Hernández M, Quijano G, Muñoz RL. Key role of microbial characteristics on the performance of VOC biodegradation in two-liquid phase bioreactors. Environ Sci Technol. 2012;46(7):4059–66. https://doi.org/10.1021/es204144c.
Article
CAS
PubMed
Google Scholar
Tang L, Deshusses MA. Novel integrated biotrickling filter–Anammox bioreactor system for the complete treatment of ammonia in air with nitrification and denitrification. Environ Sci Technol. 2020;54(19):12654–61. https://doi.org/10.1021/acs.est.0c03332.
Article
CAS
PubMed
Google Scholar
Wang Y-C, Han M-F, Jia T-P, Hu X-R, Zhu H-Q, Tong Z, et al. Emissions, measurement, and control of odor in livestock farms: a review. Sci Total Environ. 2021;145735. https://doi.org/10.1016/j.scitotenv.2021.145735.
Hu QY, Wang C, Huang KX. Biofiltration performance and characteristics of high-temperature gaseous benzene, hexane and toluene. Chem Eng J. 2015;279:689–95. https://doi.org/10.1016/j.cej.2015.05.019.
Article
CAS
Google Scholar
Dorado AD, Baeza JA, Lafuente J, Gabriel D, Gamisans X. Biomass accumulation in a biofilter treating toluene at high loads - part 1: experimental performance from inoculation to clogging. Chem Eng J. 2012;209:661–9. https://doi.org/10.1016/j.cej.2012.08.018.
Article
CAS
Google Scholar
Cox HH, Deshusses MA. Biomass control in waste air biotrickling filters by protozoan predation. Biotechnol Bioeng. 1999;62(2):216–24.
Article
CAS
Google Scholar
Yang C, Hong C, Zeng G, Yu G, Luo S. Biomass accumulation and control strategies in gas biofiltration. Biotechnol Adv. 2010;28(4):531–40. https://doi.org/10.1016/j.biotechadv.2010.04.002.
Article
CAS
PubMed
Google Scholar
Han M-F, Wang C, Liu H. Comparison of physical technologies for biomass control in biofilters treating gaseous toluene. J Air Waste Manage Assoc. 2018;68(10):1118–25. https://doi.org/10.1080/10962247.2018.1469556.
Article
Google Scholar
Cox H, Deshusses MA. Chemical removal of biomass from waste air biotrickling filters: screening of chemicals of potential interest. Water Res. 1999;33(10):2383–91. https://doi.org/10.1016/S0043-1354(98)00452-7.
Article
CAS
Google Scholar
Floresvalle S. A comparative study of physical and chemical processes for removal of biomass in biofilters. Molecules. 2011;16(8):6927–49. https://doi.org/10.3390/molecules16086927.
Article
CAS
Google Scholar
Wang Y-C, Wang C, Han M-F, Tong Z, Lin Y-T, Hu X-R, et al. Inhibiting effect of quorum quenching on biomass accumulation: a clogging control strategy in gas biofilters. Chem Eng J. 2022;432:134313. https://doi.org/10.1016/j.cej.2021.134313.
Article
CAS
Google Scholar
Kim J-H, Choi D-C, Yeon K-M, Kim S-R, Lee C-H. Enzyme-immobilized nanofiltration membrane to mitigate biofouling based on quorum quenching. Environ Sci Technol. 2011;45(4):1601–7. https://doi.org/10.1021/es103483j.
Article
CAS
PubMed
Google Scholar
Oh HS, Yeon KM, Yang CS, Kim SR, Lee CH, Park SY, et al. Control of membrane biofouling in MBR for wastewater treatment by quorum quenching bacteria encapsulated in microporous membrane. Environ Sci Technol. 2012;46(9):4877–84. https://doi.org/10.1021/es204312u.
Article
CAS
PubMed
Google Scholar
Lee K, Yu H, Zhang X, Choo K-H. Quorum sensing and quenching in membrane bioreactors: opportunities and challenges for biofouling control. Bioresour Technol. 2018;270:656–68. https://doi.org/10.1016/j.biortech.2018.09.019.
Article
CAS
PubMed
Google Scholar
Oh H-S, Lee C-H. Origin and evolution of quorum quenching technology for biofouling control in MBRs for wastewater treatment. J Membr Sci. 2018;554:331–45. https://doi.org/10.1016/j.memsci.2018.03.019.
Article
CAS
Google Scholar
Tahir I, Kibaek L, Chung-Hak L, Kwang-Ho C. Effective quorum quenching bacteria dose for anti-fouling strategy in membrane bioreactors utilizing fixed-sheet media. J Membr Sci. 2018;562:18–25. https://doi.org/10.1016/j.memsci.2018.05.031.
Article
CAS
Google Scholar
Lee K, Lee S, Lee SH, Kim SR, Oh HS, Park PK, et al. Fungal quorum quenching: a paradigm shift for energy savings in membrane bioreactor (MBR) for wastewater treatment. Environ Sci Technol. 2016;50(20):10914. https://doi.org/10.1021/acs.est.6b00313.
Article
CAS
PubMed
Google Scholar
Lee K, Kim YW, Lee S, Sang HL, Chang HN, Kwon H, et al. Stopping autoinducer-2 chatter by means of an indigenous bacterium ( Acinetobacter sp. DKY-1): a new antibiofouling strategy in a membrane bioreactor for wastewater treatment. Environ Sci Technol. 2018;52(11):6237–45. https://doi.org/10.1021/acs.est.7b05824.
Article
CAS
PubMed
Google Scholar
Yuan S, Xu R, Wang D, Lin Q, Zhou S, Lin J, et al. Ecological linkages between a biofilm ecosystem and reactor performance: the specificity of biofilm development phases. Environ Sci Technol. 2021;55(17):11948–60. https://doi.org/10.1021/acs.est.1c02486.
Article
CAS
PubMed
Google Scholar
Ali M, Wang Z, Salam KW, Hari AR, Pronk M, van Loosdrecht MC, et al. Importance of species sorting and immigration on the bacterial assembly of different-sized aggregates in a full-scale aerobic granular sludge plant. Environ Sci Technol. 2019;53(14):8291–301. https://doi.org/10.1021/acs.est.8b07303.
Article
CAS
PubMed
Google Scholar
Liu Q, Wang J, He R, Hu H, Wu B, Ren H. Bacterial assembly during the initial adhesion phase in wastewater treatment biofilms. Water Res. 2020;184:116147. https://doi.org/10.1016/j.watres.2020.116147.
Article
CAS
PubMed
Google Scholar
Wang J, Liu Q, Dong D, Hu H, Wu B, Ren H. In-situ monitoring of the unstable bacterial adhesion process during wastewater biofilm formation: a comprehensive study. Environ Int. 2020;140:105722. https://doi.org/10.1016/j.envint.2020.105722.
Article
PubMed
Google Scholar
Xu R, Zhang S, Meng F. Large-sized planktonic bioaggregates possess high biofilm formation potentials: bacterial succession and assembly in the biofilm metacommunity. Water Res. 2020;170:115307. https://doi.org/10.1016/j.watres.2019.115307.
Article
CAS
PubMed
Google Scholar
Han Y, Liu J, Guo X, Li L. Micro-environment characteristics and microbial communities in activated sludge flocs of different particle size. Bioresour Technol. 2012;124:252–8. https://doi.org/10.1016/j.biortech.2012.08.008.
Article
CAS
PubMed
Google Scholar
Liu T, Zhang AN, Wang J, Liu S, Jiang X, Dang C, et al. Integrated biogeography of planktonic and sedimentary bacterial communities in the Yangtze River. Microbiome. 2018;6(1):1–14. https://doi.org/10.1186/s40168-017-0388-x.
Article
Google Scholar
Niederdorfer R, Peter H, Battin TJ. Attached biofilms and suspended aggregates are distinct microbial lifestyles emanating from differing hydraulics. Nat Microbiol. 2016;1(12):1–7. https://doi.org/10.1038/nmicrobiol.2016.178.
Article
CAS
Google Scholar
Zhou J, Deng Y, Luo F, He Z, Yang Y. Phylogenetic molecular ecological network of soil microbial communities in response to elevated CO2. MBio. 2011;2(4):e00122–11. https://doi.org/10.1128/mBio.00122-11.
Article
PubMed
PubMed Central
Google Scholar
Deng Y, Jiang Y-H, Yang Y, He Z, Luo F, Zhou J. Molecular ecological network analyses. BMC Bioinform. 2012;13(1):1–20. https://doi.org/10.1186/1471-2105-13-113.
Article
Google Scholar
Wang H, Liu Z, Luo S, Khan R, Dai P, Liang P, et al. Membrane autopsy deciphering keystone microorganisms stubborn against online NaOCl cleaning in a full-scale MBR. Water Res. 2020;171:115390. https://doi.org/10.1016/j.watres.2019.115390.
Article
CAS
PubMed
Google Scholar
Liu Q, Wang J, Ren H. Bacterial assembly and succession in the start-up phase of an IFAS metacommunity: the role of AHL-driven quorum sensing. Sci Total Environ. 2021;777:145870. https://doi.org/10.1016/j.scitotenv.2021.145870.
Article
CAS
PubMed
Google Scholar
Wang Y-C, Wang C, Han M-F, Tong Z, Hu X-R, Lin Y-T, Zhao X: Reduction of biofilm adhesion strength by adjusting the characteristics of biofilms through enzymatic quorum quenching. Chemosphere 2022, 288:132465. https://doi.org/https://doi.org/10.1016/j.chemosphere.2021.132465
Wang C, Xi JY, Hu HY, Yao Y. Stimulative effects of ozone on a biofilter treating gaseous chlorobenzene. Environ Sci Technol. 2009;43(24):9407–12. https://doi.org/10.1021/es9019035.
Article
CAS
PubMed
Google Scholar
Lee S, Park S-K, Kwon H, Lee SH, Lee K, Nahm CH, et al. Crossing the border between laboratory and field: bacterial quorum quenching for anti-biofouling strategy in an MBR. Environ Sci Technol. 2016;50(4):1788–95. https://doi.org/10.1021/acs.est.5b04795.
Article
CAS
PubMed
Google Scholar
Li Y-S, Tian T, Li B-B, Yu H-Q. Longer persistence of quorum quenching bacteria over quorum sensing bacteria in aerobic granules. Water Res. 2020;179:115904. https://doi.org/10.1016/j.watres.2020.115904.
Article
CAS
PubMed
Google Scholar
Xu R, Yu Z, Zhang S, Meng F. Bacterial assembly in the bio-cake of membrane bioreactors: stochastic vs. deterministic processes. Water Res. 2019;157:535–45. https://doi.org/10.1016/j.watres.2019.03.093.
Article
CAS
PubMed
Google Scholar
Chang Q, Luan Y, Sun F. Variance adjusted weighted UniFrac: a powerful beta diversity measure for comparing communities based on phylogeny. BMC Bioinform. 2011;12(1):1–14. https://doi.org/10.1186/1471-2105-12-118.
Article
Google Scholar
Maslov S, Sneppen K. Specificity and stability in topology of protein networks. Science. 2002;296(5569):910–3. https://doi.org/10.1126/science.1065103.
Article
CAS
PubMed
Google Scholar
Olesen JM, Bascompte J, Dupont YL, Jordano P. The modularity of pollination networks. Proc Natl Acad Sci U S A. 2007;104(50):19891–6. https://doi.org/10.1073/pnas.0706375104.
Article
PubMed
PubMed Central
Google Scholar
Zhu Y, Zhang Y, Ren H-Q, Geng J-J, Xu K, Huang H, et al. Physicochemical characteristics and microbial community evolution of biofilms during the start-up period in a moving bed biofilm reactor. Bioresour Technol. 2015;180:345–51. https://doi.org/10.1016/j.biortech.2015.01.006.
Article
CAS
PubMed
Google Scholar
Han M-F, Wang C, Yang N-Y, Hu X-R, Wang Y-C, Duan E-H, et al. Performance enhancement of a biofilter with pH buffering and filter bed supporting material in removal of chlorobenzene. Chemosphere. 2020;251. https://doi.org/10.1016/j.chemosphere.2020.126358.
Kong X, Wang C, Ji M. Analysis of microbial metabolic characteristics in mesophilic and thermophilic biofilters using Biolog plate technique. Chem Eng J. 2013;230:415–21. https://doi.org/10.1016/j.cej.2013.06.073.
Article
CAS
Google Scholar
Fairley-Wax T, Raskin L, Skerlos SJ. Recirculating anaerobic dynamic membrane bioreactor treatment of municipal wastewater. ACS ES&T Eng. 2022. https://doi.org/10.1021/acsestengg.1c00394.
Wittich R-M, Wilkes H, Sinnwell V, Francke W, Fortnagel P. Metabolism of dibenzo-p-dioxin by Sphingomonas sp. strain RW1. Appl Environ Microbiol. 1992;58(3):1005–10. https://doi.org/10.1128/aem.58.3.1005-1010.1992.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang S, Yin Y, Wang J. Microbial degradation of triclosan by a novel strain of Dyella sp. Appl Environ Microbiol. 2018;102(4):1997–2006. https://doi.org/10.1007/s00253-018-8740-z.
Article
CAS
Google Scholar
Wang X, Wang Q, Li S, Li W. Degradation pathway and kinetic analysis for p-xylene removal by a novel Pandoraea sp. strain WL1 and its application in a biotrickling filter. J Hazard Mater. 2015;288(17-24). https://doi.org/10.1016/j.jhazmat.2015.02.019.
Bardgett RD, McAlister E. The measurement of soil fungal: bacterial biomass ratios as an indicator of ecosystem self-regulation in temperate meadow grasslands. Biol Fertil Soils. 1999;29(3):282–90. https://doi.org/10.1007/s003740050554.
Article
Google Scholar
Li X, Zhou Z, Li W, Yan Y, Shen X, Wang J, et al. Design of stable and self-regulated microbial consortia for chemical synthesis. Nat Commun. 2022;13(1):1–9. https://doi.org/10.1038/s41467-022-29215-6.
Article
CAS
Google Scholar
Karkaria BD, Fedorec AJ, Barnes CP. Automated design of synthetic microbial communities. Nat Commun. 2021;12(1):1–12. https://doi.org/10.1038/s41467-020-20756-2.
Article
CAS
Google Scholar
Brandelli A, Riffel A. Production of an extracellular keratinase from Chryseobacterium sp. growing on raw feathers. Electron J Biotechnol. 2005;8(1):35–42.
Article
CAS
Google Scholar
Kämpfer P, Dreyer U, Neef A, Dott W, Busse H-J. Chryseobacterium defluvii sp. nov., isolated from wastewater. Int J Syst Evol Microbiol. 2003;53(1):93–7. https://doi.org/10.1099/ijs.0.02073-0.
Article
CAS
PubMed
Google Scholar
Wu L, Yang Y, Chen S, Zhao M, Zhu Z, Yang S, et al. Long-term successional dynamics of microbial association networks in anaerobic digestion processes. Water Res. 2016;104:1–10. https://doi.org/10.1016/j.watres.2016.07.072.
Article
CAS
PubMed
Google Scholar
Barberán A, Bates ST, Casamayor EO, Fierer N. Using network analysis to explore co-occurrence patterns in soil microbial communities. ISME J. 2012;6(2):343–51. https://doi.org/10.1038/ismej.2011.119.
Article
CAS
PubMed
Google Scholar
Whiteley M, Diggle SP, Greenberg EP. Progress in and promise of bacterial quorum sensing research. Nature. 2017;551(7680):313–20. https://doi.org/10.1038/nature24624.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yoon J-H, Kang S-J, Schumann P, Oh T-K. Yonghaparkia alkaliphila gen. nov., sp. nov., a novel member of the family Microbacteriaceae isolated from an alkaline soil. Int J Syst Evol Microbiol. 2006;56(10):2415–20. https://doi.org/10.1099/ijs.0.64258-0.
Article
CAS
PubMed
Google Scholar
Han SK, Nedashkovskaya OI, Mikhailov VV, Kim SB, Bae KS. Salinibacterium amurskyense gen. nov., sp. nov., a novel genus of the family Microbacteriaceae from the marine environment. Int J Syst Evol Microbiol. 2003;53(6):2061–6. https://doi.org/10.1099/ijs.0.02627-0.
Article
CAS
PubMed
Google Scholar
Jacques RJ, Okeke BC, Bento FM, Teixeira AS, Peralba MC, Camargo FA. Microbial consortium bioaugmentation of a polycyclic aromatic hydrocarbons contaminated soil. Bioresour Technol. 2008;99(7):2637–43. https://doi.org/10.1016/j.biortech.2007.04.047.
Article
CAS
PubMed
Google Scholar
Borah M, Das S, Baruah H, Boro RC, Barooah M. Diversity of culturable endophytic bacteria from wild and cultivated rice showed potential plant growth promoting activities. bioRxiv. 2018;310797. https://doi.org/10.1101/310797.
Wu SC, Chang B-S, Li Y-Y. Effect of the coexistence of endosulfan on the lindane biodegradation by Novosphingobium barchaimii and microbial enrichment cultures. Chemosphere. 2022;297:134063. https://doi.org/10.1016/j.chemosphere.2022.134063.
Article
CAS
PubMed
Google Scholar
Ryu D-H, Lee S-W, Mikolaityte V, Kim Y-W, Jeong HY, Lee SJ, et al. Identification of a second type of AHL-lactonase from Rhodococcus sp. BH4, belonging to the α/β hydrolase superfamily. 2020. https://doi.org/10.4014/jmb.2001.01006.
Liu L, Ji M, Wang F, Tian Z, Wang T, Wang S, et al. Insight into the short-term effect of fulvic acid on nitrogen removal performance and N-acylated-L-homoserine lactones (AHLs) release in the anammox system. Sci Total Environ. 2020;704:135285. https://doi.org/10.1016/j.scitotenv.2019.135285.
Article
CAS
PubMed
Google Scholar
Liu Y-N, Lv Z-T, Lv W-L, Liu X-W. Plasmonic probing of the adhesion strength of single microbial cells. Proc Natl Acad Sci U S A. 2020;117(44):27148–53. https://doi.org/10.1073/pnas.2010136117.
Article
CAS
PubMed
PubMed Central
Google Scholar
Faust K, Raes J. Microbial interactions: from networks to models. Nat Rev Microbiol. 2012;10(8):538–50. https://doi.org/10.1038/nrmicro2832.
Article
CAS
PubMed
Google Scholar
Pinto AJ, Xi C, Raskin L. Bacterial community structure in the drinking water microbiome is governed by filtration processes. Environ Sci Technol. 2012;46(16):8851–9. https://doi.org/10.1021/es302042t.
Article
CAS
PubMed
Google Scholar
Tran HV, Kim E, Jung SP. Anode biofilm maturation time, stable cell performance time, and time-course electrochemistry in a single-chamber microbial fuel cell with a brush-anode. J Ind Eng Chem. 2022;106:269–78. https://doi.org/10.1016/j.jiec.2021.11.001.
Article
CAS
Google Scholar
Koo B, Jung SP. Improvement of air cathode performance in microbial fuel cells by using catalysts made by binding metal-organic framework and activated carbon through ultrasonication and solution precipitation. Chem Eng J. 2021;424:130388. https://doi.org/10.1016/j.cej.2021.130388.
Article
CAS
Google Scholar
Pawar AA, Karthic A, Lee S, Pandit S, Jung SP. Microbial electrolysis cells for electromethanogenesis: materials, configurations and operations. Environ Eng Res. 2022;27(1). https://doi.org/10.4491/eer.2020.484.
Zahid M, Savla N, Pandit S, Thakur VK, Jung SP, Gupta PK, et al. Microbial desalination cell: desalination through conserving energy. Desalination. 2022;521:115381. https://doi.org/10.1016/j.desal.2021.115381.
Article
CAS
Google Scholar
Angenent LT, Sung S, Raskin L. Methanogenic population dynamics during startup of a full-scale anaerobic sequencing batch reactor treating swine waste. Water Res. 2002;36(18):4648–54. https://doi.org/10.1016/S0043-1354(02)00199-9.
Article
CAS
PubMed
Google Scholar
Smith AL, Stadler LB, Love NG, Skerlos SJ, Raskin L. Perspectives on anaerobic membrane bioreactor treatment of domestic wastewater: a critical review. Bioresour Technol. 2012;122:149–59. https://doi.org/10.1016/j.biortech.2012.04.055.
Article
CAS
PubMed
Google Scholar
Yeon KM, Cheong WS, Oh HS, Lee WN, Hwang BK, Lee CH, et al. Quorum sensing: a new biofouling control paradigm in a membrane bioreactor for advanced wastewater treatment. Environ Sci Technol. 2009;43(2):380–5. https://doi.org/10.1021/es8019275.
Article
CAS
PubMed
Google Scholar
Xu B, Ng TCA, Huang S, Shi X, Ng HY. Feasibility of isolated novel facultative quorum quenching consortiums for fouling control in an AnMBR. Water Res. 2020;169:115251. https://doi.org/10.1016/j.watres.2017.02.006.
Article
CAS
PubMed
Google Scholar
Xu B, Ng TCA, Huang S, Ng HY. Effect of quorum quenching on EPS and size-fractioned particles and organics in anaerobic membrane bioreactor for domestic wastewater treatment. Water Res. 2020;179:115850. https://doi.org/10.1016/j.watres.2019.115251.
Article
CAS
PubMed
Google Scholar
Meng F, Zhang S, Oh Y, Zhou Z, Shin H-S, Chae S-R. Fouling in membrane bioreactors: an updated review. Water Res. 2017;114:151–80. https://doi.org/10.1016/j.watres.2020.115850.
Article
CAS
PubMed
Google Scholar