Braverman I. Coral Whisperers: Scientists on the Brink: Univ of California Press; 2018.
Book
Google Scholar
Hughes TP, Anderson KD, Connolly SR, Heron SF, Kerry JT, Lough JM, et al. Spatial and temporal patterns of mass bleaching of corals in the Anthropocene. Science. 2018;359(6371):80–3. https://doi.org/10.1126/science.aan8048.
Article
CAS
PubMed
Google Scholar
Douglas AE. Coral bleaching––how and why? Mar Pollut Bull. 2003;46(4):385–92. https://doi.org/10.1016/S0025-326X(03)00037-7.
Article
CAS
PubMed
Google Scholar
Glynn PW. Coral reef bleaching: ecological perspectives. Coral Reefs. 1993;12(1):1–17. https://doi.org/10.1007/BF00303779.
Article
Google Scholar
Hughes TP, Kerry JT, Álvarez-Noriega M, Álvarez-Romero JG, Anderson KD, Baird AH, et al. Global warming and recurrent mass bleaching of corals. Nature. 2017;543(7645):373. https://doi.org/10.1038/nature21707–7.
Article
CAS
PubMed
Google Scholar
Pandolfi JM, Connolly SR, Marshall DJ, Cohen AL. Projecting coral reef futures under global warming and ocean acidification. Science. 2011;333(6041):418–22. https://doi.org/10.1126/science.1204794.
Article
CAS
PubMed
Google Scholar
Hoegh-Guldberg O, Poloczanska ES, Skirving W, Dove S. Coral reef ecosystems under climate change and ocean acidification. Front Mar Sci. 2017;4:158. https://doi.org/10.3389/fmars.2017.00158.
Article
Google Scholar
Wang L, Shantz AA, Payet JP, Sharpton TJ, Foster A, Burkepile DE, et al. Corals and their microbiomes are differentially affected by exposure to elevated nutrients and a natural thermal anomaly. Front Mar Sci. 2018;5:101 https://www.frontiersin.org/article/10.3389/fmars.2018.00101.
Article
CAS
Google Scholar
Wooldridge SA. Water quality and coral bleaching thresholds: formalising the linkage for the inshore reefs of the Great Barrier Reef. Australia. Mar Pollut Bull. 2009;58(5):745–51. https://doi.org/10.1016/j.marpolbul.2008.12.013.
Article
CAS
PubMed
Google Scholar
Loya Y, Rinkevich B. Effects of oil pollution on coral reef communities. Mar Ecol Prog Ser. 1980;3:167–80. https://doi.org/10.3354/MEPS003167.
Article
Google Scholar
White HK, Hsing P-Y, Cho W, Shank TM, Cordes EE, Quattrini AM, et al. Impact of the Deepwater Horizon oil spill on a deep-water coral community in the Gulf of Mexico. Proc Natl Acad Sci USA. 2012;109(50):20303–8. https://doi.org/10.1073/pnas.1118029109.
Article
PubMed
PubMed Central
Google Scholar
Atlas RM, Hazen TC. Oil biodegradation and bioremediation: a tale of the two worst spills in U.S. history. Environ Sci Technol. 2011;45(16):6709–15. https://doi.org/10.1021/es2013227.
Article
CAS
PubMed
PubMed Central
Google Scholar
Escobar H. Mystery oil spill threatens marine sanctuary in Brazil. Science. 2019;366(6466):672. https://doi.org/10.1126/science.366.6466.672.
Article
CAS
PubMed
Google Scholar
Peterson CH, Rice SD, Short JW, Esler D, Bodkin JL, Ballachey BE, et al. Long-term ecosystem response to the Exxon Valdez oil spill. Science. 2003;302(5653):2082–6. https://doi.org/10.1126/science.1084282.
Article
CAS
PubMed
Google Scholar
Villela HDM, Peixoto RS, Soriano AU, do Carmo FL. Microbial bioremediation of oil contaminated seawater: a survey of patent deposits and the characterization of the top genera applied. Sci Total Environ. 2019;666:743–58 https://doi.org/10.1016/j.scitotenv.2019.02.153.
Article
CAS
PubMed
Google Scholar
Rinkevich B, Loya Y. The reproduction of the Red Sea coral Stylophora pistillata. I. Gonads and planulae. Mar Ecol Prog Ser. 1979;1:133–44. https://doi.org/10.3354/meps001133.
Article
Google Scholar
Branan N. Chemicals worse for corals than oil. Geotimes. 2007;52:8–9. http://www.geotimes.org/oct07/article.html?id=nn_corals.html.
Haapkylä J, Ramade F, Salvat B. Oil pollution on coral reefs: A review of the state of knowledge and management needs. 2007;57(1/2):91–107. https://hal.archives-ouvertes.fr/hal-00172433/.
Shafir S, Van Rijn J, Rinkevich B. Short and Long Term Toxicity of Crude Oil and Oil Dispersants to Two Representative Coral Species. Environ Sci Technol. 2007;41:5571–4. https://doi.org/10.1021/es0704582.
Article
CAS
PubMed
Google Scholar
DeLeo DM, Ruiz-Ramos DV, Baums IB, Cordes EE. Response of deep-water corals to oil and chemical dispersant exposure. Deep Sea Res Part II Top Stud Oceanogr. 2016;129:137–47. https://doi.org/10.1016/j.dsr2.2015.02.028.
Article
CAS
Google Scholar
Peixoto R, Rosado PM, Leite DC, Rosado AS, Bourne DG. Beneficial microorganisms for corals (BMC): proposed mechanisms for coral health and resilience. Front Microbiol. 2017;8:341. https://doi.org/10.3389/fmicb.2017.00341.
Article
PubMed
PubMed Central
Google Scholar
Rohwer F, Seguritan, Azam, Knowlton N. Diversity and distribution of coral-associated bacteria. Mar Ecol Prog Ser. 2002;243:1–10. https://doi.org/10.3354/meps243001.
Article
Google Scholar
Rosenberg E, Koren O, Reshef L, Efrony R, Zilber-Rosenberg I. The role of microorganisms in coral health, disease and evolution. Nat Rev Microbiol. 2007;5(5):355. https://doi.org/10.1038/nrmicro1635–62.
Article
CAS
PubMed
Google Scholar
Kimes NE, Van Nostrand JD, Weil E, Zhou J, Morris PJ. Microbial functional structure of Montastraea faveolata, an important Caribbean reef-building coral, differs between healthy and yellow-band diseased colonies. Environ Microbiol. 2010;12(2):541–56. https://doi.org/10.1111/j.1462-2920.2009.02113.x.
Article
CAS
PubMed
Google Scholar
Raina J-B, Tapiolas D, Willis BL, Bourne DG. Coral-associated bacteria and their role in the biogeochemical cycling of sulfur. Appl Environ Microbiol. 2009;75(11):3492–501. https://doi.org/10.1128/AEM.02567-08.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wegley L, Edwards R, Rodriguez-Brito B, Liu H, Rohwer F. Metagenomic analysis of the microbial community associated with the coral Porites astreoides. Environ Microbiol. 2007;9(11):2707–19. https://doi.org/10.1111/j.1462-2920.2007.01383.x.
Article
CAS
PubMed
Google Scholar
Ritchie KB. Bacterial symbionts of corals and Symbiodinium. In: Beneficial Microorganisms in Multicellular Life Forms. Springer; 2012. p. 139–150. https://doi.org/10.1007/978-3-642-21680-0_9.
Dunlap WC, Shick JM. Ultraviolet radiation-absorbing mycosporine-like amino acids in coral reef organisms: a biochemical and environmental perspective. J Phycol. 1998;34(3):418–30 https://doi.org/10.1046/j.1529-8817.1998.340418.x.
Article
Google Scholar
Fine M, Loya Y. Endolithic algae: an alternative source of photoassimilates during coral bleaching. Proc Biol Sci. 2002;269(1497):1205–10. https://doi.org/10.1098/rspb.2002.1983.
Article
PubMed
PubMed Central
Google Scholar
Janouškovec J, Horák A, Barott KL, Rohwer FL, Keeling PJ. Global analysis of plastid diversity reveals apicomplexan-related lineages in coral reefs. Curr Biol. 2012;22:R518–9 https://doi.org/10.1016/j.cub.2012.04.047.28.
Article
PubMed
CAS
Google Scholar
Wilkins LGE, Leray M, O’Dea A, Yuen B, Peixoto RS, Pereira TJ, et al. Host-associated microbiomes drive structure and function of marine ecosystems. PLoS Biol. 2019;17(11):e3000533 https://doi.org/10.1371/journal.pbio.3000533.
Article
CAS
PubMed
PubMed Central
Google Scholar
Santos H, Duarte GAS, Rachid CT da C, Chaloub RM, Calderon EN, Marangoni LF de B, et al. Impact of oil spills on coral reefs can be reduced by bioremediation using probiotic microbiota. Sci Rep. 2015;5:18268. https://doi.org/10.1038/srep18268, 1.
Rosado P, Leite DCA, Duarte GAS, Chaloub RM, Jospin G, Nunes da Rocha U, et al. Marine probiotics: increasing coral resistance to bleaching through microbiome manipulation. ISME J. 2019;13(4):921–36. https://doi.org/10.1038/s41396-018-0323-6.
Article
CAS
PubMed
Google Scholar
Boonchan S, Britz ML, Stanley GA. Degradation and mineralization of high-molecular-weight polycyclic aromatic hydrocarbons by defined fungal-bacterial cocultures. Appl Environ Microbiol. 2000;66(3):1007–19. https://doi.org/10.1128/AEM.66.3.1007-1019.2000.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lane DJ. 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M, editors. Nucleic acid techniques in bacterial systematics; 1991. p. 115–75.
Google Scholar
White TJ, Bruns T, Lee S, Taylor J. Amplification and direct sequencing of fungal ribosomal RNA Genes for phylogenetics. 1990. PCR - Protocols and Applications - A Laboratory Manual p. 315–22.
O’Donnell K. Fusarium and its near relatives; 1993. p. 225–33.
Google Scholar
Silva D, Duarte G, Villela HDM, Santos HF, Rosado PM, Rosado JG, et al. Adaptable mesocosm facility to study oil spill impacts on corals. Ecol Evol. 2019;9(9):5172–85 https://doi.org/10.1002/ece3.5095.
Article
PubMed
PubMed Central
Google Scholar
CONAMA. RESOLUÇÃO no 472, de 27 de Novembro de 2015. 2015. http://www2.mma.gov.br/port/conama/legiabre.cfm?codlegi=718.
United States Environmental Protection Agency. Method 3510C. Separatory funnel liquid-liquid extraction, Revision 3. 1996;:8. https://www.epa.gov/sites/production/files/2015-12/documents/3510c.pdf.
United States Environmental Protection Agency. Method 8270D. Semivolatile organic compounds by gas chromatography/mass spectrometry (GC/MS), Revision 4. 2007;:62. https://www.epa.gov/sites/production/files/2015-07/documents/epa-8270d.pdf.
Pinheiro J, Bates D, DebRoy S, Sarkar D, Heisterkamp S, Van Willigen B, et al. Package ‘nlme.’ Linear Nonlinear Mix Eff Model version. 2017;:1–3.
Team RC. R: A language and environment for statistical computing (Version 3.4. 2)[Computer software]. Vienna: R Found Stat Comput; 2017.
Google Scholar
Lenth R, Lenth MR. Package ‘lsmeans’. Am Stat. 2018;34:216–21.
Google Scholar
Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Lozupone CA, Turnbaugh PJ, et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc Natl Acad Sci USA. 2011;108(Supplement 1):4516–22. https://doi.org/10.1073/pnas.1000080107.
Article
PubMed
Google Scholar
McCune B, Grace JB. Analysis of ecological communities. MjM Software Design, Gleneden Beach, Oregon. 2002. https://doi.org/10.1016/S0022-0981(03)00091-1.
Dufrene M, Legendre P. Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecol Monogr. 1997;67(2):345–66. https://doi.org/10.1890/0012-9615(1997)067[0345:SAAIST]2.0.CO.
Google Scholar
Shaver EC, Burkepile DE, Silliman BR. Local management actions can increase coral resilience to thermally-induced bleaching. Nat Ecol Evol. 2018;2(7):1075–9. https://doi.org/10.1038/s41559-018-0589-0.
Article
PubMed
Google Scholar
Peixoto R, Sweet M, Villela HDM, Cardoso PM, Thomas T, Voolstra CR, et al. Coral Probiotics: Premise, Promise, Prospects. Annu Rev Anim Biosci. 2021; https://doi.org/10.1146/annurev-animal-090120-115444.
United Nations. A-68-970 Report of the Open Working Group of the General Assembly on Sustainable Development Goals. 2014. https://digitallibrary.un.org/record/784147?ln=en.
National Academies of Sciences and Medicine E. A research review of interventions to increase the persistence and resilience of coral reefs. Washington, DC: The National Academies Press; 2019. https://doi.org/10.17226/25279.
Book
Google Scholar
do Carmo FL, dos Santos HF, Martins EF, van Elsas JD, Rosado AS, Peixoto RS. Bacterial structure and characterization of plant growth promoting and oil degrading bacteria from the rhizospheres of mangrove plants. J Microbiol. 2011;49:535–43 https://doi.org/10.1007/s12275-011-0528-0.
Article
CAS
PubMed
Google Scholar
Cury JC, Jurelevicius DA, Villela HDM, Jesus HE, Peixoto RS, Schaefer CEGR, et al. Microbial diversity and hydrocarbon depletion in low and high diesel-polluted soil samples from Keller Peninsula, South Shetland Islands. Antarct Sci. 2015;27(3):263–73. https://doi.org/10.1017/S0954102014000728.
Article
Google Scholar
Schrezenmeir J, de Vrese M. Probiotics, prebiotics, and synbiotics—approaching a definition. Am J Clin Nutr. 2001;73:361s–4s https://doi.org/10.1093/ajcn/73.2.361s.
Article
CAS
PubMed
Google Scholar
Reshef L, Koren O, Loya Y, Zilber-Rosenberg I, Rosenberg E. The coral probiotic hypothesis. Environ Microbiol. 2006;8(12):2068–73. https://doi.org/10.1111/j.1462-2920.2006.01148.x.
Article
CAS
PubMed
Google Scholar
Corbo MR, Campaniello D, Speranza B, Altieri C, Sinigaglia M, Bevilacqua A. Neutralisation of toxins by probiotics during the transit into the gut: challenges and perspectives. Int J Food Sci Technol. 2018;53(6):1339–51. https://doi.org/10.1111/ijfs.13745.
Article
CAS
Google Scholar
Kshatri J, Rao CV, Settaluri VS. Neutralization of toxins in aqua culture using probiotics. Int J Pharm Sci Res. 2018;9:2484–9. https://doi.org/10.13040/IJPSR.0975-8232.9(6).2484-89.
Article
CAS
Google Scholar
Kumari S, Regar RK, Manickam N. Improved polycyclic aromatic hydrocarbon degradation in a crude oil by individual and a consortium of bacteria. Bioresour Technol. 2018;254:174–9 https://doi.org/10.1016/j.biortech.2018.01.075.
Article
CAS
PubMed
Google Scholar
Bretherton L, Kamalanathan M, Genzer J, Hillhouse J, Setta S, Liang Y, et al. Response of natural phytoplankton communities exposed to crude oil and chemical dispersants during a mesocosm experiment. Aquat Toxicol. 2019;206:43–53. https://doi.org/10.1016/j.aquatox.2018.11.004.
Article
CAS
PubMed
Google Scholar
Wise J, Wise JP Sr. A review of the toxicity of chemical dispersants. Rev Environ Health. 2011;26(4):281–300. https://doi.org/10.1515/reveh.2011.035.
Article
CAS
PubMed
PubMed Central
Google Scholar
Studivan MS, Hatch WI, Mitchelmore CL. Responses of the soft coral Xenia elongata following acute exposure to a chemical dispersant. Springerplus. 2015;4(1):80. https://doi.org/10.1186/s40064-015-0844-7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Negri AP, Hoogenboom MO. Water contamination reduces the tolerance of coral larvae to thermal stress. PLoS One. 2011;6(5):e19703. https://doi.org/10.1371/journal.pone.0019703.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yakimov MM, Timmis KN, Golyshin PN. Obligate oil-degrading marine bacteria. Curr Opin Biotechnol. 2007;18(3):257–66. https://doi.org/10.1016/j.copbio.2007.04.006.
Article
CAS
PubMed
Google Scholar
Gallego S, Vila J, Tauler M, Nieto JM, Breugelmans P, Springael D, et al. Community structure and PAH ring-hydroxylating dioxygenase genes of a marine pyrene-degrading microbial consortium. Biodegradation. 2014;25(4):543–56. https://doi.org/10.1007/s10532-013-9680-z.
Article
CAS
PubMed
Google Scholar
Hara A, Syutsubo K, Harayama S. Alcanivorax which prevails in oil-contaminated seawater exhibits broad substrate specificity for alkane degradation. Environ Microbiol. 2003;5:746–53. https://doi.org/10.1046/j.1468-2920.2003.00468.x.
Article
CAS
PubMed
Google Scholar
Li C, Lai Q, Li G, Liu Y, Sun F, Shao Z. Multilocus sequence analysis for the assessment of phylogenetic diversity and biogeography in hyphomonas bacteria from diverse marine environments. PLoS One. 2014;9(7):e101394. https://doi.org/10.1371/journal.pone.0101394.
Article
PubMed
PubMed Central
CAS
Google Scholar
Mulkins-Phillips GJ, Stewart JE. Effect of four dispersants on biodegradation and growth of bacteria on crude oil. Appl Microbiol. 1974;28(4):547–52. https://www.ncbi.nlm.nih.gov/pubmed/4418491. https://doi.org/10.1128/AM.28.4.547-552.1974.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gillan DC, Danis B, Pernet P, Joly G, Dubois P. Structure of sediment-associated microbial communities along a heavy-metal contamination gradient in the marine environment. Appl Environ Microbiol. 2005;71(2):679–90. https://doi.org/10.1128/AEM.71.2.679-690.2005.
Article
CAS
PubMed
PubMed Central
Google Scholar
Apprill A, Hughen K, Mincer T. Major similarities in the bacterial communities associated with lesioned and healthy Fungiidae corals. Environ Microbiol. 2013;15(7):2063–72. https://doi.org/10.1111/1462-2920.12107.
Article
CAS
PubMed
Google Scholar
Geffen Y, Ron EZ, Rosenberg E. Regulation of release of antibacterials from stressed scleractinian corals. FEMS Microbiol Lett. 2009;295(1):103–9. https://doi.org/10.1111/j.1574-6968.2009.01590.x.
Article
CAS
PubMed
Google Scholar
Cooney RP, Pantos O, Tissier MD, Barer MR, O’Donnell AG, Bythell JC. Characterization of the bacterial consortium associated with black band disease in coral using molecular microbiological techniques. Environ Microbiol. 2002;4:401–13. doi:https://doi.org/10.1046/j.1462-2920.2002.00308.x.
Miller AW, Richardson LL. A meta-analysis of 16S rRNA gene clone libraries from the polymicrobial black band disease of corals. FEMS Microbiol Ecol. 2011;75:231–41 https://doi.org/10.1111/j.1574-6941.2010.00991.x.
Article
CAS
PubMed
Google Scholar
Pantos O, Bythell JC. Bacterial community structure associated with white band disease in the elkhorn coral Acropora palmata determined using culture-independent 16S rRNA techniques. Dis Aquat Organ. 2006;69(1):79–88. https://doi.org/10.3354/dao069079.
Article
CAS
PubMed
Google Scholar
Pantos O, Cooney RP, Le Tissier MDA, Barer MR, O’Donnell AG, Bythell JC. The bacterial ecology of a plague-like disease affecting the Caribbean coral Montastrea annularis. Environ Microbiol. 2003;5(5):370–82. https://doi.org/10.1046/j.1462-2920.2003.00427.x.
Article
CAS
PubMed
Google Scholar
Séré MG, Tortosa P, Chabanet P, Turquet J, Quod J-P, Schleyer MH. Bacterial communities associated with Porites white patch syndrome (PWPS) on three Western Indian Ocean (WIO) coral reefs. PLoS One. 2013;8(12):e83746. https://doi.org/10.1371/journal.pone.0083746.
Article
CAS
PubMed
PubMed Central
Google Scholar
Viehman S, Mills DK, Meichel GW, Richardson LL. Culture and identification of Desulfovibrio spp. from corals infected by black band disease on Dominican and Florida Keys reefs. Dis Aquat Organ. 2006;69(1):119–27. https://doi.org/10.3354/dao069119.
Article
CAS
PubMed
Google Scholar
McFarlin KM, Perkins MJ, Field JA, Leigh MB. Biodegradation of Crude Oil and Coprexit 9500 in Artic Seawater. Front Microbiol. 2018;9:1788. https://doi.org/10.3389/fmicb.2018.01788.
Article
PubMed
PubMed Central
Google Scholar
Gignoux-Wolfsohn SA, Vollmer SV. Identification of candidate coral pathogens on white band disease-infected staghorn coral. PLoS One. 2015;10(8):e0134416. https://doi.org/10.1371/journal.pone.0134416.
Article
PubMed
PubMed Central
CAS
Google Scholar
Sunagawa S, DeSantis TZ, Piceno YM, Brodie EL, DeSalvo MK, Voolstra CR, et al. Bacterial diversity and White Plague Disease-associated community changes in the Caribbean coral Montastraea faveolata. ISME J. 2009;3(5):512–21. https://doi.org/10.1038/ismej.2008.131.
Article
CAS
PubMed
Google Scholar
Lee STM, Davy SK, Tang S-L, Fan T-Y, Kench PS. Successive shifts in the microbial community of the surface mucus layer and tissues of the coral Acropora muricata under thermal stress. FEMS Microbiol Ecol. 2015;91:fiv142. https://doi.org/10.1093/femsec/fiv142.
Article
CAS
PubMed
Google Scholar
McDevitt-Irwin JM, Baum JK, Garren M, Vega Thurber RL. Responses of coral-associated bacterial communities to local and global stressors. Front Mar Sci. 2017;4:262 https://doi.org/10.3389/fmars.2017.00262.
Article
Google Scholar
Salter I, Zubkov MV, Warwick PE, Burkill PH. Marine bacterioplankton can increase evaporation and gas transfer by metabolizing insoluble surfactants from the air-seawater interface. FEMS Microbiol Lett. 2009;294(2):225–31. https://doi.org/10.1111/j.1574-6968.2009.01572.x.
Article
CAS
PubMed
Google Scholar
Le Roux F, Wegner KM, Baker-Austin C, Vezzulli L, Osorio CR, Amaro C, et al. The emergence of Vibrio pathogens in Europe: ecology, evolution, and pathogenesis (Paris, 11-12th March 2015). Front Microbiol. 2015;6:830 https://doi.org/10.3389/fmicb.2015.00830.
Article
PubMed
PubMed Central
Google Scholar
Boyd EF, Moyer KE, Shi L, Waldor MK. Infectious CTXPhi and the vibrio pathogenicity island prophage in Vibrio mimicus: evidence for recent horizontal transfer between V. mimicus and V. cholerae. Infect Immun. 2000;68(3):1507–13. https://www.ncbi.nlm.nih.gov/pubmed/10678967. https://doi.org/10.1128/IAI.68.3.1507-1513.2000.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jermyn WS, Boyd EF. Characterization of a novel Vibrio pathogenicity island (VPI-2) encoding neuraminidase (nanH) among toxigenic Vibrio cholerae isolates. Microbiology. 2002;148(Pt 11):3681–93. https://doi.org/10.1099/00221287-148-11-3681.
Article
CAS
PubMed
Google Scholar
Ben-Haim Y, Zicherman-Keren M, Rosenberg E. Temperature-regulated bleaching and Lysis of the coral Pocillopora damicornis by the novel pathogen Vibrio coralliilyticus. Appl Environ Microbiol. 2003;69(7):4236–42. https://doi.org/10.1128/aem.69.7.4236-4242.2003.
Article
CAS
PubMed
PubMed Central
Google Scholar
Banin E, Ben-Haim Y, Israely T, Loya Y, Rosenberg E. Effect of the environment on the bacterial bleaching of corals. In: Belkin S, editor. Environmental Challenges. Dordrecht: Springer; 2000. p. 337–352. https://doi.org/10.1007/978-94-011-4369-1_27.
Ben-Haim Y, Rosenberg E. A novel Vibrio sp. pathogen of the coral Pocillopora damicornis. Mar Biol. 2002;141(1):47–55. https://doi.org/10.1007/s00227-002-0797-6.
Article
Google Scholar
Rosenberg E, Ben-Haim Y. Microbial diseases of corals and global warming. Environ Microbiol. 2002;4(6):318–26. https://doi.org/10.1046/j.1462-2920.2002.00302.x.
Article
PubMed
Google Scholar
Hamdan LJ, Fulmer PA. Effects of COREXIT® EC9500A on bacteria from a beach oiled by the Deepwater Horizon spill. Aquat Microb Ecol, DOI. 2011;63:101–9 https://doi.org/10.3354/ame01482.
Chen Y-H, Kuo J, Sung P-J, Chang Y-C, Lu M-C, Wong T-Y, et al. Isolation of marine bacteria with antimicrobial activities from cultured and field-collected soft corals. World J Microbiol Biotechnol. 2012;28(12):3269–79. https://doi.org/10.1007/s11274-012-1138-7.
Article
CAS
PubMed
Google Scholar
Rodrigues GN, Lago-Leston A, Costa R, Keller-Costa T. Draft genome sequence of Labrenzia sp. strain EL143, a coral-associated alphaproteobacterium with versatile symbiotic living capability and strong halogen degradation potential. Genome Announc. 2018;6. DOI: https://doi.org/10.1128/genomeA.00132-18.
Rubio-Portillo E, Kersting DK, Linares C, Ramos-Esplá AA, Antón J. Biogeographic differences in the microbiome and pathobiome of the coral Cladocora caespitosa in the Western Mediterranean Sea. Front Microbiol. 2018;9:22 https://doi.org/10.3389/fmicb.2018.00022.
Article
PubMed
PubMed Central
Google Scholar
Thomas S, Burdett H, Temperton B, Wick R, Snelling D, McGrath JW, et al. Evidence for phosphonate usage in the coral holobiont. ISME J. 2010;4(3):459–61. https://doi.org/10.1038/ismej.2009.129.
Article
CAS
PubMed
Google Scholar
Yu Z, Lai Q, Li G, Shao Z. Parvularcula dongshanensis sp. nov., isolated from soft coral. Int J Syst Evol Microbiol. 2013;63(Pt 6):2114–7 https://doi.org/10.1099/ijs.0.044313-0.
Article
CAS
PubMed
Google Scholar
Ziegler M, Roik A, Porter A, Zubier K, Mudarris MS, Ormond R, et al. Coral microbial community dynamics in response to anthropogenic impacts near a major city in the central Red Sea. Mar Pollut Bull. 2016;105(2):629–40. https://doi.org/10.1016/j.marpolbul.2015.12.045.
Article
CAS
PubMed
Google Scholar
Bayer T, Neave MJ, Alsheikh-Hussain A, Aranda M, Yum LK, Mincer T, et al. The Microbiome of the Red Sea Coral Stylophora pistillata is dominated by tissue-associated Endozoicomonas bacteria. Appl Environ Microbiol. 2013;79(15):4759–62. https://doi.org/10.1128/AEM.00695-13.
Article
CAS
PubMed
PubMed Central
Google Scholar
Neave MJ, Michell CT, Apprill A, Voolstra CR. Endozoicomonas genomes reveal functional adaptation and plasticity in bacterial strains symbiotically associated with diverse marine hosts. Sci Rep. 2017;7(1):40579. https://doi.org/10.1038/srep40579.
Article
CAS
PubMed
PubMed Central
Google Scholar
Speck MD, Donachie SP. Widespread Oceanospirillaceae Bacteria in Porites spp. J Mar Sci. 2012;746720. https://doi.org/10.1155/2012/746720.
Neave MJ, Rachmawati R, Xun L, Michell CT, Bourne DG, Apprill A, et al. Differential specificity between closely related corals and abundant Endozoicomonas endosymbionts across global scales. ISME J. 2017;11(1):186–200. https://doi.org/10.1038/ismej.2016.95.
Article
PubMed
Google Scholar
Röthig T, Yum LK, Kremb SG, Roik A, Voolstra CR. Microbial community composition of deep-sea corals from the Red Sea provides insight into functional adaption to a unique environment. Sci Rep. 2017;7(1):1–9. https://doi.org/10.1038/srep44714.
Article
CAS
Google Scholar
Simister RL, Antzis EW, White HK. Examining the diversity of microbes in a deep-sea coral community impacted by the Deepwater Horizon oil spill. Deep Sea Res Part II Top Stud Oceanogr. 2016;129:157–66 https://doi.org/10.1016/j.dsr2.2015.01.010.
Article
CAS
Google Scholar
Al-Dahash LM, Mahmoud HM. Harboring oil-degrading bacteria: a potential mechanism of adaptation and survival in corals inhabiting oil-contaminated reefs. Mar Pollut Bull. 2013;72(2):364–74. https://doi.org/10.1016/j.marpolbul.2012.08.029.
Article
CAS
PubMed
Google Scholar
Sauret C, Séverin T, Vétion G, Guigue C, Goutx M, Pujo-Pay M, et al. ‘Rare biosphere’ bacteria as key phenanthrene degraders in coastal seawaters. Environ Pollut. 2014;194:246–53 https://doi.org/10.1016/j.envpol.2014.07.024.
Article
CAS
PubMed
Google Scholar
Pascoal F, Magalhães C, Costa R. The link between the ecology of the prokaryotic rare biosphere and its biotechnological potential. Front Microbiol. 2020;11:231 https://doi.org/10.3389/fmicb.2020.00231.
Article
PubMed
PubMed Central
Google Scholar
Dahiya DK, Puniya M, Shandilya UK, Dhewa T, Kumar N, Kumar S, et al. Gut microbiota modulation and its relationship with obesity using prebiotic fibers and probiotics: a review. Front Microbiol. 2017;8:563 https://doi.org/10.3389/fmicb.2017.00563.
Article
PubMed
PubMed Central
Google Scholar
Shin D, Chang SY, Bogere P, Won K, Choi J-Y, Choi Y-J, et al. Beneficial roles of probiotics on the modulation of gut microbiota and immune response in pigs. PLoS One. 2019;14(8):e0220843. https://doi.org/10.1371/journal.pone.0220843.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mies M, Francini-Filho RB, Zilberberg C, Garrido AG, Longo GO, Laurentino E, et al. South Atlantic coral reefs are major global warming refugia and less susceptible to bleaching. Front Mar Sci. 2020;7:514. https://doi.org/10.3389/fmars.2020.00514.
Article
Google Scholar
Duarte GAS, Villela HDM, Deocleciano M, Silva D, Barno A, Cardoso PM, et al. Heat Waves Are a Major Threat to Turbid Coral Reefs in Brazil. Front Mar Sci. 2020;7:179 https://doi.org/10.3389/fmars.2020.00179.
Article
Google Scholar