La Duc M, Kern R, Venkateswaran K. Microbial monitoring of spacecraft and associated environments. Microb Ecol. 2004;47(2):150–8. https://doi.org/10.1007/s00248-003-1012-0.
Article
PubMed
Google Scholar
Venkateswaran K, Satomi M, Chung S, Kern R, Koukol R, Basic C, White D. Molecular microbial diversity of a spacecraft assembly facility. Syst Appl Microbiol. 2001;24(2):311–20. https://doi.org/10.1078/0723-2020-00018.
Article
CAS
PubMed
Google Scholar
Newcombe DA, la Duc MT, Vaishampayan P, Venkateswaran K. Impact of assembly, testing and launch operations on the airborne bacterial diversity within a spacecraft assembly facility clean-room. International Journal of Astrobiology. 2008;7(3-4):223, 236. https://doi.org/10.1017/S1473550408004254.
Article
Google Scholar
Checinska A, Probst AJ, Vaishampayan P, White JR, Kumar D, Stepanov VG, Fox GE, Nilsson HR, Pierson DL, Perry J, Venkateswaran K. Microbiomes of the dust particles collected from the International Space Station and Spacecraft Assembly Facilities. Microbiome. 2015;3(1):50. https://doi.org/10.1186/s40168-015-0116-3.
Article
PubMed
PubMed Central
Google Scholar
Garner R. NASA’s Clean Room: Last Stop for New Hubble Hardware; 2019.
Google Scholar
La Duc MT, et al. Isolation and characterization of bacteria capable of tolerating the extreme conditions of clean room environments. Appl Environ Microbiol. 2007;73(8):2600–11. https://doi.org/10.1128/AEM.03007-06.
Article
CAS
PubMed
PubMed Central
Google Scholar
Moissl C, Osman S, la Duc MT, Dekas A, Brodie E, DeSantis T, Venkateswaran K. Molecular bacterial community analysis of clean rooms where spacecraft are assembled. FEMS Microbiol Ecol. 2007;61(3):509–21. https://doi.org/10.1111/j.1574-6941.2007.00360.x.
Article
CAS
PubMed
Google Scholar
Nicholson WL, Schuerger AC, Race MS. Migrating microbes and planetary protection. Trends Microbiol. 2009;17(9):389–92. https://doi.org/10.1016/j.tim.2009.07.001.
Article
CAS
PubMed
Google Scholar
Sielaff AC, et al. Characterization of the total and viable bacterial and fungal communities associated with the International Space Station surfaces. Microbiome. 2019;7(1):1–21.
Article
Google Scholar
Ghosh S, Osman S, Vaishampayan P, Venkateswaran K. Recurrent isolation of extremotolerant bacteria from the clean room where Phoenix spacecraft components were assembled. Astrobiology. 2010;10(3):325–35. https://doi.org/10.1089/ast.2009.0396.
Article
CAS
PubMed
Google Scholar
Stieglmeier M, Wirth R, Kminek G, Moissl-Eichinger C. Cultivation of anaerobic and facultatively anaerobic bacteria from spacecraft-associated clean rooms. Appl Environ Microbiol. 2009;75(11):3484–91. https://doi.org/10.1128/AEM.02565-08.
Article
CAS
PubMed
PubMed Central
Google Scholar
La Duc MT, et al. Comprehensive census of bacteria in clean rooms by using DNA microarray and cloning methods. Appl Environ Microbiol. 2009;75(20):6559–67. https://doi.org/10.1128/AEM.01073-09.
Article
CAS
PubMed
PubMed Central
Google Scholar
Majaneva M, Hyytiäinen K, Varvio SL, Nagai S, Blomster J. Bioinformatic amplicon read processing strategies strongly affect eukaryotic diversity and the taxonomic composition of communities. PLoS One. 2015;10(6):e0130035. https://doi.org/10.1371/journal.pone.0130035.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lynch MD, Neufeld JD. Ecology and exploration of the rare biosphere. Nat Rev Microbiol. 2015;13(4):217–29. https://doi.org/10.1038/nrmicro3400.
Article
CAS
PubMed
Google Scholar
Pierson, D.L., et al., Microbial monitoring of the international space station. 2013.
Google Scholar
Garrett-Bakelman FE, et al. The NASA Twins Study: A multidimensional analysis of a year-long human spaceflight. Science. 2019;364(6436):eaau8650.
CAS
PubMed
PubMed Central
Google Scholar
Schubert M, Lindgreen S, Orlando L. AdapterRemoval v2: rapid adapter trimming, identification, and read merging. BMC Res Notes. 2016;9(1):1–7.
Article
Google Scholar
Langdon WB. Perssformance of genetic programming optimised Bowtie2 on genome comparison and analytic testing (GCAT) benchmarks. BioData mining. 2015;8(1):1. https://doi.org/10.1186/s13040-014-0034-0.
Article
CAS
PubMed
PubMed Central
Google Scholar
Marçais G, Kingsford C. A fast, lock-free approach for efficient parallel counting of occurrences of k-mers. Bioinformatics. 2011;27(6):764–70. https://doi.org/10.1093/bioinformatics/btr011.
Article
CAS
PubMed
PubMed Central
Google Scholar
Danko D. Gimmebio: Utilities and explorations in computational biology; 2019.
Google Scholar
Breitwieser F, Baker D, Salzberg SL. KrakenUniq: confident and fast metagenomics classification using unique k-mer counts. Genome Biol. 2018;19(1):1–10.
Article
Google Scholar
Tatusova T, Ciufo S, Fedorov B, O’Neill K, Tolstoy I. RefSeq microbial genomes database: new representation and annotation strategy. Nucleic Acids Res. 2014;42(D1):D553–9. https://doi.org/10.1093/nar/gkt1274.
Article
CAS
PubMed
Google Scholar
McIntyre AB, et al. Comprehensive benchmarking and ensemble approaches for metagenomic classifiers. Genome Biol. 2017;18(1):182. https://doi.org/10.1186/s13059-017-1299-7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sobih, A., Tomescu, A. I., & Mäkinen, V. MetaFlow: Metagenomic profiling based on whole-genome coverage analysis with mincost flows. In International Conference on Research in Computational Molecular Biology. Springer, Cham; 2016 (pp. 111-121).
Truong DT, Franzosa EA, Tickle TL, Scholz M, Weingart G, Pasolli E, Tett A, Huttenhower C, Segata N. MetaPhlAn2 for enhanced metagenomic taxonomic profiling. Nat Methods. 2015;12(10):902–3. https://doi.org/10.1038/nmeth.3589.
Article
CAS
PubMed
Google Scholar
Nurk S, Meleshko D, Korobeynikov A, Pevzner PA. metaSPAdes: a new versatile metagenomic assembler. Genome Res. 2017;27(5):824–34. https://doi.org/10.1101/gr.213959.116.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li D, Liu CM, Luo R, Sadakane K, Lam TW. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics. 2015;31(10):1674–6. https://doi.org/10.1093/bioinformatics/btv033.
Article
CAS
PubMed
Google Scholar
Kang DD, Li F, Kirton E, Thomas A, Egan R, An H, Wang Z. MetaBAT 2: an adaptive binning algorithm for robust and efficient genome reconstruction from metagenome assemblies. PeerJ. 2019;7:e7359. https://doi.org/10.7717/peerj.7359.
Article
PubMed
PubMed Central
Google Scholar
Olm MR, Brown CT, Brooks B, Banfield JF. dRep: a tool for fast and accurate genomic comparisons that enables improved genome recovery from metagenomes through de-replication. ISME J. 2017;11(12):2864–8. https://doi.org/10.1038/ismej.2017.126.
Article
CAS
PubMed
PubMed Central
Google Scholar
Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 2015;25(7):1043–55. https://doi.org/10.1101/gr.186072.114.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chaumeil PA, Mussig AJ, Hugenholtz P, Parks DH. GTDB-Tk: a toolkit to classify genomes with the Genome Taxonomy Database. 2020. https://doi.org/10.1093/bioinformatics/btz848.
Hyatt D, Chen GL, LoCascio PF, Land ML, Larimer FW, Hauser LJ. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC bioinformatics. 2010;11(1):119. https://doi.org/10.1186/1471-2105-11-119.
Article
CAS
PubMed
PubMed Central
Google Scholar
Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics. 2014;30(14):2068–9. https://doi.org/10.1093/bioinformatics/btu153.
Article
CAS
PubMed
Google Scholar
Sierra, M.A., et al., The Microbe Directory v2. 0: An Expanded Database of Ecological and Phenotypical Features of Microbes. BioRxiv, 2019.
Wang JD, Levin PA. Metabolism, cell growth and the bacterial cell cycle. Nat Rev Microbiol. 2009;7(11):822–7. https://doi.org/10.1038/nrmicro2202.
Article
CAS
PubMed
PubMed Central
Google Scholar
Emiola A, Oh J. High throughput in situ metagenomic measurement of bacterial replication at ultra-low sequencing coverage. Nat Commun. 2018;9(1):1–8.
Article
CAS
Google Scholar
Yachida S, Mizutani S, Shiroma H, Shiba S, Nakajima T, Sakamoto T, Watanabe H, Masuda K, Nishimoto Y, Kubo M, Hosoda F, Rokutan H, Matsumoto M, Takamaru H, Yamada M, Matsuda T, Iwasaki M, Yamaji T, Yachida T, Soga T, Kurokawa K, Toyoda A, Ogura Y, Hayashi T, Hatakeyama M, Nakagama H, Saito Y, Fukuda S, Shibata T, Yamada T. Metagenomic and metabolomic analyses reveal distinct stage-specific phenotypes of the gut microbiota in colorectal cancer. Nat Med. 2019;25(6):968–76. https://doi.org/10.1038/s41591-019-0458-7.
Article
CAS
PubMed
Google Scholar
Sun Y, Fu X, Li Y, Yuan Q, Ou Z, Lindgren T, Deng Y, Norbäck D. Shotgun metagenomics of dust microbiome from flight deck and cabin in civil aviation aircraft. Indoor Air. 2020;30(6):1199–212. https://doi.org/10.1111/ina.12707.
Article
CAS
PubMed
Google Scholar
Simon HY, et al. Benchmarking metagenomics tools for taxonomic classification. Cell. 2019;178(4):779–94.
Article
Google Scholar
Danko D, Bezdan D, Afshinnekoo E, Ahsanuddin S, Bhattacharya C, Butler DJ, International MetaSUB Consortium. Global genetic cartography of urban metagenomes and anti-microbial resistance. BioRxiv. 2019:724526.
McInnes, L., J. Healy, and J. Melville, Umap: Uniform manifold approximation and projection for dimension reduction. arXiv preprint arXiv:1802.03426, 2018.
Dorrity MW, et al. Dimensionality reduction by UMAP to visualize physical and genetic interactions. Nat Commun. 2020;11(1):1–6.
Article
Google Scholar
Kishikawa T, Maeda Y, Nii T, Motooka D, Matsumoto Y, Matsushita M, Matsuoka H, Yoshimura M, Kawada S, Teshigawara S, Oguro E, Okita Y, Kawamoto K, Higa S, Hirano T, Narazaki M, Ogata A, Saeki Y, Nakamura S, Inohara H, Kumanogoh A, Takeda K, Okada Y. Metagenome-wide association study of gut microbiome revealed novel aetiology of rheumatoid arthritis in the Japanese population. Ann Rheum Dis. 2020;79(1):103–11. https://doi.org/10.1136/annrheumdis-2019-215743.
Article
CAS
PubMed
Google Scholar
Achtman M, Zhou Z. Metagenomics of the modern and historical human oral microbiome with phylogenetic studies on Streptococcus mutans and Streptococcus sobrinus. Philos Trans R Soc B. 2020;375(1812):20190573. https://doi.org/10.1098/rstb.2019.0573.
Article
CAS
Google Scholar
Thompson LR, et al. A communal catalogue reveals Earth’s multiscale microbial diversity. Nature. 2017;551(7681):457–63. https://doi.org/10.1038/nature24621.
Article
CAS
PubMed
PubMed Central
Google Scholar
ISO, E., 14644-1,“Cleanrooms and associated controlled environments—Part 1: Classification of air cleanliness,”. European Standard, 1999. https://www.iso.org/obp/ui/#iso:std:iso:14644:-1:ed-1:v1:en.
Standard B, ISO B. Cleanrooms and associated controlled environments—; 2004.
Google Scholar
Taylor E, Davey J. Implementation of debris mitigation using International Organization for Standardization (ISO) standards. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering. 2007;221(6):987–96. https://doi.org/10.1243/09544100JAERO233.
Article
Google Scholar
(GSA), U.S.G.S.A., Airborne particulate cleanliness classes in cleanrooms and clean zones, in notice of cancellation FED-STD-209 NOTICE 1. 2001.
Maltais, T., et al. Preparing for Mars 2020 and future space missions: technology advancements driving contamination control requirements and cleanroom protocols. in Systems Contamination: Prediction, Control, and Performance 2020. 2020. International Society for Optics and Photonics.
Heulin, T., Barakat M., Christen R., Lesourd M., Sutra L., de Luca G., Achouak W., Ramlibacter tataouinensis gen. nov., sp. nov., and Ramlibacter henchirensis sp. nov., cyst-producing bacteria isolated from subdesert soil in Tunisia. Int J Syst Evol Microbiol, 2003. 53(2): p. 589-594, DOI: https://doi.org/10.1099/ijs.0.02482-0.
Gommeaux M, Barakat M, Lesourd M, Thiéry J, Heulin T. A morphological transition in the pleomorphic bacterium Ramlibacter tataouinensis TTB310. Res Microbiol. 2005;156(10):1026–30. https://doi.org/10.1016/j.resmic.2005.05.010.
Article
CAS
PubMed
Google Scholar
Ivanova N, Sikorski J, Jando M, Munk C, Lapidus A, Glavina del Rio T, Copeland A, Tice H, Cheng JF, Lucas S, Chen F, Nolan M, Bruce D, Goodwin L, Pitluck S, Mavromatis K, Mikhailova N, Pati A, Chen A, Palaniappan K, Land M, Hauser L, Chang YJ, Jeffries CD, Meincke L, Brettin T, Detter JC, Rohde M, Göker M, Bristow J, Eisen JA, Markowitz V, Hugenholtz P, Kyrpides NC, Klenk HP. Complete genome sequence of Geodermatophilus obscurus type strain (G-20 T). Stand Genomic Sci. 2010;2(2):158–67. https://doi.org/10.4056/sigs.711311.
Article
PubMed
PubMed Central
Google Scholar
del Carmen Montero-Calasanz M, et al. Description of gamma radiation-resistant Geodermatophilus dictyosporus sp. nov. to accommodate the not validly named Geodermatophilus obscurus subsp. dictyosporus (Luedemann, 1968). Extremophiles. 2015;19(1):77–85. https://doi.org/10.1007/s00792-014-0708-z.
Article
CAS
Google Scholar
Vaishampayan, P., Probst A.J., la Duc M.T., Bargoma E., Benardini J.N., Andersen G.L., Venkateswaran K., New perspectives on viable microbial communities in low-biomass cleanroom environments. ISME J, 2013. 7(2): p. 312-324, DOI: https://doi.org/10.1038/ismej.2012.114.
Vallalar B. Investigation of the Growth and Survival of Bacteria from Mars Analog Environments When Exposed to Mars-like Conditions; 2012.
Google Scholar
Sghaier H, Ghedira K, Benkahla A, Barkallah I. Basal DNA repair machinery is subject to positive selection in ionizing-radiation-resistant bacteria. BMC Genomics. 2008;9(1):297. https://doi.org/10.1186/1471-2164-9-297.
Article
CAS
PubMed
PubMed Central
Google Scholar
De Boer L, et al. Amycolatopsis methanolica sp. nov., a facultatively methylotrophic actinomycete. Int J Syst Evol Microbiol. 1990;40(2):194–204.
Google Scholar
Ilieva V, Steel B, Pratscher J, Olsson-Francis K, Macey MC. Assembly of Bacterial Genome Sequences from Metagenomes of Spacecraft Assembly Cleanrooms. https://doi.org/10.1128/MRA.01439-20.