Felbeck H. Chemoautotrophic potential of the hydrothermal vent tube worm, Riftia pachyptila Jones (Vestimentifera). Science. 1981;213(4505):336–8. https://doi.org/10.1126/science.213.4505.336.
Article
CAS
PubMed
Google Scholar
Petersen JM, Zielinski FU, Pape T, Seifert R, Moraru C, Amann R, et al. Hydrogen is an energy source for hydrothermal vent symbioses. Nature. 2011;476(7359):176–80. https://doi.org/10.1038/nature10325.
Article
CAS
PubMed
Google Scholar
Childress JJ, Fisher CR, Brooks JM, Kennicutt MC 2nd, Bidigare R, Anderson AE. A methanotrophic marine molluscan (bivalvia, mytilidae) symbiosis: mussels fueled by gas. Science. 1986;233(4770):1306–8. https://doi.org/10.1126/science.233.4770.1306.
Article
CAS
PubMed
Google Scholar
Dick GJ. The microbiomes of deep-sea hydrothermal vents: distributed globally, shaped locally. Nat Rev Microbiol. 2019;17(5):271–83. https://doi.org/10.1038/s41579-019-0160-2.
Article
CAS
PubMed
Google Scholar
Cavanaugh CM, Gardiner SL, Jones ML, Jannasch HW, Waterbury JB. Prokaryotic cells in the hydrothermal vent tube worm Riftia pachyptila Jones: possible chemoautotrophic symbionts. Science. 1981;213(4505):340–2. https://doi.org/10.1126/science.213.4505.340.
Cavanaugh CM, Levering PR, Maki JS, Mitchell R, Lidstrom ME. Symbiosis of methylotrophic bacteria and deep-sea mussels. Nature. 1987;325(6102):346–8. https://doi.org/10.1038/325346a0.
Article
Google Scholar
Tivey MK. Generation of seafloor hydrothermal vent fluids and associated mineral deposits. Oceanography. 2007;20(1):50–65. https://doi.org/10.5670/oceanog.2007.80.
Article
Google Scholar
Fisher CR, Takai K, Le Bris N. Hydrothermal vent ecosystems. Oceanography. 2007;20(1):14–23. https://doi.org/10.5670/oceanog.2007.75.
Article
Google Scholar
Canganella F. Hydrothermal vent ecosystems and representative hyperthermophilic microorganisms. Ann Microbiol. 2001;51(1):11–27.
Google Scholar
Takishita K, Takaki Y, Chikaraishi Y, Ikuta T, Ozawa G, Yoshida T, et al. Genomic evidence that methanotrophic endosymbionts likely provide deep-sea Bathymodiolus mussels with a sterol intermediate in cholesterol biosynthesis. Genome Biol Evol. 2017;9(5):1148–60. https://doi.org/10.1093/gbe/evx082.
Zheng P, Wang MX, Li CL, Sun XQ, Wang XC, Sun Y, et al. Insights into deep-sea adaptations and host-symbiont interactions: a comparative transcriptome study on Bathymodiolus mussels and their coastal relatives. Mol Ecol. 2017;26(19):5133–48. https://doi.org/10.1111/mec.14160.
Kuwahara H, Yoshida T, Takaki Y, Shimamura S, Nishi S, Harada M, et al. Reduced genome of the thioautotrophic intracellular symbiont in a deep-sea clam, Calyptogena okutanii. Curr Biol. 2007;17(10):881–6. https://doi.org/10.1016/j.cub.2007.04.039.
Fiala-Médioni A, McKiness Z, Dando P, Boulegue J, Mariotti A, Alayse-Danet A, et al. Ultrastructural, biochemical, and immunological characterization of two populations of the mytilid mussel Bathymodiolus azoricus from the Mid-Atlantic Ridge: evidence for a dual symbiosis. Mar Biol. 2002;141(6):1035–43.
Fujii Y, Kubo T, Ishikawa H, Sasaki T. Isolation and characterization of the bacteriophage WO from Wolbachia, an arthropod endosymbiont. Biochem Biophys Res Commun. 2004;317(4):1183–8. https://doi.org/10.1016/j.bbrc.2004.03.164.
Chauvatcharin N, Ahantarig A, Baimai V, Kittayapong P. Bacteriophage WO-B and Wolbachia in natural mosquito hosts: infection incidence, transmission mode and relative density. Mol Ecol. 2006;15(9):2451–61. https://doi.org/10.1111/j.1365-294X.2006.02947.x.
Sanogo YO, Dobson SL. WO bacteriophage transcription in Wolbachia-infected Culex pipiens. Insect Biochem Mol Biol. 2006;36(1):80–5. https://doi.org/10.1016/j.ibmb.2005.11.001.
Masui S, Kuroiwa H, Sasaki T, Inui M, Kuroiwa T, Ishikawa H. Bacteriophage WO and virus-like particles in Wolbachia, an endosymbiont of arthropods. Biochem Biophys Res Commun. 2001;283(5):1099–104. https://doi.org/10.1006/bbrc.2001.4906.
Bordenstein SR, Marshall ML, Fry AJ, Kim U, Wernegreen JJ. The tripartite associations between bacteriophage, Wolbachia, and arthropods. PLoS Pathog. 2006;2(5):384–93.
Gavotte L, Vavre F, Henri H, Ravallec M, Stouthamer R, Bouletreau M. Diversity, distribution and specificity of WO phage infection in Wolbachia of four insect species. Insect Mol Biol. 2004;13(2):147–53. https://doi.org/10.1111/j.0962-1075.2004.00471.x.
Kent BN, Bordenstein SR. Phage WO of Wolbachia: lambda of the endosymbiont world. Trends Microbiol. 2010;18(4):173–81. https://doi.org/10.1016/j.tim.2009.12.011.
Breusing C, Johnson SB, Tunnicliffe V, Clague DA, Vrijenhoek RC, Beinart RA. Allopatric and sympatric drivers of speciation in Alviniconcha hydrothermal vent snails. Mol Biol Evol. 2020;37(12):3469–3484.
Breusing C, Mitchell J, Delaney J, Sylva SP, Seewald JS, Girguis PR, et al. Physiological dynamics of chemosynthetic symbionts in hydrothermal vent snails. ISME J. 2020;14(10):2568–79. https://doi.org/10.1038/s41396-020-0707-2.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen C, Watanabe HK, Sasaki T. Four new deep-sea provannid snails (Gastropoda: Abyssochrysoidea) discovered from hydrocarbon seep and hydrothermal vents in Japan. R Soc Open Sci. 2019;6(7):190393.
Lan Y, Sun J, Chen C, Sun YA, Zhou YD, Yang Y, et al. Hologenome analysis reveals dual symbiosis in the deep-sea hydrothermal vent snail Gigantopelta aegis. Nat Commun. 2021;12(1):1–8.
Sun J, Chen C, Miyamoto N, Li RS, Sigwart JD, Xu T, et al. The Scaly-foot Snail genome and implications for the origins of biomineralised armour. Nat Commun. 2020;11(1):1657.
Chen C, Linse K, Roterman CN, Copley JT, Rogers AD. A new genus of large hydrothermal vent-endemic gastropod (Neomphalina: Peltospiridae). Zool J Linnean Soc. 2015;175(2):319–35. https://doi.org/10.1111/zoj.12279.
Article
Google Scholar
Tao CH, Li HM, Jin XB, Zhou JP, Wu T, He YH, et al. Seafloor hydrothermal activity and polymetallic sulfide exploration on the southwest Indian ridge. Chin Sci Bull. 2014;59(19):2266–76. https://doi.org/10.1007/s11434-014-0182-0.
Article
CAS
Google Scholar
Dwarakanath S, Brenzinger S, Gleditzsch D, Plagens A, Klingl A, Thormann K, et al. Interference activity of a minimal Type I CRISPR-Cas system from Shewanella putrefaciens. Nucleic Acids Res. 2015;43(18):8913–23. https://doi.org/10.1093/nar/gkv882.
Makarova KS, Wolf YI, Alkhnbashi OS, Costa F, Shah SA, Saunders SJ, et al. An updated evolutionary classification of CRISPR-Cas systems. Nat Rev Microbiol. 2015;13(11):722–36. https://doi.org/10.1038/nrmicro3569.
Article
CAS
PubMed
PubMed Central
Google Scholar
Roux S, Enault F, Hurwitz BL, Sullivan MB. VirSorter: mining viral signal from microbial genomic data. PeerJ. 2015;3:e985. https://doi.org/10.7717/peerj.985.
Article
CAS
PubMed
PubMed Central
Google Scholar
Arndt D, Grant JR, Marcu A, Sajed T, Pon A, Liang Y, et al. PHASTER: a better, faster version of the PHAST phage search tool. Nucleic Acids Res. 2016;44(W1):W16–21. https://doi.org/10.1093/nar/gkw387.
Article
CAS
PubMed
PubMed Central
Google Scholar
Song W, Sun HX, Zhang C, Cheng L, Peng Y, Deng Z, et al. Prophage Hunter: an integrative hunting tool for active prophages. Nucleic Acids Res. 2019;47(W1):W74–80. https://doi.org/10.1093/nar/gkz380.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nayfach S, Camargo AP, Schulz F, Eloe-Fadrosh E, Roux S, Kyrpides NC. CheckV assesses the quality and completeness of metagenome-assembled viral genomes. Nat Biotechnol. 2020;39(5):578–85.
El-Gebali S, Mistry J, Bateman A, Eddy SR, Luciani A, Potter SC, et al. The Pfam protein families database in 2019. Nucleic Acids Res. 2019;47(D1):D427–D32. https://doi.org/10.1093/nar/gky995.
Article
CAS
PubMed
Google Scholar
Wernegreen JJ. Endosymbiosis. Curr Biol. 2012;22(14):R555–61. https://doi.org/10.1016/j.cub.2012.06.010.
Article
CAS
PubMed
Google Scholar
Bright M, Bulgheresi S. A complex journey: transmission of microbial symbionts. Nat Rev Microbiol. 2010;8(3):218–30. https://doi.org/10.1038/nrmicro2262.
Article
CAS
PubMed
PubMed Central
Google Scholar
Abad FXPR, Gajardo R, Bosch A. Viruses in mussels: public health implications and depuration. J Food Prot. 1997;60(6):677–81. https://doi.org/10.4315/0362-028X-60.6.677.
Article
PubMed
Google Scholar
Hadas E, Marie D, Shpigel M, Ilan M. Virus predation by sponges is a new nutrient-flow pathway in coral reef food webs. Limnol Oceanogr. 2006;51(3):1548–50. https://doi.org/10.4319/lo.2006.51.3.1548.
Article
Google Scholar
Bodner K, Melkonian AL, Covert MW. The enemy of my enemy: new insights regarding bacteriophage-mammalian cell interactions. Trends Microbiol. 2020;29(6):528–41.
Knowles B, Silveira CB, Bailey BA, Barott K, Cantu VA, Cobian-Guemes AG, et al. Lytic to temperate switching of viral communities. Nature. 2016;531(7595):466–70. https://doi.org/10.1038/nature17193.
Article
CAS
PubMed
Google Scholar
Grasis JA. The intra-dependence of viruses and the holobiont. Front Immunol. 2017;8:1501. https://doi.org/10.3389/fimmu.2017.01501.
Article
CAS
PubMed
PubMed Central
Google Scholar
Howard-Varona C, Hargreaves KR, Abedon ST, Sullivan MB. Lysogeny in nature: mechanisms, impact and ecology of temperate phages. ISME J. 2017;11(7):1511–20. https://doi.org/10.1038/ismej.2017.16.
Article
PubMed
PubMed Central
Google Scholar
Rostøl JT, Marraffini L. (Ph) ighting phages: how bacteria resist their parasites. Cell Host Microbe. 2019;25(2):184–94. https://doi.org/10.1016/j.chom.2019.01.009.
Ershova AS, Rusinov IS, Spirin SA, Karyagina AS, Alexeevski AV. Role of restriction-modification systems in prokaryotic evolution and ecology. Biochemistry (Mosc). 2015;80(10):1373–86. https://doi.org/10.1134/S0006297915100193.
Article
CAS
Google Scholar
Wang LR, Chen S, Vergin KL, Giovannoni SJ, Chan SW, DeMott MS, et al. DNA phosphorothioation is widespread and quantized in bacterial genomes. Proc Natl Acad Sci U S A. 2011;108(7):2963–8. https://doi.org/10.1073/pnas.1017261108.
Article
PubMed
PubMed Central
Google Scholar
Ofir G, Melamed S, Sberro H, Mukamel Z, Silverman S, Yaakov G, et al. DISARM is a widespread bacterial defence system with broad anti-phage activities. Nat Microbiol. 2018;3(1):90–8.
Goldfarb T, Sberro H, Weinstock E, Cohen O, Doron S, Charpak-Amikam Y, et al. BREX is a novel phage resistance system widespread in microbial genomes. EMBO J. 2015;34(2):169–83. https://doi.org/10.15252/embj.201489455.
Article
CAS
PubMed
Google Scholar
Yamaguchi Y, Park JH, Inouye M. Toxin-antitoxin systems in bacteria and archaea. Annu Rev Genet. 2011;45(45):61–79.
Article
CAS
PubMed
Google Scholar
Chopin MC, Chopin A, Bidnenko E. Phage abortive infection in lactococci: variations on a theme. Curr Opin Microbiol. 2005;8(4):473–9. https://doi.org/10.1016/j.mib.2005.06.006.
Article
CAS
PubMed
Google Scholar
Doron S, Melamed S, Ofir G, Leavitt A, Lopatina A, Keren M, et al. Systematic discovery of antiphage defense systems in the microbial pangenome. Science. 2018;359(6379):eaar4120.
Dupuis ME, Villion M, Magadan AH, Moineau S. CRISPR-Cas and restriction-modification systems are compatible and increase phage resistance. Nat Commun. 2013;4(1). https://doi.org/10.1038/ncomms3087.
Heaton BE, Herrou J, Blackwell AE, Wysocki VH, Crosson S. Molecular structure and function of the novel BrnT/BrnA toxin-antitoxin system of Brucella abortus. J Biol Chem. 2012;287(15):12098–110. https://doi.org/10.1074/jbc.M111.332163.
Samson JE, Magadan AH, Sabri M, Moineau S. Revenge of the phages: defeating bacterial defences. Nat Rev Microbiol. 2013;11(10):675–87. https://doi.org/10.1038/nrmicro3096.
Article
CAS
PubMed
Google Scholar
Rao VB, Feiss M. The bacteriophage DNA packaging motor. Annu Rev Genet. 2008;45(42):647–81.
Article
Google Scholar
Hilbert BJ, Hayes JA, Stone NP, Duffy CM, Sankaran B, Kelch BA. Structure and mechanism of the ATPase that powers viral genome packaging. Proc Natl Acad Sci U S A. 2015;112(29):E3792–E9. https://doi.org/10.1073/pnas.1506951112.
Article
CAS
PubMed
PubMed Central
Google Scholar
Moreno-Vivian C, Cabello P, Martinez-Luque M, Blasco R, Castillo F. Prokaryotic nitrate reduction: molecular properties and functional distinction among bacterial nitrate reductases. J Bacteriol. 1999;181(21):6573–84. https://doi.org/10.1128/JB.181.21.6573-6584.1999.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30(15):2114–20. https://doi.org/10.1093/bioinformatics/btu170.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol. 2012;19(5):455–77. https://doi.org/10.1089/cmb.2012.0021.
Article
CAS
PubMed
PubMed Central
Google Scholar
Albertsen M, Hugenholtz P, Skarshewski A, Nielsen KL, Tyson GW, Nielsen PH. Genome sequences of rare, uncultured bacteria obtained by differential coverage binning of multiple metagenomes. Nat Biotechnol. 2013;31(6):533–8. https://doi.org/10.1038/nbt.2579.
Article
CAS
PubMed
Google Scholar
Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9(4):357–9. https://doi.org/10.1038/nmeth.1923.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The sequence alignment/map format and SAMtools. Bioinformatics. 2009;25(16):2078–9. https://doi.org/10.1093/bioinformatics/btp352.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wick RR, Judd LM, Gorrie CL, Holt KE. Unicycler: Resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput Biol. 2017;13(6):e1005595. https://doi.org/10.1371/journal.pcbi.1005595.
Article
CAS
PubMed
PubMed Central
Google Scholar
Miller IJ, Rees ER, Ross J, Miller I, Baxa J, Lopera J, et al. Autometa: automated extraction of microbial genomes from individual shotgun metagenomes. Nucleic Acids Res. 2019;47(10):e57-e.
Article
Google Scholar
Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 2015;25(7):1043–55. https://doi.org/10.1101/gr.186072.114.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mistry J, Finn RD, Eddy SR, Bateman A, Punta M. Challenges in homology search: HMMER3 and convergent evolution of coiled-coil regions. Nucleic Acids Res. 2013;41(12):e121. https://doi.org/10.1093/nar/gkt263.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gregory AC, Zayed AA, Conceicao-Neto N, Temperton B, Bolduc B, Alberti A, et al. Marine DNA viral macro-and microdiversity from pole to pole. Cell. 2019;177(5):1109–23. https://doi.org/10.1016/j.cell.2019.03.040.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dion MB, Oechslin F, Moineau S. Phage diversity, genomics and phylogeny. Nat Rev Microbiol. 2020;18(3):125–38. https://doi.org/10.1038/s41579-019-0311-5.
Article
CAS
PubMed
Google Scholar
Jang HB, Bolduc B, Zablocki O, Kuhn JH, Roux S, Adriaenssens EM, et al. Taxonomic assignment of uncultivated prokaryotic virus genomes is enabled by gene-sharing networks. Nat Biotechnol. 2019;37(6):632–9. https://doi.org/10.1038/s41587-019-0100-8.
Article
CAS
Google Scholar
Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13(11):2498–504. https://doi.org/10.1101/gr.1239303.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hyatt D, Chen GL, Locascio PF, Land ML, Larimer FW, Hauser LJ. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinform. 2010;11(1):119. https://doi.org/10.1186/1471-2105-11-119.
Article
CAS
Google Scholar
Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000;28(1):27–30. https://doi.org/10.1093/nar/28.1.27.
Article
CAS
PubMed
PubMed Central
Google Scholar
Aramaki T, Blanc-Mathieu R, Endo H, Ohkubo K, Kanehisa M, Goto S, et al. KofamKOALA: KEGG Ortholog assignment based on profile HMM and adaptive score threshold. Bioinformatics. 2020;36(7):2251–2. https://doi.org/10.1093/bioinformatics/btz859.
Article
CAS
PubMed
Google Scholar
Eddy SR. Accelerated profile HMM searches. PLoS Comput Biol. 2011;7(10):e1002195. https://doi.org/10.1371/journal.pcbi.1002195.
Article
CAS
PubMed
PubMed Central
Google Scholar
Roux S, Brum JR, Dutilh BE, Sunagawa S, Duhaime MB, Loy A, et al. Ecogenomics and potential biogeochemical impacts of globally abundant ocean viruses. Nature. 2016;537(7622):689–93. https://doi.org/10.1038/nature19366.
Article
CAS
PubMed
Google Scholar
Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol. 2011;29(7):644–U130. https://doi.org/10.1038/nbt.1883.
Article
CAS
PubMed
PubMed Central
Google Scholar
Patro R, Duggal G, Love MI, Irizarry RA, Kingsford C. Salmon provides fast and bias-aware quantification of transcript expression. Nat Methods. 2017;14(4):417–9. https://doi.org/10.1038/nmeth.4197.
Article
CAS
PubMed
PubMed Central
Google Scholar
Perkins DN, Pappin DJC, Creasy DM, Cottrell JS. Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis. 1999;20(18):3551–67. https://doi.org/10.1002/(SICI)1522-2683(19991201)20:18<3551::AID-ELPS3551>3.0.CO;2-2.
Article
CAS
PubMed
Google Scholar
Nishimura Y, Watai H, Honda T, Mihara T, Omae K, Roux S, et al. Environmental viral genomes shed new light on virus-host interactions in the ocean. mSphere. 2017;2(2):e00359–16.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bland C, Ramsey TL, Sabree F, Lowe M, Brown K, Kyrpides NC, et al. CRISPR recognition tool (CRT): a tool for automatic detection of clustered regularly interspaced palindromic repeats. BMC Bioinform. 2007;8(1):209. https://doi.org/10.1186/1471-2105-8-209.
Article
CAS
Google Scholar
Rho M, Wu YW, Tang H, Doak TG, Ye Y. Diverse CRISPRs evolving in human microbiomes. PLoS Genet. 2012;8(6):e1002441. https://doi.org/10.1371/journal.pgen.1002441.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rice P, Longden I, Bleasby A. EMBOSS: the European Molecular Biology Open Software Suite. Trends Genet. 2000;16(6):276–7. https://doi.org/10.1016/S0168-9525(00)02024-2.
Article
CAS
PubMed
Google Scholar
Katoh K, Misawa K, Kuma K, Miyata T. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 2002;30(14):3059–66. https://doi.org/10.1093/nar/gkf436.
Article
CAS
PubMed
PubMed Central
Google Scholar
Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30(9):1312–3. https://doi.org/10.1093/bioinformatics/btu033.
Article
CAS
PubMed
PubMed Central
Google Scholar
Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using DIAMOND. Nat Methods. 2015;12(1):59–60. https://doi.org/10.1038/nmeth.3176.
Article
CAS
PubMed
Google Scholar
Zhang YD, Zhang ZW, Zhang H, Zhao YB, Zhang ZC, Xiao JF. PADS Arsenal: a database of prokaryotic defense systems related genes. Nucleic Acids Res. 2020;48(D1):D590–D8. https://doi.org/10.1093/nar/gkz916.
Article
PubMed
Google Scholar
Fullmer MS, Ouellette M, Louyakis AS, Papke RT, Gogarten JP. The patchy distribution of restriction-modification system genes and the conservation of orphan methyltransferases in halobacteria. Genes. 2019;10(3):233. https://doi.org/10.3390/genes10030233.
Article
CAS
PubMed Central
Google Scholar
Horn H, Slaby BM, Jahn MT, Bayer K, Moitinho-Silva L, Forster F, et al. An enrichment of CRISPR and other defense-related features in marine sponge-associated microbial metagenomes. Front Microbiol. 2016;7:1751.
PubMed
PubMed Central
Google Scholar
Roberts RJ, Vincze T, Posfai J, Macelis D. REBASE--a database for DNA restriction and modification: enzymes, genes and genomes. Nucleic Acids Res. 2015;43(D1):D298–9. https://doi.org/10.1093/nar/gku1046.
Article
CAS
PubMed
Google Scholar
Bernheim A, Sorek R. The pan-immune system of bacteria: antiviral defence as a community resource. Nat Rev Microbiol. 2019;18:113–9.
Article
PubMed
Google Scholar
Shmakov S, Smargon A, Scott D, Cox D, Pyzocha N, Yan W, et al. Diversity and evolution of class 2 CRISPR-Cas systems. Nat Rev Microbiol. 2017;15(3):169–82. https://doi.org/10.1038/nrmicro.2016.184.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kamruzzaman M, Iredell J. A ParDE-family toxin antitoxin system in major resistance plasmids of Enterobacteriaceae confers antibiotic and heat tolerance. Sci Rep. 2019;9(1):9872. https://doi.org/10.1038/s41598-019-46318-1.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dy RL, Przybilski R, Semeijn K, Salmond GPC, Fineran PC. A widespread bacteriophage abortive infection system functions through a Type IV toxin-antitoxin mechanism. Nucleic Acids Res. 2014;42(7):4590–605. https://doi.org/10.1093/nar/gkt1419.
Article
CAS
PubMed
PubMed Central
Google Scholar