil P-A, Rinke C, Mussig AJ, Hugenholtz P. A complete domain-to-species taxonomy for Bacteria and Archaea. Nat Biotechnol. 2020;38:1079–86.
Article
CAS
Google Scholar
Chaumeil PA, Mussig AJ, Hugenholtz P, Parks DH. GTDB-Tk: a toolkit to classify genomes with the Genome Taxonomy Database. Bioinformatics. 2019;36(6):1925–7.
Woodcroft BJ. CoverM: read coverage calculator for metagenomics. 2021. https://github.com/wwood/CoverM.
Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, et al. vegan: Community ecology package. 2015.
Google Scholar
Ahlmann-Eltze C, Patil I. ggsignif: R package for displaying significance brackets for ‘ggplot2’. 2021. PsyArXiv. 2021. https://doi.org/10.31234/osf.io/7awm6.
Xie YH. knitr: a comprehensive tool for reproducible research in R. In: Stodden V, Leisch F, Peng RD, editors. Implementing reproducible research. Chapman: Hall/CRC; 2014. p. 3–31.
Sorek R, Zhu YW, Creevey CJ, Francino MP, Bork P, Rubin EM. Genome-wide experimental determination of barriers to horizontal gene transfer. Science. 2007;318:1449–52.
Article
CAS
Google Scholar
Letunic I, Bork P. Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 2021;49:W293–6.
Article
CAS
Google Scholar
Vieira-Silva S, Rocha EPC. The systemic imprint of growth and its uses in ecological (meta)genomics. PLoS Genet. 2010;6:e1000808.
Article
Google Scholar
Weissman JL, Hou SW, Fuhrman JA. Estimating maximal microbial growth rates from cultures, metagenomes, and single cells via codon usage patterns. Proc Natl Acad Sci U S A. 2021;118:e2016810118.
Article
CAS
Google Scholar
Louca S. The rates of global bacterial and archaeal dispersal. ISME J. 2022;16:159–67.
Article
Google Scholar
Rodriguez-R LM, Konstantinidis KT. Bypassing cultivation to identify bacterial species: culture-independent genomic approaches identify credibly distinct clusters, avoid cultivation bias, and provide true insights into microbial species. Microbe Magazine. 2014;9:111–8.
Article
Google Scholar
Wang XY, Yang Y, Lv YX, Xiao X, Zhao WS. The capability of utilizing abiotic enantiomers of amino acids by Halomonas sp. LMO_D1 derived from the Mariana Trench. Front Astronomy Space Sci. 2021;8:741053.
Maalcke WJ, Reimann J, de Vries S, Butt JN, Dietl A, Kip N, et al. Characterization of anammox hydrazine dehydrogenase, a key N2-producing enzyme in the global nitrogen cycle*. J Biol Chem. 2016;291:17077–92.
Article
CAS
Google Scholar
Zhao R, Biddle JF. Helarchaeota and co-occurring sulfate-reducing bacteria in subseafloor sediments from the Costa Rica Margin. ISME Commun. 2021;1:25.
Article
Google Scholar
Umezawa K, Kojima H, Kato Y, Fukui M. Dissulfurispira thermophila gen. nov., sp. nov., a thermophilic chemolithoautotroph growing by sulfur disproportionation, and proposal of novel taxa in the phylum Nitrospirota to reclassify the genus Thermodesulfovibrio. Syst Appl Microbiol. 2021;44:126184.
Article
CAS
Google Scholar
Sun RY, Yuan JJ, Sonke JE, Zhang YX, Zhang T, Zheng W, et al. Methylmercury produced in upper oceans accumulates in deep Mariana Trench fauna. Nat Commun. 2020;11:3389.
Article
CAS
Google Scholar
Lee K, Hur SD, Hou S, Hong S, Qin X, Ren J, et al. Atmospheric pollution for trace elements in the remote high-altitude atmosphere in central Asia as recorded in snow from Mt. Qomolangma (Everest) of the Himalayas. Sci Total Environ. 2008;404:171–81.
Article
CAS
Google Scholar
Dunivin TK, Yeh SY, Shade A. A global survey of arsenic-related genes in soil microbiomes. BMC Biol. 2019;17:45.
Article
CAS
Google Scholar
Neff JM. Ecotoxicology of arsenic in the marine environment. Environ Toxicol Chem. 1997;16:917–27.
CAS
Google Scholar
Labunskyy VM, Hatfield DL, Gladyshev VN. Selenoproteins: molecular pathways and physiological roles. Physiol Rev. 2014;94:739–77.
Article
CAS
Google Scholar
Peng T, Lin J, Xu YZ, Zhang Y. Comparative genomics reveals new evolutionary and ecological patterns of selenium utilization in bacteria. ISME J. 2016;10:2048–59.
Article
CAS
Google Scholar
Kang SC, Zhang QG, Kaspari S, Qin DH, Cong ZY, Ren JW, et al. Spatial and seasonal variations of elemental composition in Mt. Everest (Qomolangma) snow/firn. Atmos Environ. 2007;41:7208–18.
Article
CAS
Google Scholar
Hoffmann T, Warmbold B, Smits SHJ, Tschapek B, Ronzheimer S, Bashir A, et al. Arsenobetaine: an ecophysiologically important organoarsenical confers cytoprotection against osmotic stress and growth temperature extremes: Stress protection by uptake and synthesis of glycine betaine. Environ Microbiol. 2018;20:305–23.
Article
CAS
Google Scholar
Wang K, Shen YJ, Yang YZ, Gan XN, Liu GC, Hu K, et al. Morphology and genome of a snailfish from the Mariana Trench provide insights into deep-sea adaptation. Nat Ecol Evol. 2019;3:823833.
Article
Google Scholar
Liu JL, Liu J, Zhang SH, Liang JC, Lin HY, Song DL, et al. Novel insights into bacterial dimethylsulfoniopropionate catabolism in the East China Sea. Front Microbiol. 2018;9:3206.
Article
Google Scholar
Zhang XH, Liu J, Liu J, Yang G, Xue CX, Curson ARJ, et al. Biogenic production of DMSP and its degradation to DMS—their roles in the global sulfur cycle. Sci China Life Sci. 2019;62:1296–319.
Article
CAS
Google Scholar
Zheng YF, Wang JY, Zhou S, Zhang YH, Liu J, Xue CX, et al. Bacteria are important dimethylsulfoniopropionate producers in marine aphotic and high-pressure environments. Nat Commun. 2020;11:4658.
Article
CAS
Google Scholar
Teng ZJ, Wang P, Chen XL, Guillonneau R, Li CY, Zou SB, et al. Acrylate protects a marine bacterium from grazing by a ciliate predator. Nat Microbiol. 2021;6:1351–6.
Article
CAS
Google Scholar
Liu YQ, Yao TD, Jiao NZ, Kang SC, Xu BQ, Zeng YH, et al. Bacterial diversity in the snow over Tibetan Plateau Glaciers. Extremophiles. 2009;13:411–23.
Article
CAS
Google Scholar
Cameron KA, Hagedorn B, Dieser M, Christner BC, Choquette K, Sletten R, et al. Diversity and potential sources of microbiota associated with snow on western portions of the Greenland Ice Sheet. Environ Microbiol. 2015;17:594–609.
Article
CAS
Google Scholar
Tarn J, Peoples LM, Hardy K, Cameron J, Bartlett DH. Identification of free-living and particle-associated microbial communities present in hadal regions of the Mariana Trench. Front Microbiol. 2016;7:665.
Article
Google Scholar
Peoples LM, Donaldson S, Osuntokun O, Xia Q, Nelson A, Blanton J, et al. Vertically distinct microbial communities in the Mariana and Kermadec trenches. PLoS One. 2018;13:e0195102.
Article
Google Scholar
Li WL, Huang JM, Zhang PW, Cui GJ, Wei ZF, Wu YZ, et al. Periodic and spatial spreading of alkanes and Alcanivorax bacteria in deep waters of the Mariana Trench. Appl Environ Microbiol. 2019;85:e02089–18.
Article
CAS
Google Scholar
Liu J, Zheng YF, Lin HY, Wang XC, Li M, Liu Y, et al. Proliferation of hydrocarbon-degrading microbes at the bottom of the Mariana Trench. Microbiome. 2019;7:47.
Article
CAS
Google Scholar
Lo Giudice A, Conte A, Papale M, Rizzo C, Azzaro M, Guglielmin M, et al. Prokaryotic diversity and metabolically active communities in brines from two perennially ice-covered Antarctic lakes. Astrobiology. 2021;21:551–65.
Article
CAS
Google Scholar
Azzaro M, Papale M, Rizzo C, Forte E, Lenaz D, Guglielmin M, et al. Antarctic salt-cones: an oasis of microbial life? The example of Boulder Clay Glacier (Northern Victoria Land). Microorganisms. 2022;10:1753.
Article
CAS
Google Scholar
Mikucki JA, Priscu JC. Bacterial diversity associated with blood falls, a subglacial outflow from the Taylor Glacier, Antarctica. Appl Environ Microbiol. 2007;73:4029–39.
Article
CAS
Google Scholar
Miteva VI, Brenchley JE. Detection and isolation of ultrasmall microorganisms from a 120,000-year-old Greenland glacier ice core. Appl Environ Microbiol. 2005;71:7806–18.
Article
CAS
Google Scholar
Yang GL, Hou SG, Baoge RL, Li ZG, Xu H, Liu YP, et al. Differences in bacterial diversity and communities between glacial snow and glacial soil on the Chongce Ice Cap, West Kunlun Mountains. Sci Rep. 2016;6:36548.
Article
Google Scholar
Liu Q, Liu HC, Zhang JL, Zhou YG, Xin YH. Sphingomonas psychrolutea sp nov., a psychrotolerant bacterium isolated from glacier ice. Int J Syst Evol Microbiol. 2015;65:2955–9.
Article
CAS
Google Scholar
Zhong ZP, Tian FN, Roux S, Gazitua MC, Solonenko NE, Li YF, et al. Glacier ice archives nearly 15,000-year-old microbes and phages. Microbiome. 2021;9:160.
Article
CAS
Google Scholar
DeLeon-Rodriguez N, Lathem TL, Rodriguez-R LM, Barazesh JM, Anderson BE, Beyersdorf AJ, et al. Microbiome of the upper troposphere: Species composition and prevalence, effects of tropical storms, and atmospheric implications. Proc Natl Acad Sci U S A. 2013;110:2575–80.
Article
CAS
Google Scholar
Laskin AI, White DC. Preface to special issue on Sphingomonas. J Ind Microbiol. 1999;23:231.
CAS
Google Scholar
Yallop ML, Anesio AM, Perkins RG, Cook J, Telling J, Fagan D, et al. Photophysiology and albedo-changing potential of the ice algal community on the surface of the Greenland ice sheet. ISME J. 2012;6:2302–13.
Article
CAS
Google Scholar
Lutz S, Anesio AM, Edwards A, Benning LG. Microbial diversity on Icelandic glaciers and ice caps. Front Microbiol. 2015;6:307.
Article
Google Scholar
Edwards A, Anesio AM, Rassner SM, Sattler B, Hubbard B, Perkins WT, et al. Possible interactions between bacterial diversity, microbial activity and supraglacial hydrology of cryoconite holes in Svalbard. ISME J. 2011;5:150–60.
Article
Google Scholar
Conte A, Papale M, Amalfitano S, Mikkonen A, Rizzo C, De Domenico E, et al. Bacterial community structure along the subtidal sandy sediment belt of a high Arctic fjord (Kongsfjorden, Svalbard Islands). Sci Total Environ. 2018;619-620:203–11.
Article
CAS
Google Scholar
Stibal M, Sabacka K, Kastovska K. Microbial communities on glacier surfaces in Svalbard: Impact of physical and chemical properties on abundance and structure of cyanobacteria and algae. Microb Ecol. 2006;52:644–54.
Article
Google Scholar
Murakami T, Takeuchi N, Mori H, Hirose Y, Edwards A, Irvine-Fynn T, et al. Metagenomics reveals global-scale contrasts in nitrogen cycling and cyanobacterial light-harvesting mechanisms in glacier cryoconite. Microbiome. 2022;10:50.
Article
CAS
Google Scholar
Hodson AJ, Mumford PN, Kohler J, Wynn PM. The High Arctic glacial ecosystem: new insights from nutrient budgets. Biogeochemistry. 2005;72:233–56.
Article
CAS
Google Scholar
Franzetti A, Tagliaferri I, Gandolfi I, Bestetti G, Minora U, Mayer C, et al. Light-dependent microbial metabolisms drive carbon fluxes on glacier surfaces. ISME J. 2016;10:2984–8.
Article
CAS
Google Scholar
Jing HM, Xiao X, Zhang Y, Li ZY, Jian HH, Luo YF, et al. Composition and ecological roles of the core microbiome along the abyssal-hadal transition zone sediments of the Mariana Trench. Microbiol Spectr. 2022;10(3):e0198821.
Zhao JL, Jing HM, Wang ZM, Wang L, Jian HH, Zhang R, et al. Novel viral communities potentially assisting in carbon, nitrogen, and sulfur metabolism in the upper slope sediments of Mariana Trench. MSystems. 2022;7:e01358–21.
Article
CAS
Google Scholar
Cruaud P, Vigneron A, Fradette MS, Dorea CC, Culley AI, Rodriguez MJ, et al. Annual bacterial community cycle in a seasonally ice-covered river reflects environmental and climatic conditions. Limnol Oceanogr. 2020;65:S21–37.
Article
Google Scholar
Bourgeois S, Kerherve P, Calleja ML, Many G, Morata N. Glacier inputs influence organic matter composition and prokaryotic distribution in a high Arctic fjord (Kongsfjorden, Svalbard). J Mar Syst. 2016;164:112–27.
Article
Google Scholar
Gu JH, Wang XJ, Ma XP, Sun Y, Xiao X, Luo HW. Unexpectedly high mutation rate of a deep-sea hyperthermophilic anaerobic archaeon. ISME J. 2021;15:1862–9.
Article
CAS
Google Scholar
Chen ZY, Wang XJ, Song Y, Zeng QL, Zhang Y, Luo HW. Prochlorococcus have low global mutation rate and small effective population size. Nat Ecol Evol. 2022;6:183–94.
Article
Google Scholar
Bobay L-M, Ochman H. The evolution of bacterial genome architecture. Front Genet. 2017;8:72.
Article
Google Scholar
Turnbaugh PJ, Hamady M, Yatsunenko T, Cantarel BL, Duncan A, Ley RE, et al. A core gut microbiome in obese and lean twins. Nature. 2009;457:480–4.
Article
CAS
Google Scholar
Burke C, Steinberg P, Rusch D, Kjelleberg S, Thomas T. Bacterial community assembly based on functional genes rather than species. Proc Natl Acad Sci U S A. 2011;108:14288–93.
Article
CAS
Google Scholar
Wittebolle L, Vervaeren H, Verstraete W, Boon N. Quantifying community dynamics of nitrifiers in functionally stable reactors. Appl Environ Microbiol. 2008;74:286–93.
Article
CAS
Google Scholar
Vanwonterghem I, Jensen PD, Rabaey K, Tyson GW. Genome-centric resolution of microbial diversity, metabolism and interactions in anaerobic digestion: Genome-centric resolution through deep metagenomics. Environ Microbiol. 2016;18:3144–58.
Article
CAS
Google Scholar
Kumar R, Acharya V, Mukhia S, Singh D, Kumar S. Complete genome sequence of Pseudomonas frederiksbergensis ERDD5:01 revealed genetic bases for survivability at high altitude ecosystem and bioprospection potential. Genomics. 2019;111:492–9.
Article
CAS
Google Scholar
Hattori K, Takahashi Y, Guillot S, Johanson B. Occurrence of arsenic (V) in forearc mantle serpentinites based on X-ray absorption spectroscopy study. Geochim Cosmochim Acta. 2005;69:5585–96.
Article
CAS
Google Scholar
Mueller B. Preliminary trace element analysis of arsenic in Nepalese groundwater may pinpoint its origin. Environ. Earth Sci. 2018;77:35 s12665-017-7154-z.
Article
Google Scholar
Imran Baloch M, Akhtar M, Khan K, Khalid A, Mehmood A, Rukh S, et al. Total and extractable soil selenium contents variation within and across the parent materials. J Biodiversity Environ Sci. 2016;9:175–86.
Google Scholar
Jiao NZ, Cai RH, Zheng Q, Tang K, Liu JH, Jiao FLE, et al. Unveiling the enigma of refractory carbon in the ocean. Natl Sci Rev. 2018;5:459–63.
Article
CAS
Google Scholar