Sperber AD, Dumitrascu D, Fukudo S, et al. The global prevalence of IBS in adults remains elusive due to the heterogeneity of studies: a Rome Foundation working team literature review. Gut. 2017;66(6):1075–82. https://doi.org/10.1136/gutjnl-2015-311240 [published Online First: 2016/01/29].
Article
PubMed
Google Scholar
Lovell RM, Ford AC. Global prevalence of and risk factors for irritable bowel syndrome: a meta-analysis. Clin Gastroenterol Hepatol 2012;10(7):712-721.e4. doi: https://doi.org/10.1016/j.cgh.2012.02.029 [published Online First: 2012/03/15]
Enck P, Aziz Q, Barbara G, Farmer AD, Fukudo S, Mayer EA, Niesler B, Quigley EMM, Rajilić-Stojanović M, Schemann M, Schwille-Kiuntke J, Simren M, Zipfel S, Spiller RC. Irritable bowel syndrome. Nat Rev Dis Primers. 2016;2(1):16014. https://doi.org/10.1038/nrdp.2016.14.
Article
PubMed
PubMed Central
Google Scholar
Algera J, Colomier E, Simrén M. The dietary management of patients with irritable bowel syndrome: a narrative Review of the existing and emerging evidence. Nutrients. 2019;11(9):2162. https://doi.org/10.3390/nu11092162.
Article
CAS
PubMed Central
Google Scholar
Johnson AJ, Vangay P, Al-Ghalith GA, et al. Daily sampling reveals personalized diet-microbiome associations in humans. Cell Host Microbe. 2019;25(6):789–802.e5. https://doi.org/10.1016/j.chom.2019.05.005.
Article
CAS
PubMed
Google Scholar
Zeevi D, Korem T, Zmora N, Israeli D, Rothschild D, Weinberger A, Ben-Yacov O, Lador D, Avnit-Sagi T, Lotan-Pompan M, Suez J, Mahdi JA, Matot E, Malka G, Kosower N, Rein M, Zilberman-Schapira G, Dohnalová L, Pevsner-Fischer M, Bikovsky R, Halpern Z, Elinav E, Segal E. Personalized nutrition by prediction of glycemic responses. Cell. 2015;163(5):1079–94. https://doi.org/10.1016/j.cell.2015.11.001.
Article
CAS
PubMed
Google Scholar
Falony G, Joossens M, Vieira-Silva S, Wang J, Darzi Y, Faust K, Kurilshikov A, Bonder MJ, Valles-Colomer M, Vandeputte D, Tito RY, Chaffron S, Rymenans L, Verspecht C, de Sutter L, Lima-Mendez G, D’hoe K, Jonckheere K, Homola D, Garcia R, Tigchelaar EF, Eeckhaudt L, Fu J, Henckaerts L, Zhernakova A, Wijmenga C, Raes J. Population-level analysis of gut microbiome variation. Science. 2016;352(6285):560–4. https://doi.org/10.1126/science.aad3503.
Article
CAS
PubMed
Google Scholar
Zhernakova A, Kurilshikov A, Bonder MJ, Tigchelaar EF, Schirmer M, Vatanen T, Mujagic Z, Vila AV, Falony G, Vieira-Silva S, Wang J, Imhann F, Brandsma E, Jankipersadsing SA, Joossens M, Cenit MC, Deelen P, Swertz MA, LifeLines cohort study, Weersma RK, Feskens EJM, Netea MG, Gevers D, Jonkers D, Franke L, Aulchenko YS, Huttenhower C, Raes J, Hofker MH, Xavier RJ, Wijmenga C, Fu J. Population-based metagenomics analysis reveals markers for gut microbiome composition and diversity. Science. 2016;352(6285):565–9. https://doi.org/10.1126/science.aad3369.
Article
CAS
PubMed
PubMed Central
Google Scholar
Partula V, Mondot S, Torres MJ, Kesse-Guyot E, Deschasaux M, Assmann K, Latino-Martel P, Buscail C, Julia C, Galan P, Hercberg S, Rouilly V, Thomas S, Quintana-Murci L, Albert ML, Duffy D, Lantz O, Touvier M, the Milieu Intérieur Consortium. Associations between usual diet and gut microbiota composition: results from the Milieu Intérieur cross-sectional study. Am J Clin Nutr. 2019;109(5):1472–83. https://doi.org/10.1093/ajcn/nqz029.
Article
PubMed
Google Scholar
Claesson MJ, Jeffery IB, Conde S, Power SE, O’Connor EM, Cusack S, Harris HMB, Coakley M, Lakshminarayanan B, O’Sullivan O, Fitzgerald GF, Deane J, O’Connor M, Harnedy N, O’Connor K, O’Mahony D, van Sinderen D, Wallace M, Brennan L, Stanton C, Marchesi JR, Fitzgerald AP, Shanahan F, Hill C, Ross RP, O’Toole PW. Gut microbiota composition correlates with diet and health in the elderly. Nature. 2012;488(7410):178–84. https://doi.org/10.1038/nature11319.
Article
CAS
PubMed
Google Scholar
McDonald D, Hyde E, Debelius JW, et al. American Gut: an open platform for citizen science microbiome research. mSystems. 2018;3(3):e00031–18. https://doi.org/10.1128/mSystems.00031-18.
Article
CAS
PubMed
PubMed Central
Google Scholar
Martín R, Miquel S, Benevides L, Bridonneau C, Robert V, Hudault S, Chain F, Berteau O, Azevedo V, Chatel JM, Sokol Sokol H, Bermúdez-Humarán LG, Thomas M, Langella P Functional characterization of novel Faecalibacterium prausnitzii strains isolated from healthy volunteers: a step forward in the use of F. prausnitzii as a next-generation probiotic. Front Microbiol 2017;8(1226) doi: https://doi.org/10.3389/fmicb.2017.01226
Mukhopadhya I, Moraïs S, Laverde-Gomez J, et al. Sporulation capability and amylosome conservation among diverse human colonic and rumen isolates of the keystone starch-degrader Ruminococcus bromii. Environ Microbiol 2018;20(1):324-36. doi: https://doi.org/10.1111/1462-2920.14000 [published Online First: 2017/12/07]
De Filippis F, Pasolli E, Tett A, et al. Distinct genetic and functional traits of human intestinal Prevotella copri strains are associated with different habitual diets. Cell Host Microbe. 2019;25(3):444–53.e3. https://doi.org/10.1016/j.chom.2019.01.004.
Article
CAS
PubMed
Google Scholar
Vangay P, Johnson AJ, Ward TL, et al. US immigration westernizes the human gut microbiome. Cell. 2018;175(4):962–72.e10. https://doi.org/10.1016/j.cell.2018.10.029.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gurry T, Dannenberg PH, Finlayson SG, et al. Predictability and persistence of prebiotic dietary supplementation in a healthy human cohort. Sci Rep. 2018;8(1):12699. https://doi.org/10.1038/s41598-018-30783-1.
Article
CAS
PubMed
PubMed Central
Google Scholar
Major G, Pritchard S, Murray K, et al. Colon hypersensitivity to distension, rather than excessive gas production, produces carbohydrate-related symptoms in individuals with irritable bowel syndrome. Gastroenterol. 2017;152(1):124–33.e2. https://doi.org/10.1053/j.gastro.2016.09.062.
Article
Google Scholar
Gibson PR, Shepherd SJ. Personal view: food for thought--western lifestyle and susceptibility to Crohn's disease. The FODMAP hypothesis. Aliment Pharmacol Ther. 2005;21(12):1399–409. https://doi.org/10.1111/j.1365-2036.2005.02506.x.
Article
CAS
PubMed
Google Scholar
Tap J, Derrien M, Törnblom H, et al. Identification of an intestinal microbiota signature associated with severity of irritable bowel syndrome. Gastroenterol. 2017;152(1):111–23.e8. https://doi.org/10.1053/j.gastro.2016.09.049.
Article
Google Scholar
Rajilić-Stojanović M, Jonkers DM, Salonen A, et al. Intestinal microbiota and diet in IBS: causes, consequences, or epiphenomena? Am J Gastroenterol. 2015;110(2):278–87. https://doi.org/10.1038/ajg.2014.427 [published Online First: 2015/01/27].
Article
PubMed
PubMed Central
Google Scholar
Jeffery IB, O'Toole PW, Öhman L, Claesson MJ, Deane J, Quigley EMM, Simrén M. An irritable bowel syndrome subtype defined by species-specific alterations in faecal microbiota. Gut. 2012;61(7):997–1006. https://doi.org/10.1136/gutjnl-2011-301501.
Article
PubMed
Google Scholar
Longstreth GF, Thompson WG, Chey WD, Houghton LA, Mearin F, Spiller RC. Functional bowel disorders. Gastroenterology. 2006;130(5):1480–91. https://doi.org/10.1053/j.gastro.2005.11.061.
Article
PubMed
Google Scholar
Francis CY, Morris J, Whorwell PJ. The irritable bowel severity scoring system: a simple method of monitoring irritable bowel syndrome and its progress. Aliment Pharmacol Ther. 1997;11(2):395–402. https://doi.org/10.1046/j.1365-2036.1997.142318000.x.
Article
CAS
PubMed
Google Scholar
Törnblom H, Van Oudenhove L, Sadik R, et al. Colonic transit time and IBS symptoms: What's the link? Am J Gastroenterol. 2012;107(5):754–60. https://doi.org/10.1038/ajg.2012.5.
Article
PubMed
Google Scholar
Böhn L, Störsrud S, Liljebo T, et al. Diet low in FODMAPs reduces symptoms of irritable bowel syndrome as well as traditional dietary advice: a randomized controlled trial. Gastroenterol. 2015;149(6):1399–407.e2. https://doi.org/10.1053/j.gastro.2015.07.054.
Article
CAS
Google Scholar
Liljebo T, Störsrud S, Andreasson; A. Presence of fermentable oligo-, di-, monosaccharides, and polyols (FODMAPs) in commonly eaten foods: extension of a database to indicate dietary FODMAP content and calculation of intake in the general population from food diary data. BMC Nutr. 2020;6:47.
Arambepola C, Scarborough P, Rayner M. Validating a nutrient profile model. Public Health Nutr. 2008;11(4):371–8. https://doi.org/10.1017/S1368980007000377 [published Online First: 2008/04/01].
Article
PubMed
Google Scholar
Deschasaux M, Huybrechts I, Murphy N, Julia C, Hercberg S, Srour B, Kesse-Guyot E, Latino-Martel P, Biessy C, Casagrande C, Jenab M, Ward H, Weiderpass E, Dahm CC, Overvad K, Kyrø C, Olsen A, Affret A, Boutron-Ruault MC, Mahamat-Saleh Y, Kaaks R, Kühn T, Boeing H, Schwingshackl L, Bamia C, Peppa E, Trichopoulou A, Masala G, Krogh V, Panico S, Tumino R, Sacerdote C, Bueno-de-Mesquita B, Peeters PH, Hjartåker A, Rylander C, Skeie G, Ramón Quirós J, Jakszyn P, Salamanca-Fernández E, Huerta JM, Ardanaz E, Amiano P, Ericson U, Sonestedt E, Huseinovic E, Johansson I, Khaw KT, Wareham N, Bradbury KE, Perez-Cornago A, Tsilidis KK, Ferrari P, Riboli E, Gunter MJ, Touvier M. Nutritional quality of food as represented by the FSAm-NPS nutrient profiling system underlying the Nutri-Score label and cancer risk in Europe: results from the EPIC prospective cohort study. PLoS Med. 2018;15(9):e1002651. https://doi.org/10.1371/journal.pmed.1002651.
Article
CAS
PubMed
PubMed Central
Google Scholar
Plaza Oñate F, Le Chatelier E, Almeida M, et al. MSPminer: abundance-based reconstitution of microbial pan-genomes from shotgun metagenomic data. Bioinformatics. 2019;35(9):1544–52. https://doi.org/10.1093/bioinformatics/bty830 [published Online First: 2018/09/25].
Article
CAS
PubMed
Google Scholar
Li J, Jia H, Cai X, et al. An integrated catalog of reference genes in the human gut microbiome. Nat Biotechnol. 2014;32(8):834–41. https://doi.org/10.1038/nbt.2942https://www.nature.com/articles/nbt.2942#supplementary-information.
Article
CAS
PubMed
Google Scholar
Wolf PG, Biswas A, Morales SE, Greening C, Gaskins HR. H2 metabolism is widespread and diverse among human colonic microbes. Gut Microbes. 2016;7(3):235–45. https://doi.org/10.1080/19490976.2016.1182288.
Article
CAS
PubMed
PubMed Central
Google Scholar
Arumugam M, Raes J, Pelletier E, et al. Enterotypes of the human gut microbiome. Nature. 2011;473(7346):174–80. https://doi.org/10.1038/nature09944 [published Online First: 2011/04/20].
Article
CAS
PubMed
PubMed Central
Google Scholar
Cantarel BL, Lombard V, Henrissat B. Complex carbohydrate utilization by the healthy human microbiome. PLoS One. 2012;7(6):e28742. https://doi.org/10.1371/journal.pone.0028742.
Article
CAS
PubMed
PubMed Central
Google Scholar
Johnson AJ, Zheng JJ, Kang JW, Saboe A, Knights D, Zivkovic AM A guide to diet-microbiome study design. Front Nutr 2020;7(79) doi: https://doi.org/10.3389/fnut.2020.00079
Costea PI, Coelho LP, Sunagawa S, et al. Subspecies in the global human gut microbiome. Mol Syst Biol. 2017;13(12):960. https://doi.org/10.15252/msb.20177589.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tett A, Huang KD, Asnicar F, et al. The Prevotella copri complex comprises four distinct clades underrepresented in westernized populations. Cell Host Microbe 2019;26(5):666-79.e7. doi: https://doi.org/10.1016/j.chom.2019.08.018 [published Online First: 2019/10/10]
Fehlner-Peach H, Magnabosco C, Raghavan V, et al. Distinct polysaccharide utilization profiles of human intestinal Prevotella copri isolates. Cell Host Microbe. 2019;26(5):680–90.e5. https://doi.org/10.1016/j.chom.2019.10.013.
Article
CAS
PubMed
PubMed Central
Google Scholar
Losasso C, Eckert EM, Mastrorilli E, Villiger J, Mancin M, Patuzzi I, di Cesare A, Cibin V, Barrucci F, Pernthaler J, Corno G, Ricci A Assessing the influence of vegan, vegetarian and omnivore oriented westernized dietary styles on human gut microbiota: a cross sectional study. Front Microbiol 2018;9(317) doi: https://doi.org/10.3389/fmicb.2018.00317
Trefflich I, Jabakhanji A, Menzel J, Blaut M, Michalsen A, Lampen A, Abraham K, Weikert C. Is a vegan or a vegetarian diet associated with the microbiota composition in the gut? Results of a new cross-sectional study and systematic review. Critical Reviews in Food Science and Nutrition. 2019;60(17):1–15. https://doi.org/10.1080/10408398.2019.1676697.
Article
Google Scholar
Kalantar-Zadeh K, Berean KJ, Burgell RE, Muir JG, Gibson PR. Intestinal gases: influence on gut disorders and the role of dietary manipulations. Nat Rev Gastroenterol Hepatol. 2019;16(12):733–47. https://doi.org/10.1038/s41575-019-0193-z.
Article
CAS
PubMed
Google Scholar
Levitt MD, Hirsh P, Fetzer CA, et al. H2 excretion after ingestion of complex carbohydrates. Gastroenterology. 1987;92(2):383–9. https://doi.org/10.1016/0016-5085(87)90132-6.
Article
CAS
PubMed
Google Scholar
Flourié B, Leblond A, Florent C, et al. Starch malabsorption and breath gas excretion in healthy humans consuming low- and high-starch diets. Gastroenterology. 1988;95(2):356–63. https://doi.org/10.1016/0016-5085(88)90491-X.
Article
PubMed
Google Scholar
Suarez FL, Springfield J, Furne JK, Lohrmann TT, Kerr PS, Levitt MD. Gas production in humans ingesting a soybean flour derived from beans naturally low in oligosaccharides. Am J Clin Nutr. 1999;69(1):135–9. https://doi.org/10.1093/ajcn/69.1.135.
Article
CAS
PubMed
Google Scholar
Maier L, Vyas R, Cordova Carmen D, et al. Microbiota-derived hydrogen fuels Salmonella typhimurium invasion of the gut ecosystem. Cell Host Microbe. 2013;14(6):641–51. https://doi.org/10.1016/j.chom.2013.11.002.
Article
CAS
PubMed
Google Scholar
Le Nevé B, Derrien M, Tap J, et al. Fasting breath H2 and gut microbiota metabolic potential are associated with the response to a fermented milk product in irritable bowel syndrome. PLoS One. 2019;14(4):e0214273. https://doi.org/10.1371/journal.pone.0214273.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bingham SA. The dietary assessment of individuals ; methods, accuracy, new techniques and recommendation. Nutr Abst Rev (series A). 1987;57:705–42.
Google Scholar