Berger AK, Yi H, Kearns DB, Mainou BA. Bacteria and bacterial envelope components enhance mammalian reovirus thermostability. Plos Pathog. 2017;13(12):e1006768. https://doi.org/10.1371/journal.ppat.1006768.
Article
CAS
PubMed
PubMed Central
Google Scholar
Robinson CM, Jesudhasan PR, Pfeiffer JK. Bacterial lipopolysaccharide binding enhances virion stability and promotes environmental fitness of an enteric virus. Cell Host Microbe. 2014;15(1):36–46. https://doi.org/10.1016/j.chom.2013.12.004.
Article
CAS
PubMed
PubMed Central
Google Scholar
Erickson AK, Jesudhasan PR, Mayer MJ, Narbad A, Winter SE, Pfeiffer JK. Bacteria facilitate enteric virus co-infection of mammalian cells and promote genetic recombination. Cell Host Microbe. 2018;23:77–88.e5.
Article
CAS
Google Scholar
Rowe HM, Meliopoulos VA, Iverson A, Bomme P, Schultz-Cherry S, Rosch JW. Direct interactions with influenza promote bacterial adherence during respiratory infections. Nat Microbiol. 2019;4(8):1328–36. https://doi.org/10.1038/s41564-019-0447-0.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tashiro M, Ciborowski P, Klenk H-D, Pulverer G, Rott R. Role of Staphylococcus protease in the development of influenza pneumonia. Nature. 1987;325(6104):536–7. https://doi.org/10.1038/325536a0.
Article
CAS
PubMed
Google Scholar
Pavlova SI, Wilkening RV, Federle MJ, Lu Y, Schwartz J, Tao L. Streptococcus endopeptidases promote HPV infection in vitro. MicrobiologyOpen. 2019;8. https://doi.org/10.1002/mbo3.628.
Martino C, Kellman BP, Sandoval DR, Clausen TM, Marotz CA, Song SJ, et al. Bacterial modification of the host glycosaminoglycan heparan sulfate modulates SARS-CoV-2 infectivity. bioRxiv. 2020. https://doi.org/10.1101/2020.08.17.238444.
Qian H, Miao T, Liu L, Zheng X, Luo D, Li Y. Indoor transmission of SARS-CoV-2. Indoor Air. 2020;31(3):639–45. https://doi.org/10.1111/ina.12766.
Article
CAS
PubMed
Google Scholar
Kembel SW, Jones E, Kline J, Northcutt D, Stenson J, Womack AM, et al. Architectural design influences the diversity and structure of the built environment microbiome. ISME J. 2012;6(8):1469–79. https://doi.org/10.1038/ismej.2011.211.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gilbert JA, Stephens B. Microbiology of the built environment. Nat Rev Microbiol. 2018;16(11):661–70. https://doi.org/10.1038/s41579-018-0065-5.
Article
CAS
PubMed
Google Scholar
Qian J, Hospodsky D, Yamamoto N, Nazaroff WW, Peccia J. Size-resolved emission rates of airborne bacteria and fungi in an occupied classroom. Indoor Air. 2012;22(4):339–51. https://doi.org/10.1111/j.1600-0668.2012.00769.x.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lax S, Sangwan N, Smith D, Larsen P, Handley KM, Richardson M, et al. Bacterial colonization and succession in a newly opened hospital. Sci Transl Med. 2017;9:eaah6500.
Article
Google Scholar
Lax S, Cardona C, Zhao D, Winton VJ, Goodney G, Gao P, et al. Microbial and metabolic succession on common building materials under high humidity conditions. Nat Commun. 2019;10(1):1767. https://doi.org/10.1038/s41467-019-09764-z.
Article
CAS
PubMed
PubMed Central
Google Scholar
van Doremalen N, Bushmaker T, Morris DH, Holbrook MG, Gamble A, Williamson BN, et al. Aerosol and surface stability of SARS-CoV-2 as compared with SARS-CoV-1. N Engl J Med. 2020;382(16):1564–7. https://doi.org/10.1056/NEJMc2004973.
Article
PubMed
Google Scholar
Sia SF, Yan L-M, Chin AWH, Fung K, Choy K-T, Wong AYL, et al. Pathogenesis and transmission of SARS-CoV-2 in golden hamsters. Nature. 2020;583(7818):834–8. https://doi.org/10.1038/s41586-020-2342-5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Goldman E. Exaggerated risk of transmission of COVID-19 by fomites. Lancet Infect Dis. 2020;20(8):892–3. https://doi.org/10.1016/S1473-3099(20)30561-2.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mondelli MU, Colaneri M, Seminari EM, Baldanti F, Bruno R. Low risk of SARS-CoV-2 transmission by fomites in real-life conditions. Lancet Infect Dis. 2020. https://doi.org/10.1016/S1473-3099(20)30678-2.
Zhou J, Otter JA, Price JR, Cimpeanu C, Garcia DM, Kinross J, et al. Investigating SARS-CoV-2 surface and air contamination in an acute healthcare setting during the peak of the COVID-19 pandemic in London. Clin Infect Dis. 2020. https://doi.org/10.1093/cid/ciaa905.
Ben-Shmuel A, Brosh-Nissimov T, Glinert I, Bar-David E, Sittner A, Poni R, et al. Detection and infectivity potential of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) environmental contamination in isolation units and quarantine facilities. Clin Microbiol Infect. 2020;26(12):1658–62. https://doi.org/10.1016/j.cmi.2020.09.004.
Article
CAS
PubMed
PubMed Central
Google Scholar
Santarpia JL, Rivera DN, Herrera VL, Morwitzer MJ, Creager HM, Santarpia GW, et al. Aerosol and surface contamination of SARS-CoV-2 observed in quarantine and isolation care. Sci Rep. 2020;10(1):12732. https://doi.org/10.1038/s41598-020-69286-3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bergner LM, Orton RJ, da Silva Filipe A, Shaw AE, Becker DJ, Tello C, et al. Using noninvasive metagenomics to characterize viral communities from wildlife. Mol Ecol Resour. 2019;19(1):128–43. https://doi.org/10.1111/1755-0998.12946.
Article
CAS
PubMed
Google Scholar
Minich JJ, Ali F, Marotz C, Belda-Ferre P, Chiang L, Shaffer JP, et al. Feasibility of using alternative swabs and storage solutions for paired SARS-CoV-2 detection and microbiome analysis in the hospital environment. Microbiome. 2021;9(1):25. https://doi.org/10.1186/s40168-020-00960-4.
Article
PubMed
PubMed Central
Google Scholar
Kratzel A, Todt D, V’kovski P, Steiner S, Gultom M, Thao TTN, et al. Inactivation of severe acute respiratory syndrome coronavirus 2 by WHO-recommended hand rub formulations and alcohols. Emerg Infect Dis J. 2020;26(7). https://doi.org/10.3201/eid2607.200915.
Song SJ, Amir A, Metcalf JL, Amato KR, Xu ZZ, Humphrey G, et al. Preservation methods differ in fecal microbiome stability, affecting suitability for field studies. mSystems. 2016;1. https://doi.org/10.1128/mSystems.00021-16.
MacKay MJ, Hooker AC, Afshinnekoo E, Salit M, Kelly J, Feldstein JV, et al. The COVID-19 XPRIZE and the need for scalable, fast, and widespread testing. Nat Biotechnol. 2020;38(9):1021–4. https://doi.org/10.1038/s41587-020-0655-4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jiang L, Zhong Y, Elrod C, Natarajan L, Knight R, Thompson WK, BayesTime: Bayesian functional principal components for sparse longitudinal data, ArXiv201200579 Stat (2020) (available at http://arxiv.org/abs/2012.00579). Accessed 1 Dec 2020.
Minich JJ, Zhu Q, Janssen S, Hendrickson R, Amir A, Vetter R, et al. KatharoSeq enables high-throughput microbiome analysis from low-biomass samples. mSystems. 2018;3. https://doi.org/10.1128/mSystems.00218-17.
Thompson LR, Sanders JG, McDonald D, Amir A, Ladau J, Locey KJ, et al. A communal catalogue reveals Earth’s multiscale microbial diversity. Nature. 2017;551:457–63.
Article
CAS
Google Scholar
McDonald D, Ackermann G, Khailova L, Baird C, Heyland D, Kozar R, et al. Extreme dysbiosis of the microbiome in critical illness. mSphere. 2016;1. https://doi.org/10.1128/mSphere.00199-16.
Shaffer JP, Marotz C, Belda-Ferre P, Martino C, Wandro S, Estaki M, et al. A comparison of DNA/RNA extraction protocols for high-throughput sequencing of microbial communities. BioTechniques. 2021;70(3):149–59. https://doi.org/10.2144/btn-2020-0153.
Article
CAS
PubMed
PubMed Central
Google Scholar
Knights D, Kuczynski J, Charlson ES, Zaneveld J, Mozer MC, Collman RG, et al. Bayesian community-wide culture-independent microbial source tracking. Nat Methods. 2011;8(9):761–3. https://doi.org/10.1038/nmeth.1650.
Article
CAS
PubMed
PubMed Central
Google Scholar
McDonald D, Vázquez-Baeza Y, Koslicki D, McClelland J, Reeve N, Xu Z, et al. Striped UniFrac: enabling microbiome analysis at unprecedented scale. Nat Methods. 2018;15(11):847–8. https://doi.org/10.1038/s41592-018-0187-8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Falony G, Joossens M, Vieira-Silva S, Wang J, Darzi Y, Faust K, et al. Population-level analysis of gut microbiome variation. Science. 2016;352(6285):560–4. https://doi.org/10.1126/science.aad3503.
Article
CAS
PubMed
Google Scholar
Hamady M, Lozupone C, Knight R. Fast UniFrac: facilitating high-throughput phylogenetic analyses of microbial communities including analysis of pyrosequencing and PhyloChip data. ISME J. 2010;4(1):17–27. https://doi.org/10.1038/ismej.2009.97.
Article
CAS
PubMed
Google Scholar
Cantrell K, Fedarko MW, Rahman G, McDonald D, Yang Y, Zaw T, et al. EMPress enables tree-guided, interactive, and exploratory analyses of multi-omic data sets. mSystems. 2021;6. https://doi.org/10.1128/mSystems.01216-20.
Gallardo-Escárate C, Valenzuela-Muñoz V, Núñez-Acuña G, Valenzuela-Miranda D, Benaventel BP, Sáez-Vera C, et al. The wastewater microbiome: a novel insight for COVID-19 surveillance. Sci Total Environ. 2021;764:142867. https://doi.org/10.1016/j.scitotenv.2020.142867.
Article
CAS
PubMed
Google Scholar
Kumpitsch C, Koskinen K, Schöpf V, Moissl-Eichinger C. The microbiome of the upper respiratory tract in health and disease. BMC Biol. 2019;17. https://doi.org/10.1186/s12915-019-0703-z.
Nouioui I, Carro L, García-López M, Meier-Kolthoff JP, Woyke T, Kyrpides NC, et al. Genome-based taxonomic classification of the phylum Actinobacteria. Front Microbiol. 2018;9. https://doi.org/10.3389/fmicb.2018.02007.
Wos-Oxley ML, Plumeier I, von Eiff C, Taudien S, Platzer M, Vilchez-Vargas R, et al. A poke into the diversity and associations within human anterior nare microbial communities. ISME J. 2010;4(7):839–51. https://doi.org/10.1038/ismej.2010.15.
Article
PubMed
Google Scholar
Boudewijns M, Magerman K, Verhaegen J, Debrock G, Peetermans WE, Donkersloot P, et al. Rothia dentocariosa, endocarditis and mycotic aneurysms: case report and review of the literature. Clin Microbiol Infect. 2003;9(3):222–9. https://doi.org/10.1046/j.1469-0691.2003.00503.x.
Article
CAS
PubMed
Google Scholar
Yang C-Y, Hsueh P-R, Lu C-Y, Tsai H-Y, Lee P-I, Shao P-L, et al. Rothia dentocariosa bacteremia in children: report of two cases and review of the literature. J Formos Med Assoc. 2007;106(3):S33–8. https://doi.org/10.1016/S0929-6646(09)60364-8.
Article
PubMed
Google Scholar
Donald DM, Hyde E, Debelius JW, Morton JT, Gonzalez A, Ackermann G, et al. American gut: an open platform for citizen science microbiome research. mSystems. 2018;3. https://doi.org/10.1128/mSystems.00031-18.
Cheng VCC, Wong S-C, Chen JHK, Yip CCY, Chuang VWM, Tsang OTY, et al. Escalating infection control response to the rapidly evolving epidemiology of the coronavirus disease 2019 (COVID-19) due to SARS-CoV-2 in Hong Kong. Infect Control Hosp Epidemiol. 2020;5:493-8.
Durante-Mangoni E, Andini R, Bertolino L, Mele F, Bernardo M, Grimaldi M, et al. Low rate of severe acute respiratory syndrome coronavirus 2 spread among health-care personnel using ordinary personal protection equipment in a medium-incidence setting. Clin Microbiol Infect. 2020;26(9):1269–70. https://doi.org/10.1016/j.cmi.2020.04.042.
Article
CAS
PubMed
PubMed Central
Google Scholar
Demmer RT, Ulrich AK, Wiggen TD, Strickland A, Naumchik BM, Kulasingam S, et al. SARS-CoV-2 screening among symptom-free healthcare workers. Infect Control Hosp Epidemiol. 2021:1-4. https://doi.org/10.1017/ice.2021.81. https://www.cambridge.org/core/journals/infection-control-and-hospital-epidemiology/article/severe-acute-respiratory-coronavirus-virus-2-sarscov2-screening-among-symptomfree-healthcare-workers/F6D370C8FB71F604796B2AA9BCAA8D33.
Suárez-García I, Martínez de Aramayona Lopez MJ, Sáez Vicente A, Lobo Abascal P. SARS-CoV-2 infection among healthcare workers in a hospital in Madrid, Spain. J Hosp Infect. 2020;106:357–63.
Wang X, Ferro E, Hashimoto D, Bhatt D. Association between universal masking in a health care system and SARS-CoV-2 positivity among health care workers - PubMed. JAMA. 2020;324(7):703–4. https://doi.org/10.1001/jama.2020.12897.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jin J-M, Bai P, He W, Wu F, Liu X-F, Han D-M, et al. Gender differences in patients with COVID-19: focus on severity and mortality. Front Public Health. 2020;8. https://doi.org/10.3389/fpubh.2020.00152.
CDC. Cases, Data, and Surveillance. Cent Dis Control Prev. 2020. https://www.cdc.gov/coronavirus/2019-ncov/covid-data/investigations-discovery/hospitalization-death-by-race-ethnicity.html. Accessed 1 Feb 2021.
Chia PY, Coleman KK, Tan YK, Ong SWX, Gum M, Lau SK, et al. Detection of air and surface contamination by SARS-CoV-2 in hospital rooms of infected patients. Nat Commun. 2020;11(1):2800. https://doi.org/10.1038/s41467-020-16670-2.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wu S, Wang Y, Jin X, Tian J, Liu J, Mao Y. Environmental contamination by SARS-CoV-2 in a designated hospital for coronavirus disease 2019. Am J Infect Control. 2020;48(8):910–4. https://doi.org/10.1016/j.ajic.2020.05.003.
Article
PubMed
PubMed Central
Google Scholar
Ye G, Lin H, Chen S, Wang S, Zeng Z, Wang W, et al. Environmental contamination of SARS-CoV-2 in healthcare premises. J Inf Secur. 2020;81(2):e1–5. https://doi.org/10.1016/j.jinf.2020.04.034.
Article
CAS
Google Scholar
Ren S-Y, Wang W-B, Hao Y-G, Zhang H-R, Wang Z-C, Chen Y-L, et al. Stability and infectivity of coronaviruses in inanimate environments. World J Clin Cases. 2020;8(8):1391–9. https://doi.org/10.12998/wjcc.v8.i8.1391.
Article
PubMed
PubMed Central
Google Scholar
Gu S, Chen Y, Wu Z, Chen Y, Gao H, Lv L, et al. Alterations of the gut microbiota in patients with coronavirus disease 2019 or H1N1 influenza. Clin Infect Dis. 2020;71(10):2669–78. https://doi.org/10.1093/cid/ciaa709.
Article
CAS
PubMed
Google Scholar
Han Y, Jia Z, Shi J, Wang W, He K. The active lung microbiota landscape of COVID-19 patients. medRxiv. 2020. https://doi.org/10.1101/2020.08.20.20144014.
Chase J, Fouquier J, Zare M, Sonderegger DL, Knight R, Kelley ST, et al. Geography and location are the primary drivers of office microbiome composition. mSystems. 2016;1. https://doi.org/10.1128/mSystems.00022-16.
Zaura E, Keijser BJ, Huse SM, Crielaard W. Defining the healthy “core microbiome” of oral microbial communities. BMC Microbiol. 2009;9(1):259. https://doi.org/10.1186/1471-2180-9-259.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schmidt TS, Hayward MR, Coelho LP, Li SS, Costea PI, Voigt AY, et al., editors. Extensive transmission of microbes along the gastrointestinal tract. eLife. 2019;8:e42693.
Nishiga M, Wang DW, Han Y, Lewis DB, Wu JC. COVID-19 and cardiovascular disease: from basic mechanisms to clinical perspectives. Nat Rev Cardiol. 2020;17(9):543–58. https://doi.org/10.1038/s41569-020-0413-9.
Article
CAS
PubMed
Google Scholar
CDC 2019-Novel Coronavirus (2019-nCoV) Real-Time RT-PCR Diagnostic Panel (2020) (available at https://www.fda.gov/media/134922/download). Accessed 13 July 2020.
Corman VM, Landt O, Kaiser M, Molenkamp R, Meijer A, Chu DK, et al. Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR. Eurosurveillance. 2020;25. https://doi.org/10.2807/1560-7917.ES.2020.25.3.2000045.
Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Huntley J, Fierer N, et al. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J. 2012;6(8):1621–4. https://doi.org/10.1038/ismej.2012.8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Walters W, Hyde ER, Berg-Lyons D, Ackermann G, Humphrey G, Parada A, et al. Improved bacterial 16S rRNA gene (V4 and V4-5) and fungal internal transcribed spacer marker gene primers for microbial community surveys. mSystems. 2016;1. https://doi.org/10.1128/mSystems.00009-15.
Minich JJ, Humphrey G, Benitez RAS, Sanders J, Swafford A, Allen EE, et al. High-throughput miniaturized 16S rRNA amplicon library preparation reduces costs while preserving microbiome integrity. mSystems. 2018;3. https://doi.org/10.1128/mSystems.00166-18.
Marotz C, Sharma A, Humphrey G, Gottel N, Daum C, Gilbert JA, et al. Triplicate PCR reactions for 16S rRNA gene amplicon sequencing are unnecessary. BioTechniques. 2019;67(1):29–32. https://doi.org/10.2144/btn-2018-0192.
Article
CAS
PubMed
PubMed Central
Google Scholar
Amir A, McDonald D, Navas-Molina JA, Kopylova E, Morton JT, Xu ZZ, et al. Deblur rapidly resolves single-nucleotide community sequence patterns. mSystems. 2017;2. https://doi.org/10.1128/mSystems.00191-16.
Gonzalez A, Navas-Molina JA, Kosciolek T, McDonald D, Vázquez-Baeza Y, Ackermann G, et al. Qiita: rapid, web-enabled microbiome meta-analysis. Nat Methods. 2018;15(10):796–8. https://doi.org/10.1038/s41592-018-0141-9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA, et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol. 2019;37:852–7.
Article
CAS
Google Scholar
Jiang L, Elrod C, Kim JJ, Swafford AD, Knight R, Thompson WK. Multi-block sparse functional principal components analysis for longitudinal microbiome multi-omics data, ArXiv210200067 Stat. 2021. Available at http://arxiv.org/abs/2102.00067. Accessed 5 Feb 2021.
Kuhn M. Building predictive models in R using the caret package. J Stat Softw. 2008;28:1–26.
Article
Google Scholar
Keilwagen J, Grosse I, Grau J. Area under precision-recall curves for weighted and unweighted data. Plos One. 2014;9(3):e92209. https://doi.org/10.1371/journal.pone.0092209.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wright MN, Ziegler A. ranger: a fast implementation of random forests for high dimensional data in C++ and R. J Stat Softw. 2017;77:1–17.
Article
Google Scholar
Martino C, Morton JT, Marotz CA, Thompson LR, Tripathi A, Knight R, et al. A novel sparse compositional technique reveals microbial perturbations. mSystems. 2019;4. https://doi.org/10.1128/mSystems.00016-19.
Cruz GNF, Christoff AP, de Oliveira LFV. Equivolumetric protocol generates library sizes proportional to total microbial load in 16S amplicon sequencing. Front Microbiol. 2021;12. https://doi.org/10.3389/fmicb.2021.638231.