Hughes TP, Anderson KD, Connolly SR, Heron SF, Kerry JT, Lough JM, et al. Spatial and temporal patterns of mass bleaching of corals in the Anthropocene. Science (80-83). 2018;359:80–3. https://doi.org/10.1126/science.aan8048.
Article
CAS
Google Scholar
van Oppen MJH, Oliver JK, Putnam HM, Gates RD. Building coral reef resilience through assisted evolution. Proc Natl Acad Sci. 2015;112(8):2307–13. https://doi.org/10.1073/pnas.1422301112.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chan WY, Hoffmann AA, Oppen MJH. Hybridization as a conservation management tool. Conserv Lett. 2019;12:conl.12652. doi:https://doi.org/10.1111/conl.12652.
Peixoto RS, Rosado PM, Leite DC, Rosado AS, Bourne DG. Beneficial microorganisms for corals (BMC): proposed mechanisms for coral health and resilience. Front Microbiol. 2017;1–16. doi:https://doi.org/10.3389/fmicb.2017.00341.
Epstein HE, Smith HA, Torda G, van Oppen MJH. Microbiome engineering: enhancing climate resilience in corals. Front Ecol Environ. 2019;17(2):100–8. https://doi.org/10.1002/fee.2001.
Article
Google Scholar
Bourne DG, Morrow KM, Webster NS. Insights into the coral microbiome: underpinning the health and resilience of reef ecosystems. Annu Rev Microbiol. 2016;70(1):317–40. https://doi.org/10.1146/annurev-micro-102215-095440.
Article
CAS
PubMed
Google Scholar
Muscatine L, Porter JW. Reef corals: mutualistic symbioses adapted to nutrient-poor environments. Bioscience. 1977;27(7):454–60. https://doi.org/10.2307/1297526.
Article
Google Scholar
Robbins SJ, Singleton CM, Chan CX, Messer LF, Geers AU, Ying H, et al. A genomic view of the reef-building coral Porites lutea and its microbial symbionts. Nat Microbiol. 2019;4(12):2090–100. https://doi.org/10.1038/s41564-019-0532-4.
Article
CAS
PubMed
Google Scholar
van Oppen MJH, Blackall LL. Coral microbiome dynamics, functions and design in a changing world. Nat Rev Microbiol. 2019;1. https://doi.org/10.1038/s41579-019-0223-4.
Rohwer F, Seguritan V, Azam F, Knowlton N. Diversity and distribution of coral-associated bacteria. Mar Ecol Prog Ser. 2002;243:1–10. https://doi.org/10.3354/meps243001.
Article
Google Scholar
Sunagawa S, Woodley CM, Medina M. Threatened corals provide underexplored microbial habitats. PLoS One. 2010;5(3):e9554. https://doi.org/10.1371/journal.pone.0009554.
Article
CAS
PubMed
PubMed Central
Google Scholar
McDevitt-Irwin JM, Baum JK, Garren M, Vega Thurber RL. Responses of coral-associated bacterial communities to local and global stressors. Front Mar Sci. 2017;4:262. https://doi.org/10.3389/fmars.2017.00262.
Article
Google Scholar
Pollock FJ, McMinds R, Smith S, Bourne DG, Willis BL, Medina M, et al. Coral-associated bacteria demonstrate phylosymbiosis and cophylogeny. Nat Commun. 2018;9(1):1–13. https://doi.org/10.1038/s41467-018-07275-x.
Article
CAS
Google Scholar
Ziegler M, Grupstra CGBB, Barreto MM, Eaton M, BaOmar J, Zubier K, et al. Coral bacterial community structure responds to environmental change in a host-specific manner. Nat Commun. 2019;10(1):3092. https://doi.org/10.1038/s41467-019-10969-5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Neave MJ, Michell CT, Apprill A, Voolstra CR. Endozoicomonas genomes reveal functional adaptation and plasticity in bacterial strains symbiotically associated with diverse marine hosts. Sci Rep. 2017;7(1). https://doi.org/10.1038/srep40579.
Thurber RV, Willner-Hall D, Rodriguez-Mueller B, Desnues C, Edwards RA, Angly F, et al. Metagenomic analysis of stressed coral holobionts. Environ Microbiol. 2009;11(8):2148–63. https://doi.org/10.1111/j.1462-2920.2009.01935.x.
Article
CAS
Google Scholar
Wegley L, Edwards R, Rodriguez-Brito B, Liu H, Rohwer F. Metagenomic analysis of the microbial community associated with the coral Porites astreoides. Environ Microbiol. 2007;9(11):2707–19. https://doi.org/10.1111/j.1462-2920.2007.01383.x.
Article
CAS
PubMed
Google Scholar
Krediet CJ, Ritchie KB, Paul VJ, Teplitski M. Coral-associated micro-organisms and their roles in promoting coral health and thwarting diseases. Proc R Soc B Biol Sci. 2013;280(1755):20122328. https://doi.org/10.1098/rspb.2012.2328.
Article
Google Scholar
Ziegler M, Roik A, Porter A, Zubier K, Mudarris MS, Ormond R, et al. Coral microbial community dynamics in response to anthropogenic impacts near a major city in the central Red Sea. Mar Pollut Bull. 2016;105(2):629–40. https://doi.org/10.1016/j.marpolbul.2015.12.045.
Article
CAS
PubMed
Google Scholar
Hernandez-Agreda A, Leggat W, Bongaerts P, Herrera C, Ainsworth TD. Rethinking the coral microbiome: simplicity exists within a diverse microbial biosphere. MBio. 2018;9(5):e00812–8. https://doi.org/10.1128/mBio.00812-18.
Article
PubMed
PubMed Central
Google Scholar
Chu ND, Vollmer SV. Caribbean corals house shared and host-specific microbial symbionts over time and space. Environ Microbiol Rep. 2016;8(4):493–500. https://doi.org/10.1111/1758-2229.12412.
Article
CAS
PubMed
Google Scholar
Röthig T, Bravo H, Corley A, Prigge T-L, Chung A, Yu V, et al. Environmental flexibility in Oulastrea crispata in a highly urbanised environment: a microbial perspective. Coral Reefs. 2020;39(3):649–62. https://doi.org/10.1007/s00338-020-01938-2.
Article
Google Scholar
Redman RS, Kim YO, Woodward CJDA, Greer C, Espino L, Doty SL, et al. Increased fitness of rice plants to abiotic stress via habitat adapted symbiosis: a strategy for mitigating impacts of climate change. PLoS One. 2011;6:1–10.
Article
Google Scholar
Moran NA, Yun Y. Experimental replacement of an obligate insect symbiont. Proc Natl Acad Sci. 2015;112(7):2093–6. https://doi.org/10.1073/pnas.1420037112.
Article
CAS
PubMed
PubMed Central
Google Scholar
Borody TJ, Khoruts A. Fecal microbiota transplantation and emerging applications. Nat Rev Gastroenterol Hepatol. 2012;9(2):88–96. https://doi.org/10.1038/nrgastro.2011.244.
Article
CAS
Google Scholar
Cohen Y, Joseph Pollock F, Rosenberg E, Bourne DG. Phage therapy treatment of the coral pathogen Vibrio coralliilyticus. Microbiologyopen. 2013;2(1):64–74. https://doi.org/10.1002/mbo3.52.
Article
CAS
PubMed
Google Scholar
Efrony R, Loya Y, Bacharach E, Rosenberg E. Phage therapy of coral disease. Coral Reefs. 2007;26(1):7–13. https://doi.org/10.1007/s00338-006-0170-1.
Article
Google Scholar
Damjanovic K, van Oppen MJH, Menéndez P, Blackall LL. Experimental inoculation of coral recruits with marine bacteria indicates scope for microbiome manipulation in Acropora tenuis and Platygyra daedalea. Front Microbiol. 2019;1702. doi:https://doi.org/10.3389/fmicb.2019.01702.
Welsh RM, Rosales SM, Zaneveld JR, Payet JP, McMinds R, Hubbs SL, et al. Alien vs. predator: bacterial challenge alters coral microbiomes unless controlled by Halobacteriovorax predators. PeerJ. 2017;5:e3315. https://doi.org/10.7717/peerj.3315.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rosado PM, Leite DCA, Duarte GAS, Chaloub RM, Jospin G, Nunes da Rocha U, et al. Marine probiotics: increasing coral resistance to bleaching through microbiome manipulation. ISME J. 2018;13(4):921–36. https://doi.org/10.1038/s41396-018-0323-6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fragoso Ados Santos H, Duarte GAS, Rachid CTDC, Chaloub RM, Calderon EN, Marangoni LFDB, et al. Impact of oil spills on coral reefs can be reduced by bioremediation using probiotic microbiota. Sci Rep. 2015;5:1–11.
Article
Google Scholar
Jacquemot L, Bettarel Y, Monjol J, Corre E, Halary S, Desnues C, et al. Therapeutic potential of a new jumbo phage that infects Vibrio coralliilyticus, a widespread coral pathogen. Front Microbiol. 2018;2501. doi:https://doi.org/10.3389/fmicb.2018.02501.
Oliver TA, Palumbi SR. Do fluctuating temperature environments elevate coral thermal tolerance? Coral Reefs. 2011;30(2):429–40. https://doi.org/10.1007/s00338-011-0721-y.
Article
Google Scholar
Voolstra CR, Buitrago-López C, Perna G, Cárdenas A, Hume BCC, Rädecker N, et al. Standardized short-term acute heat stress assays resolve historical differences in coral thermotolerance across microhabitat reef sites. Glob Chang Biol. 2020;26(8):4328–43. https://doi.org/10.1111/gcb.15148.
Article
PubMed
Google Scholar
Camp EF, Schoepf V, Mumby PJ, Hardtke LA, Rodolfo-Metalpa R, Smith DJ, et al. The future of coral reefs subject to rapid climate change: lessons from natural extreme environments. Front Mar Sci. 2018;4. doi:https://doi.org/10.3389/fmars.2018.00004.
Buerger P, Schmidt GM, Wall M, Held C, Richter C. Temperature tolerance of the coral Porites lutea exposed to simulated large amplitude internal waves (LAIW). J Exp Mar Bio Ecol. 2015;471:232–9. https://doi.org/10.1016/j.jembe.2015.06.014.
Article
Google Scholar
Gignoux-Wolfsohn SA, Aronson FM, Vollmer SV. Complex interactions between potentially pathogenic, opportunistic, and resident bacteria emerge during infection on a reef-building coral. FEMS Microbiol Ecol. 2017;93:1–10.
Article
Google Scholar
Kleypas JA, McManu JW, Mene LAB. Environmental limits to coral reef development: where do we draw the line? Am Zool. 1999;39(1):146–59. https://doi.org/10.1093/icb/39.1.146.
Article
Google Scholar
Gardner SG, Raina JB, Nitschke MR, Nielsen DA, Stat M, Motti CA, et al. A multi-trait systems approach reveals a response cascade to bleaching in corals. BMC Biol. 2017;15(1):117. https://doi.org/10.1186/s12915-017-0459-2.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shaver EC, Shantz AA, McMinds R, Burkepile DE, Vega Thurber RL, Silliman BR. Effects of predation and nutrient enrichment on the success and microbiome of a foundational coral. Ecology. 2017;98(3):830–9. https://doi.org/10.1002/ecy.1709.
Article
PubMed
Google Scholar
Pogoreutz C, Rädecker N, Cárdenas A, Gärdes A, Wild C, Voolstra CR. Dominance of Endozoicomonas bacteria throughout coral bleaching and mortality suggests structural inflexibility of the Pocillopora verrucosa microbiome. Ecol Evol. 2018;8(4):2240–52. https://doi.org/10.1002/ece3.3830.
Article
PubMed
PubMed Central
Google Scholar
Bourne DG, Iida Y, Uthicke S, Smith-Keune C. Changes in coral-associated microbial communities during a bleaching event. ISME J. 2008;2(4):350–63. https://doi.org/10.1038/ismej.2007.112.
Article
CAS
PubMed
Google Scholar
McCauley M, Jackson CR, Goulet TL. Microbiomes of Caribbean octocorals vary over time but are resistant to environmental change. Front Microbiol. 2020;11:1272. https://doi.org/10.3389/fmicb.2020.01272.
Article
PubMed
PubMed Central
Google Scholar
Burke C, Steinberg P, Rusch D, Kjelleberg S, Thomas T. Bacterial community assembly based on functional genes rather than species. Proc Natl Acad Sci U S A. 2011;108(34):14288–93. https://doi.org/10.1073/pnas.1101591108.
Article
PubMed
PubMed Central
Google Scholar
Bayer T, Neave MJ, Alsheikh-Hussain A, Aranda M, Yum LK, Mincer T, et al. The microbiome of the Red Sea coral Stylophora pistillata is dominated by tissue-associated Endozoicomonas bacteria. Appl Environ Microbiol. 2013;79(15):4759–62. https://doi.org/10.1128/AEM.00695-13.
Article
CAS
PubMed
PubMed Central
Google Scholar
Neave MJ, Apprill A, Ferrier-Pagès C, Voolstra CR. Diversity and function of prevalent symbiotic marine bacteria in the genus Endozoicomonas. Applied Microbiology and Biotechnology. 2016;100(19):8315–24. https://doi.org/10.1007/s00253-016-7777-0.
Article
CAS
PubMed
PubMed Central
Google Scholar
Knight R, Vrbanac A, Taylor BC, Aksenov A, Callewaert C, Debelius J, et al. Best practices for analysing microbiomes. Nat Rev Microbiol. 2018;16(7):410–22. https://doi.org/10.1038/s41579-018-0029-9.
Article
CAS
PubMed
Google Scholar
Callahan BJ, Wong J, Heiner C, Oh S, Theriot CM, Gulati AS, et al. High-throughput amplicon sequencing of the full-length 16S rRNA gene with single-nucleotide resolution. Nucleic Acids Res. 2019;47(18):e103. https://doi.org/10.1093/nar/gkz569.
Article
CAS
PubMed
PubMed Central
Google Scholar
Voolstra CR, Ziegler M. Adapting with microbial help: microbiome flexibility facilitates rapid responses to environmental change. BioEssays. 2020;:2000004. doi:https://doi.org/10.1002/bies.202000004.
De Roy K, Marzorati M, Negroni A, Thas O, Balloi A, Fava F, et al. Environmental conditions and community evenness determine the outcome of biological invasion. Nat Commun. 2013;4(1):1–5. https://doi.org/10.1038/ncomms2392.
Article
CAS
Google Scholar
Davidov Y, Jurkevitch E. Diversity and evolution of Bdellovibrio-and-like organisms (BALOs), reclassification of Bacteriovorax starrii as Peredibacter starrii gen. nov., comb. nov., and description of the Bacteriovorax-Peredibacter clade as Bacteriovoracaceae fam. nov. Int J Syst Evol Microbiol. 2004;54(5):1439–52. https://doi.org/10.1099/ijs.0.02978-0.
Article
CAS
PubMed
Google Scholar
Johnke J, Cohen Y, de Leeuw M, Kushmaro A, Jurkevitch E, Chatzinotas A. Multiple micro-predators controlling bacterial communities in the environment. Curr Opin Biotechnol. 2014;27:185–90. https://doi.org/10.1016/j.copbio.2014.02.003.
Article
CAS
PubMed
Google Scholar
Chen H, Laws EA, Martin JL, Berhane T-K, Gulig PA, Williams HN. Relative contributions of Halobacteriovorax and bacteriophage to bacterial cell death under various environmental conditions. MBio. 2018;9(4). https://doi.org/10.1128/mBio.01202-18.
Cao H, Wang H, Yu J, An J, Chen J. Encapsulated Bdellovibrio powder as a potential bio-disinfectant against whiteleg shrimp-pathogenic Vibrios. Microorganisms. 2019;7(8):244. https://doi.org/10.3390/microorganisms7080244.
Article
CAS
PubMed Central
Google Scholar
Richards GP, Fay JP, Dickens KA, Parent MA, Soroka DS, Boyd EF. Predatory bacteria as natural modulators of Vibrio parahaemolyticus and Vibrio vulnificus in seawater and oysters. Appl Environ Microbiol. 2012;78(20):7455–66. https://doi.org/10.1128/AEM.01594-12.
Article
CAS
PubMed
PubMed Central
Google Scholar
Reshef L, Koren O, Loya Y, Zilber-Rosenberg I, Rosenberg E. The coral probiotic hypothesis. Environ Microbiol. 2006;8(12):2068–73. https://doi.org/10.1111/j.1462-2920.2006.01148.x.
Article
CAS
PubMed
Google Scholar
Ott SJ, Waetzig GH, Rehman A, Moltzau-Anderson J, Bharti R, Grasis JA, et al. Efficacy of sterile fecal filtrate transfer for treating patients with Clostridium difficile infection. Gastroenterology. 2017;152:799–811.e7. https://doi.org/10.1053/j.gastro.2016.11.010.
Article
PubMed
Google Scholar
Leonardi I, Paramsothy S, Doron I, Semon A, Kaakoush NO, Clemente JC, et al. Fungal trans-kingdom dynamics linked to responsiveness to fecal microbiota transplantation (FMT) therapy in ulcerative colitis. Cell Host Microbe. 2020;27:823–9.e3. https://doi.org/10.1016/j.chom.2020.03.006.
Article
CAS
PubMed
PubMed Central
Google Scholar
Draper LA, Ryan FJ, Smith MK, Jalanka J, Mattila E, Arkkila PA, et al. Long-term colonisation with donor bacteriophages following successful faecal microbial transplantation. Microbiome. 2018;6(1):220. https://doi.org/10.1186/s40168-018-0598-x.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bojanova DP, Bordenstein SR. Fecal transplants: what is being transferred? PLoS Biol. 2016;14(7):e1002503. https://doi.org/10.1371/journal.pbio.1002503.
Article
CAS
PubMed
PubMed Central
Google Scholar
Aichelman HE, Townsend JE, Courtney TA, Baumann JH, Davies SW, Castillo KD. Heterotrophy mitigates the response of the temperate coral Oculina arbuscula to temperature stress. Ecol Evol. 2016;6(18):6758–69. https://doi.org/10.1002/ece3.2399.
Article
PubMed
PubMed Central
Google Scholar
Castro-Oliveira L, Silva MO, Carvalho RDO, Anchiêta A, Benevides LJ, Oliveira CJF, et al. Omics of probiotic bacteria: which features to seek? Genet Mol Res. 2020;19:gmr18599. https://doi.org/10.4238/gmr18599.
Article
CAS
Google Scholar
Grottoli AG, Warner ME, Levas SJ, Aschaffenburg MD, Schoepf V, Mcginley M, et al. The cumulative impact of annual coral bleaching can turn some coral species winners into losers. Glob Chang Biol. 2014;20(12):3823–33. https://doi.org/10.1111/gcb.12658.
Article
PubMed
Google Scholar
Schoepf V, Grottoli AG, Levas SJ, Aschaffenburg MD, Baumann JH, Matsui Y, et al. Annual coral bleaching and the long-term recovery capacity of coral. Proc R Soc B Biol Sci. 2015;282(1819):20151887. https://doi.org/10.1098/rspb.2015.1887.
Article
CAS
Google Scholar
Domin H, Zurita-Gutiérrez YH, Scotti M, Buttlar J, Humeida UH, Fraune S. Predicted bacterial interactions affect in vivo microbial colonization dynamics in Nematostella. Front Microbiol. 2018;9:728. https://doi.org/10.3389/fmicb.2018.00728.
Article
PubMed
PubMed Central
Google Scholar
Goloshchapov OV, Olekhnovich EI, Sidorenko SV, Moiseev IS, Kucher MA, Fedorov DE, et al. Long-term impact of fecal transplantation in healthy volunteers. BMC Microbiol. 2019;19(1):312. https://doi.org/10.1186/s12866-019-1689-y.
Article
CAS
PubMed
PubMed Central
Google Scholar
Morgans CA, Hung JY, Bourne DG, Quigley KM. Symbiodiniaceae probiotics for use in bleaching recovery. Restor Ecol. 2019;:rec.13069. doi:https://doi.org/10.1111/rec.13069.
Brown B, Dunne RP, Somerfield PJ, Edwards AJ, Simons WJF, Phongsuwan N, et al. Long-term impacts of rising sea temperature and sea level on shallow water coral communities over a ~40 year period. Sci Rep. 2019;9:1–12.
Google Scholar
Brown B, Phongsuwan N. Delayed mortality in bleached massive corals on intertidal reef flats around Phuket, Andaman Sea, Thailand. Phuket Mar Biol Cent Res Bull. 2012;48:43–8.
Google Scholar
Fuess LE, Pinzón CJH, Weil E, Grinshpon RD, Mydlarz LD. Life or death: disease-tolerant coral species activate autophagy following immune challenge. Proc R Soc B Biol Sci. 2017;284(1856):20170771. https://doi.org/10.1098/rspb.2017.0771.
Article
CAS
Google Scholar
Siebeck UE, Marshall NJ, Klüter A, Hoegh-Guldberg O. Monitoring coral bleaching using a colour reference card. Coral Reefs. 2006;25(3):453–60. https://doi.org/10.1007/s00338-006-0123-8.
Article
Google Scholar
Genty B, Briantais JM, Baker NR. The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim Biophys Acta - Gen Subj. 1989;990(1):87–92. https://doi.org/10.1016/S0304-4165(89)80016-9.
Article
CAS
Google Scholar
Kozich JJ, Westcott SL, Baxter NT, Highlander SK, Schloss PD. Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform. Appl Environ Microbiol. 2013;79(17):5112–20. https://doi.org/10.1128/AEM.01043-13.
Article
CAS
PubMed
PubMed Central
Google Scholar
Callahan BJ, McMurdie PJ, Holmes SP. Exact sequence variants should replace operational taxonomic units in marker-gene data analysis. ISME J. 2017;11(12):2639–43. https://doi.org/10.1038/ismej.2017.119.
Article
PubMed
PubMed Central
Google Scholar
Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013;41(Database issue):D590–6. https://doi.org/10.1093/nar/gks1219.
Article
CAS
PubMed
Google Scholar
Ho J, Tumkaya T, Aryal S, Choi H, Claridge-Chang A. Moving beyond P values: data analysis with estimation graphics. Nature Methods. 2019;16(7):565–6. https://doi.org/10.1038/s41592-019-0470-3.
Article
CAS
PubMed
Google Scholar
Conway JR, Lex A, Gehlenborg N. UpSetR: an R package for the visualization of intersecting sets and their properties. Bioinformatics. 2017;33(18):2938–40. https://doi.org/10.1093/bioinformatics/btx364.
Article
CAS
PubMed
PubMed Central
Google Scholar