Cobián Güemes AG, Youle M, Cantú VA, Felts B, Nulton J, Rohwer F. Viruses as winners in the game of life. Annu Rev Virol. 2016;3:197–214 Annual Reviews.
Article
PubMed
CAS
Google Scholar
Bohannan BJM, Lenski RE. Linking genetic change to community evolution: insights from studies of bacteria and bacteriophage. Ecol Lett. 2000;3:362–77. John Wiley & Sons, Ltd.
Buckling A, Rainey PB. Antagonistic coevolution between a bacterium and a bacteriophage. Proc R Soc B Biol Sci. 2002;269:931–6 The Royal Society.
Article
Google Scholar
Canchaya C, Fournous G, Chibani-Chennoufi S, Dillmann ML, Brüssow H. Phage as agents of lateral gene transfer. Curr Opin Microbiol. 2003;6:417–24 Elsevier Ltd.
Article
CAS
PubMed
Google Scholar
Breitbart M, Bonnain C, Malki K, Sawaya NA. Phage puppet masters of the marine microbial realm. Nat Microbiol. 2018;3:754–66. Nature Publishing Group.
Clokie MR, Millard AD, Letarov AV, Heaphy S. Phages in nature. Bacteriophage. 2011;1:31–45 Landes Bioscience.
Article
PubMed
PubMed Central
Google Scholar
Sutton TDS, Hill C. Gut bacteriophage: Current understanding and challenges. Front Endocrinol (Lausanne). 2019;10:784 Frontiers Media S.A.
Article
Google Scholar
Paez-Espino D, Eloe-Fadrosh EA, Pavlopoulos GA, Thomas AD, Huntemann M, Mikhailova N, et al. Uncovering Earth’s virome. Nature. 2016;536:425–30 Nature Publishing Group.
Article
CAS
PubMed
Google Scholar
Gregory AC, Zayed AA, Conceição-Neto N, Temperton B, Bolduc B, Alberti A, et al. Marine DNA viral macro- and microdiversity from Pole to Pole. Cell. 2019;177:1109–1123.e14.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hurwitz BL, U’Ren JM. Viral metabolic reprogramming in marine ecosystems. Curr Opin Microbiol. 2016;31:161–8 Elsevier Ltd.
Article
CAS
PubMed
Google Scholar
Yooseph S, Sutton G, Rusch DB, Halpern AL, Williamson SJ, Remington K, et al. The Sorcerer II global ocean sampling expedition: expanding the universe of protein families. PLoS Biol. 2007;5:0432–66 Public Library of Science.
Article
CAS
Google Scholar
Roux S, Brum JR, Dutilh BE, Sunagawa S, Duhaime MB, Loy A, et al. Ecogenomics and potential biogeochemical impacts of globally abundant ocean viruses. Nature. 2016;537:689–93 Nature Publishing Group.
Article
CAS
PubMed
Google Scholar
Anantharaman K, Duhaime MB, Breier JA, Wendt KA, Toner BM, Dick GJ. Sulfur oxidation genes in diverse deep-sea viruses. Science (80- ). 2014;344:757–60 American Association for the Advancement of Science.
Article
CAS
Google Scholar
Zhang R, Wei W, Cai L. The fate and biogeochemical cycling of viral elements. Nat Rev Microbiol. 2014;12:850–1 Nature Publishing Group.
Article
CAS
PubMed
Google Scholar
York A. Marine microbiology: Algal virus boosts nitrogen uptake in the ocean. Nat Rev Microbiol. 2017;15:573 Nature Publishing Group.
Article
CAS
PubMed
Google Scholar
Jin M, Guo X, Zhang R, Qu W, Gao B, Zeng R. Diversities and potential biogeochemical impacts of mangrove soil viruses. Microbiome. 2019;7:1–15 BioMed Central Ltd.
Article
CAS
Google Scholar
Dinsdale EA, Edwards RA, Hall D, Angly F, Breitbart M, Brulc JM, et al. Functional metagenomic profiling of nine biomes. Nature. 2008;452:629–32 Nature Publishing Group.
Article
CAS
PubMed
Google Scholar
Sharon I, Battchikova N, Aro EM, Giglione C, Meinnel T, Glaser F, et al. Comparative metagenomics of microbial traits within oceanic viral communities. ISME J. 2011;5:1178–90 Nature Publishing Group.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hurwitz BL, Hallam SJ, Sullivan MB. Metabolic reprogramming by viruses in the sunlit and dark ocean. Genome Biol. 2013;14:R123 BioMed Central.
Article
PubMed
PubMed Central
Google Scholar
Hurwitz BL, Brum JR, Sullivan MB. Depth-stratified functional and taxonomic niche specialization in the “core” and “flexible” Pacific Ocean Virome. ISME J. 2015;9:472–84 Nature Publishing Group.
Article
CAS
PubMed
Google Scholar
Monier A, Chambouvet A, Milner DS, Attah V, Terrado R, Lovejoy C, et al. Host-derived viral transporter protein for nitrogen uptake in infected marine phytoplankton. Proc Natl Acad Sci U S A. 2017;114:E7489–98 National Academy of Sciences.
Article
CAS
PubMed
PubMed Central
Google Scholar
Freeman VJ. Studies on the virulence of bacteriophage-infected strains of Corynebacterium diphtheriae. J Bacteriol. 1951;61:675–88 American Society for Microbiology (ASM).
Article
CAS
PubMed
PubMed Central
Google Scholar
Eklund MW, Poysky FT, Meyers JA, Pelroy GA. Interspecies conversion of clostridium botulinum type C to Clostridium novyi type A by bacteriophage. Science (80- ). 1974;186:456–8 Science.
Article
CAS
Google Scholar
Waldor MK, Mekalanos JJ. Lysogenic conversion by a filamentous phage encoding cholera toxin. Science (80- ). 1996;272:1910–3 American Association for the Advancement of Science (AAAS).
Article
CAS
Google Scholar
Wagner PL, Livny J, Neely MN, Acheson DWK, Friedman DI, Waldor MK. Bacteriophage control of Shiga toxin 1 production and release by Escherichia coli. Mol Microbiol. 2002;44:957–70 John Wiley & Sons, Ltd.
Article
CAS
PubMed
Google Scholar
Khalil RKS, Skinner C, Patfield S, He X. Phage-mediated Shiga toxin (Stx) horizontal gene transfer and expression in non-Shiga toxigenic Enterobacter and Escherichia coli strains. Pathog Dis. 2016;74:1–11.
Fortier LC, Sekulovic O. Importance of prophages to evolution and virulence of bacterial pathogens. Virulence. 2013;4:354–65 Taylor and Francis Inc.
Article
PubMed
PubMed Central
Google Scholar
Balcázar JL. Implications of bacteriophages on the acquisition and spread of antibiotic resistance in the environment. Int Microbiol. 2020;23:475–9. Springer.
Enault F, Briet A, Bouteille L, Roux S, Sullivan MB, Petit MA. Phages rarely encode antibiotic resistance genes: a cautionary tale for virome analyses. ISME J. 2017;11:237–47 Nature Publishing Group.
Article
CAS
PubMed
Google Scholar
Debroas D, Siguret C. Viruses as key reservoirs of antibiotic resistance genes in the environment. ISME J. 2019;13:2856–67 Nature Publishing Group.
Article
CAS
PubMed
PubMed Central
Google Scholar
AHDB. UK and EU cow numbers [Internet]. 2018 [cited 2020 Jun 19]. Available from: https://ahdb.org.uk/dairy/uk-and-eu-cow-numbers
Google Scholar
Font-Palma C. Methods for the Treatment of Cattle Manure—A Review. C MDPI AG. 2019;5:27.
CAS
Google Scholar
Smith KA, Williams AG. Production and management of cattle manure in the UK and implications for land application practice. Nicholson F, editor. Soil Use Manag. 2016;32:73–82 Blackwell Publishing Ltd.
Article
Google Scholar
AHDB. Cost effective slurry storage strategies [Internet]. Available from: https://dairy.ahdb.org.uk/resources-library/technical-information/health-welfare/cost-effective-slurry-storage-strategies/#.XvCQompKjwd.
De Vries JW, Groenestein CM, De Boer IJM. Environmental consequences of processing manure to produce mineral fertilizer and bio-energy. J Environ Manage. 2012;102:173–83.
Article
PubMed
CAS
Google Scholar
Prapaspongsa T, Christensen P, Schmidt JH, Thrane M. LCA of comprehensive pig manure management incorporating integrated technology systems. J Clean Prod. 2010;18:1413–22.
Article
CAS
Google Scholar
Sandars DL, Audsley E, Cañete C, Cumby TR, Scotford IM, Williams AG. Environmental benefits of livestock manure management practices and technology by life cycle assessment. Biosyst Eng. 2003;84:267–81.
Article
Google Scholar
Thomassen MA, van Calker KJ, Smits MCJ, Iepema GL, de Boer IJM. Life cycle assessment of conventional and organic milk production in the Netherlands. Agric Syst. 2008;96:95–107.
Article
Google Scholar
UK Government. Nitrate Vulnerable Zones (NVZs). Eur Comm Nitrates Dir. 2013;1996 [cited 2020 Jun 19]. Available from: https://www.gov.uk/government/collections/nitrate-vulnerable-zones.
UK Government. Use organic manures and manufactured fertilisers on farmland [Internet]. [cited 2020 Jul 14]. Available from: https://www.gov.uk/government/publications/nitrates-and-phosphates-plan-organic-fertiliser-and-manufactured-fertiliser-use/use-organic-manures-and-manufactured-fertilisers-on-farmland.
Besler I, Sazinas P, Harrison C, Gannon L, Redgwell T, Michniewski S, et al. Genome sequence and characterization of Coliphage vB_Eco_SLUR29. PHAGE. 2020;1:38–44 Mary Ann Liebert Inc.
Article
Google Scholar
Sazinas P, Redgwell T, Rihtman B, Grigonyte A, Michniewski S, Scanlan DJ, et al. Comparative genomics of bacteriophage of the genus Seuratvirus. Genome Biol Evol. 2018;10:72–6 Oxford University Press.
Article
CAS
PubMed
Google Scholar
Smith R, O’Hara M, Hobman JL, Millard AD. Draft genome sequences of 14 Escherichia coli phages isolated from cattle slurry. Genome Announc. 2015;3:e01364–15 American Society for Microbiology.
PubMed
PubMed Central
Google Scholar
Brum JR, Cesar Ignacio-Espinoza J, Roux S, Doulcier G, Acinas SG, Alberti A, et al. Patterns and ecological drivers of ocean viral communities. Science. 2015;348:1261498. American Association for the Advancement of Science.
Dutilh BE, Cassman N, McNair K, Sanchez SE, Silva GGZ, Boling L, et al. A highly abundant bacteriophage discovered in the unknown sequences of human faecal metagenomes. Nat Commun. 2014;5:4498.
Article
CAS
PubMed
Google Scholar
Shkoporov AN, Khokhlova EV, Fitzgerald CB, Stockdale SR, Draper LA, Ross RP, et al. ΦCrAss001 represents the most abundant bacteriophage family in the human gut and infects Bacteroides intestinalis. Nat Commun. 2018;9:1–8 Nature Publishing Group.
Article
CAS
Google Scholar
Guerin E, Shkoporov A, Stockdale SR, Clooney AG, Ryan FJ, Sutton TDS, et al. Biology and taxonomy of crAss-like bacteriophages, the most abundant virus in the human gut. Cell Host Microbe. 2018;24:653–664.e6 Cell Press.
Article
CAS
PubMed
Google Scholar
Zhao Y, Temperton B, Thrash JC, Schwalbach MS, Vergin KL, Landry ZC, et al. Abundant SAR11 viruses in the ocean. Nature. 2013;494:357–60 Nature Publishing Group.
Article
CAS
PubMed
Google Scholar
Martinez-Hernandez F, Fornas Ò, Lluesma Gomez M, Garcia-Heredia I, Maestre-Carballa L, López-Pérez M, et al. Single-cell genomics uncover Pelagibacter as the putative host of the extremely abundant uncultured 37-F6 viral population in the ocean. ISME J. 2019;13:232–6 2018/09/18. Nature Publishing Group UK.
Article
CAS
PubMed
Google Scholar
Olson ND, Treangen TJ, Hill CM, Cepeda-Espinoza V, Ghurye J, Koren S, et al. Metagenomic assembly through the lens of validation: recent advances in assessing and improving the quality of genomes assembled from metagenomes. Brief Bioinform. 2019;20:1140–50 Oxford University Press.
Article
CAS
PubMed
Google Scholar
Temperton B, Giovannoni SJ. Metagenomics: microbial diversity through a scratched lens. Curr Opin Microbiol. 2012;15:605–12. Elsevier Current Trends.
Mizuno CM, Ghai R, Rodriguez-Valera F. Evidence for metaviromic islands in marine phages. Front Microbiol. 2014;5:27. Frontiers Research Foundation.
Roux S, Emerson JB, Eloe-Fadrosh EA, Sullivan MB. Benchmarking viromics: An in silico evaluation of metagenome-enabled estimates of viral community composition and diversity. PeerJ. 2017;2017:e3817.
Article
Google Scholar
Watson M, Warr A. Errors in long-read assemblies can critically affect protein prediction. Nat Biotechnol. 2019;37:124–6.
Article
CAS
PubMed
Google Scholar
Buck D, Weirather JL, de Cesare M, Wang Y, Piazza P, Sebastiano V, et al. Comprehensive comparison of Pacific Biosciences and Oxford Nanopore Technologies and their applications to transcriptome analysis. F1000Research. 2017;6:100. Faculty of 1000 Ltd.
Warwick-Dugdale J, Solonenko N, Moore K, Chittick L, Gregory AC, Allen MJ, et al. Long-read viral metagenomics captures abundant and microdiverse viral populations and their niche-defining genomic islands. PeerJ. 2019;7:e6800.
Beaulaurier J, Luo E, Eppley JM, Den Uyl P, Dai X, Burger A, et al. Assembly-free single-molecule sequencing recovers complete virus genomes from natural microbial communities. Genome Res. 2020;30:437–46 Cold Spring Harbor Laboratory Press.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sazinas P, Michniewski S, Rihtman B, Redgwell T, Grigonyte A, Brett A, et al. Metagenomics of the viral community in three cattle slurry samples. Microbiol Resour Announc. 2019;8:e01442–18 Am Soc Microbiol.
PubMed
PubMed Central
Google Scholar
Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–20.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li D, Luo R, Liu CM, Leung CM, Ting HF, Sadakane K, et al. MEGAHIT v1.0: A fast and scalable metagenome assembler driven by advanced methodologies and community practices. Methods. 2016;102:3–11 Academic Press Inc.
Article
CAS
PubMed
Google Scholar
Li H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics. 2018;34:3094–100.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zolfo M, Pinto F, Asnicar F, Manghi P, Tett A, Bushman FD, et al. Detecting contamination in viromes using ViromeQC. Nat Biotechnol. 2019;37:1408–12 Nature Research.
Article
CAS
PubMed
Google Scholar
Ondov BD, Treangen TJ, Melsted P, Mallonee AB, Bergman NH, Koren S, et al. Mash: Fast genome and metagenome distance estimation using MinHash. Genome Biol. 2016;17:132 BioMed Central Ltd.
Article
PubMed
PubMed Central
CAS
Google Scholar
O’Leary NA, Wright MW, Brister JR, Ciufo S, Haddad D, McVeigh R, et al. Reference sequence (RefSeq) database at NCBI: Current status, taxonomic expansion, and functional annotation. Nucleic Acids Res. 2016;44:D733–45.
Article
PubMed
CAS
Google Scholar
Kieft K, Zhou Z, Anantharaman K. VIBRANT: automated recovery, annotation and curation of microbial viruses, and evaluation of viral community function from genomic sequences. Microbiome. 2020;8:90 Cold Spring Harbor Laboratory.
Article
PubMed
PubMed Central
Google Scholar
Ren J, Song K, Deng C, Ahlgren NA, Fuhrman JA, Li Y, et al. Identifying viruses from metagenomic data using deep learning. Quant Biol. 2020;8:64–77 Higher Education Press.
Article
CAS
PubMed
PubMed Central
Google Scholar
Grazziotin AL, Koonin EV, Kristensen DM. Prokaryotic Virus Orthologous Groups (pVOGs): A resource for comparative genomics and protein family annotation. Nucleic Acids Res. 2017;45:D491–8 Oxford University Press.
Article
CAS
PubMed
Google Scholar
HMMER [Internet]. [cited 2020 May 29]. Available from: http://hmmer.org/.
Bushnell B. BBMap download | SourceForge.net [Internet]. 2013 [cited 2020 May 29]. Available from: https://sourceforge.net/projects/bbmap/.
Walker BJ, Abeel T, Shea T, Priest M, Abouelliel A, Sakthikumar S, et al. Pilon: An integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS One. 2014;9:e112963.
Article
PubMed
PubMed Central
CAS
Google Scholar
GitHub - simroux/ClusterGenomes: archive for ClusterGenomes scripts [Internet]. [cited 2020 May 29]. Available from: https://github.com/simroux/ClusterGenomes.
Nayfach S, Pedro Camargo A, Eloe-Fadrosh E, Roux S. CheckV: assessing the quality of metagenome-assembled viral genomes. bioRxiv. 2020; 2020.05.06.081778. Cold Spring Harbor Laboratory. Available from: https://doi.org/10.1101/2020.05.06.081778.
McMurdie PJ, Holmes S. Phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. Watson M, editor. PLoS One. 2013;8:e61217 Public Library of Science.
Article
CAS
PubMed
PubMed Central
Google Scholar
Team RC. R: A language and environment for statistical computing [Internet]. Vienna: R Foundation for Statistical Computing; 2018. Available from: https://www.r-project.org/
Google Scholar
Shaw LM, Blanchard A, Chen Q, An X, Davies P, Tötemeyer S, et al. DirtyGenes: testing for significant changes in gene or bacterial population compositions from a small number of samples. Sci Rep. 2019;9:1–10 Nature Publishing Group.
Google Scholar
Seemann T. Prokka: Rapid prokaryotic genome annotation. Bioinformatics. 2014;30:2068–9.
Article
CAS
PubMed
Google Scholar
Michniewski S, Redgwell T, Grigonyte A, Rihtman B, Aguilo-Ferretjans M, Christie-Oleza J, et al. Riding the wave of genomics to investigate aquatic coliphage diversity and activity. Environ Microbiol. 2019;21:2112–28 2019/04/04. John Wiley & Sons, Inc.
Article
PubMed
PubMed Central
Google Scholar
Fu L, Niu B, Zhu Z, Wu S, Li W. CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics. 2012;28:3150–2 2012/10/11. Oxford University Press.
Article
CAS
PubMed
PubMed Central
Google Scholar
Huerta-Cepas J, Szklarczyk D, Heller D, Hernández-Plaza A, Forslund SK, Cook H, et al. eggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Res. 2018;47:D309–14.
Article
PubMed Central
CAS
Google Scholar
Zhang H, Yohe T, Huang L, Entwistle S, Wu P, Yang Z, et al. dbCAN2: a meta server for automated carbohydrate-active enzyme annotation. Nucleic Acids Res. 2018;46:W95–101.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yan F, Yu X, Duan Z, Lu J, Jia B, Qiao Y, et al. Discovery and characterization of the evolution, variation and functions of diversity-generating retroelements using thousands of genomes and metagenomes. BMC Genomics. 2019;20:595 BioMed Central Ltd.
Article
PubMed
PubMed Central
CAS
Google Scholar
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics. 2009;25:2078–9 2009/06/08. Oxford University Press.
Article
PubMed
PubMed Central
CAS
Google Scholar
Koboldt DC, Zhang Q, Larson DE, Shen D, McLellan MD, Lin L, et al. VarScan 2: somatic mutation and copy number alteration discovery in cancer by exome sequencing. Genome Res. 2012;22:568–76 2012/02/02. Cold Spring Harbor Laboratory Press.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bin Jang H, Bolduc B, Zablocki O, Kuhn JH, Roux S, Adriaenssens EM, et al. Taxonomic assignment of uncultivated prokaryotic virus genomes is enabled by gene-sharing networks. Nat Biotechnol. 2019;37:632–9 Nature Publishing Group.
Article
PubMed
CAS
Google Scholar
Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13:2498–504 Cold Spring Harbor Laboratory Press.
Article
CAS
PubMed
PubMed Central
Google Scholar
Galiez C, Siebert M, Enault F, Vincent J, Söding J. WIsH: who is the host? Predicting prokaryotic hosts from metagenomic phage contigs. Bioinformatics. 2017;33:3113–4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sherrill-Mix S. taxonomizr: Functions to Work with NCBI Accessions and Taxonomy. R Packag version 051 [Internet]. 2018 [cited 2020 May 29]. Available from: https://cran.r-project.org/web/packages/taxonomizr/
Google Scholar
El-Gebali S, Mistry J, Bateman A, Eddy SR, Luciani A, Potter SC, et al. The Pfam protein families database in 2019. Nucleic Acids Res. 2019;47:D427–32 Oxford University Press.
Article
CAS
PubMed
Google Scholar
Seemann T. snippy: Rapid haploid variant calling and core genome alignment [Internet]. 2015. [cited 2020 May 29]. Available from: https://github.com/tseemann/snippy
Google Scholar
Adriaenssens EM, Rodney BJ. How to name and classify your phage: an informal guide. Viruses. 2017;9:1–9.
Article
Google Scholar
Kim M, Wells JE. A meta-analysis of bacterial diversity in the feces of cattle. Curr Microbiol. 2016;72:145–51 Springer New York LLC.
Article
CAS
PubMed
Google Scholar
Delgado B, Bach A, Guasch I, González C, Elcoso G, Pryce JE, et al. Whole rumen metagenome sequencing allows classifying and predicting feed efficiency and intake levels in cattle. Sci Rep. 2019;9:1–13 Nature Publishing Group.
Google Scholar
Li F, Hitch TCA, Chen Y, Creevey CJ, Guan LL. Comparative metagenomic and metatranscriptomic analyses reveal the breed effect on the rumen microbiome and its associations with feed efficiency in beef cattle 06 Biological Sciences 0604 Genetics 06 Biological Sciences 0605 Microbiology. Microbiome. 2019;7:6 BioMed Central Ltd.
Article
PubMed
PubMed Central
Google Scholar
Shkoporov AN, Clooney AG, Sutton TDS, Ryan FJ, Daly KM, Nolan JA, et al. The human gut virome is highly diverse, stable, and individual specific. Cell Host Microbe. 2019;26:527–541.e5 Elsevier Inc.
Article
CAS
PubMed
Google Scholar
Yutin N, Makarova KS, Gussow AB, Krupovic M, Segall A, Edwards RA, et al. Discovery of an expansive bacteriophage family that includes the most abundant viruses from the human gut. Nat Microbiol. 2018;3:38–46 2017/11/13.
Article
CAS
PubMed
Google Scholar
Tatusov RL, Galperin MY, Natale DA, Koonin EV. The COG database: a tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Res. 2000;28:33–6 Oxford University Press.
Article
CAS
PubMed
PubMed Central
Google Scholar
Billington SJ, Johnston JL, Rood JI. Virulence regions and virulence factors of the ovine footrot pathogen, Dichelobacter nodosus. FEMS Microbiol Lett. 1996;145:147–56.
Article
CAS
PubMed
Google Scholar
Bloomfield GA, Whittle G, McDonagh MB, Katz ME, Cheetham BF. Analysis of sequences flanking the vap regions of Dichelobacter nodosus: evidence for multiple integration events, a killer system, and a new genetic element. Microbiology. 1997;143:553–62 Microbiology Society.
Article
CAS
PubMed
Google Scholar
Ji X, Sun Y, Liu J, Zhu L, Guo X, Lang X, et al. A novel virulence-associated protein, vapE, in Streptococcus suis serotype 2. Mol Med Rep. 2016;13:2871–7 Spandidos Publications.
Article
CAS
PubMed
Google Scholar
Rezaei Javan R, Ramos-Sevillano E, Akter A, Brown J, Brueggemann AB. Prophages and satellite prophages are widespread in Streptococcus and may play a role in pneumococcal pathogenesis. Nat Commun. 2019;10:1–14 Nature Publishing Group.
Article
CAS
Google Scholar
Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJE. The Phyre2 web portal for protein modeling, prediction and analysis. Nat Protoc. 2015;10:845–58 Nature Publishing Group.
Article
CAS
PubMed
PubMed Central
Google Scholar
Park KS, Kim TY, Kim JH, Lee JH, Jeon JH, Karim AM, et al. PNGM-1, a novel subclass B3 metallo-β-lactamase from a deep-sea sediment metagenome. J Glob Antimicrob Resist. 2018;14:302–5 Elsevier Ltd.
Article
PubMed
Google Scholar
Moon K, Jeon JH, Kang I, Park KS, Lee K, Cha CJ, et al. Freshwater viral metagenome reveals novel and functional phage-borne antibiotic resistance genes. Microbiome. 2020;8:75 NLM (Medline).
Article
PubMed
PubMed Central
Google Scholar
Liu M, Deora R, Doulatov SR, Gingery M, Eiserling FA, Preston A, et al. Reverse transcriptase-mediated tropism switching in Bordetella bacteriophage. Science (80- ). 2002;295:2091–4.
Article
CAS
Google Scholar
Roux S, Solonenko NE, Dang VT, Poulos BT, Schwenck SM, Goldsmith DB, et al. Towards quantitative viromics for both double-stranded and single-stranded DNA viruses. PeerJ. 2016;4:e2777 Available from: https://pubmed.ncbi.nlm.nih.gov/28003936. PeerJ Inc.
Article
PubMed
PubMed Central
CAS
Google Scholar
Garmaeva S, Sinha T, Kurilshikov A, Fu J, Wijmenga C, Zhernakova A. Studying the gut virome in the metagenomic era: challenges and perspectives. BMC Biol. 2019;17:1–14 BioMed Central Ltd.
Article
Google Scholar
Reyes A, Haynes M, Hanson N, Angly FE, Heath AC, Rohwer F, et al. Viruses in the faecal microbiota of monozygotic twins and their mothers. Nature. 2010;466:334–8 NIH Public Access.
Article
CAS
PubMed
PubMed Central
Google Scholar
Minot S, Bryson A, Chehoud C, Wu GD, Lewis JD, Bushman FD. Rapid evolution of the human gut virome. Proc Natl Acad Sci U S A. 2013;110:12450–5 2013/07/08. National Academy of Sciences.
Article
CAS
PubMed
PubMed Central
Google Scholar
Minot S, Sinha R, Chen J, Li H, Keilbaugh SA, Wu GD, et al. The human gut virome: Inter-individual variation and dynamic response to diet. Genome Res. 2011;21:1616–25.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lim ES, Zhou Y, Zhao G, Bauer IK, Droit L, Ndao IM, et al. Early life dynamics of the human gut virome and bacterial microbiome in infants. Nat Med. 2015;21:1228–34 Nature Publishing Group.
Article
CAS
PubMed
PubMed Central
Google Scholar
Moreno-Gallego JL, Chou SP, Di Rienzi SC, Goodrich JK, Spector TD, Bell JT, et al. Virome diversity correlates with intestinal microbiome diversity in adult monozygotic twins. Cell Host Microbe. 2019;25:261–272.e5 Cell Press.
Article
CAS
PubMed
PubMed Central
Google Scholar
Benler S, Cobián-Güemes AG, McNair K, Hung SH, Levi K, Edwards R, et al. A diversity-generating retroelement encoded by a globally ubiquitous Bacteroides phage 06 Biological Sciences 0605 Microbiology. Microbiome. 2018;6:1–10.
Article
Google Scholar
Wu L, Gingery M, Abebe M, Arambula D, Czornyj E, Handa S, et al. Diversity-generating retroelements: natural variation, classification and evolution inferred from a large-scale genomic survey. Nucleic Acids Res. 2018;46:11–24.
Article
CAS
PubMed
Google Scholar
Edwards RA, Vega AA, Norman HM, Ohaeri M, Levi K, Dinsdale EA, et al. Global phylogeography and ancient evolution of the widespread human gut virus crAssphage. Nat Microbiol. 2019;4:1727–36.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cuscó A, Salas A, Torre C, Francino O. Shallow metagenomics with Nanopore sequencing in canine fecal microbiota improved bacterial taxonomy and identified an uncultured CrAssphage. bioRxiv. 2019:1–12 Available from: https://doi.org/10.1101/585067. Cold Spring Harbor Laboratory.
Oude Munnink BB, Canuti M, Deijs M, de Vries M, Jebbink MF, Rebers S, et al. Unexplained diarrhoea in HIV-1 infected individuals. BMC Infect Dis. 2014;14:22 BioMed Central.
Article
PubMed
PubMed Central
Google Scholar
Biosolids Assurance Scheme. ABOUT BIOSOLIDS : assured biosolids [Internet]. 2020 [cited 2020 Jul 22]. Available from: https://assuredbiosolids.co.uk/about-biosolids/.
Google Scholar
Gao SM, Schippers A, Chen N, Yuan Y, Zhang MM, Li Q, et al. Depth-related variability in viral communities in highly stratified sulfidic mine tailings. Microbiome. 2020;8:89 BioMed Central.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rihtman B, Bowman-Grahl S, Millard A, Corrigan RM, Clokie MRJ, Scanlan DJ. Cyanophage MazG is a pyrophosphohydrolase but unable to hydrolyse magic spot nucleotides. Environ Microbiol Rep. 2019;11:448–55 Wiley-Blackwell.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu F, Lee H, Lan R, Zhang L. Zonula occludens toxins and their prophages in Campylobacter species. Gut Pathog. 2016;8:43 BioMed Central Ltd.
Article
CAS
PubMed
PubMed Central
Google Scholar
Castillo D, Pérez-Reytor D, Plaza N, Ramírez-Araya S, Blondel CJ, Corsini G, et al. Exploring the genomic traits of non-toxigenic Vibrio parahaemolyticus strains isolated in southern Chile. Front Microbiol. 2018;9:161 Frontiers Media S.A.
Article
PubMed
PubMed Central
Google Scholar
Romero P, Croucher NJ, Hiller NL, Hu FZ, Ehrlich GD, Bentley SD, et al. Comparative genomic analysis of ten Streptococcus pneumoniae temperate bacteriophages. J Bacteriol. 2009;191:4854–62 American Society for Microbiology (ASM).
Article
CAS
PubMed
PubMed Central
Google Scholar
Anderson CL, Sullivan MB, Fernando SC. Dietary energy drives the dynamic response of bovine rumen viral communities. Microbiome. 2017;5:155 Available from: https://pubmed.ncbi.nlm.nih.gov/29179741. BioMed Central.
Article
PubMed
PubMed Central
Google Scholar
Chen S, Liao W, Liu C, Wen Z, Kincaid RL, Harrison JH, et al. Value-Added Chemicals from Animal Manure. Pacific Northwest Natl Lab. 2003;PNNL-14495:1–142.
Google Scholar
Cook KL, Whitehead TR, Spence C, Cotta MA. Evaluation of the sulfate-reducing bacterial population associated with stored swine slurry. Anaerobe. 2008;14:172–80 Academic Press.
Article
CAS
PubMed
Google Scholar
St-Pierre B, Wright ADG. Implications from distinct sulfate-reducing bacteria populations between cattle manure and digestate in the elucidation of H2S production during anaerobic digestion of animal slurry. Appl Microbiol Biotechnol. 2017;101:5543–56 [cited 2020 Jul 22]. Available from: https://link.springer.com/article/10.1007/s00253-017-8261-1. Springer Verlag.
Article
CAS
PubMed
Google Scholar
Rückert C. Sulfate reduction in microorganisms—recent advances and biotechnological applications. Curr Opin Microbiol. 2016;33:140–6. Elsevier Ltd.
Howard-Varona C, Lindback MM, Bastien GE, Solonenko N, Zayed AA, Jang HB, et al. Phage-specific metabolic reprogramming of virocells. ISME J. 2020;14:881–95 [cited 2020 Aug 9]. Springer Nature. Available from: https://doi.org/10.1038/s41396-019-0580-z.
Article
PubMed
PubMed Central
Google Scholar
Sullivan MB, Huang KH, Ignacio-Espinoza JC, Berlin AM, Kelly L, Weigele PR, et al. Genomic analysis of oceanic cyanobacterial myoviruses compared with T4-like myoviruses from diverse hosts and environments. Environ Microbiol. 2010;12:3035–56 Blackwell Publishing Ltd.
Article
CAS
PubMed
PubMed Central
Google Scholar
Millard AD, Zwirglmaier K, Downey MJ, Mann NH, Scanlan DJ. Comparative genomics of marine cyanomyoviruses reveals the widespread occurrence of Synechococcus host genes localized to a hyperplastic region: implications for mechanisms of cyanophage evolution. Environ Microbiol. 2009;11:2370–87 John Wiley & Sons, Ltd.
Article
CAS
PubMed
Google Scholar
Clokie MRJ, Mann NH. Marine cyanophages and light. Environ Microbiol. 2006;8:2074–82 [Internet]. John Wiley & Sons, Ltd. Available from: https://doi.org/10.1111/j.1462-2920.2006.01171.x.
Article
CAS
PubMed
Google Scholar
Clokie MRJ, Millard AD, Mann NH. T4 genes in the marine ecosystem: studies of the T4-like cyanophages and their role in marine ecology. Virol J. 2010;7:291 Available from: https://pubmed.ncbi.nlm.nih.gov/21029435. BioMed Central.
Article
PubMed
PubMed Central
CAS
Google Scholar
Balcazar JL. Bacteriophages as vehicles for antibiotic resistance genes in the environment. PLoS Pathog. 2014;10:e1004219 Available from: https://pubmed.ncbi.nlm.nih.gov/25078987. Public Library of Science.
Article
PubMed
PubMed Central
CAS
Google Scholar
Lekunberri I, Subirats J, Borrego CM, Balcázar JL. Exploring the contribution of bacteriophages to antibiotic resistance. Environ Pollut. 2017;220:981–4 Elsevier Ltd.
Article
CAS
PubMed
Google Scholar
Koonin EV. The second cholera toxin, Zot, and its plasmid-encoded and phage-encoded homologues constitute a group of putative ATPases with an altered purine NTP-binding motif. FEBS Lett. 1992;312:3–6 No longer published by Elsevier.
Article
CAS
PubMed
Google Scholar
Schmidt E, Kelly SM, van der Walle CF. Tight junction modulation and biochemical characterisation of the zonula occludens toxin C-and N-termini. FEBS Lett. 2007;581:2974–80 No longer published by Elsevier.
Article
CAS
PubMed
Google Scholar
Zadoks RN, Middleton JR, McDougall S, Katholm J, Schukken YH. Molecular epidemiology of mastitis pathogens of dairy cattle and comparative relevance to humans. J Mammary Gland Biol Neoplasia. 2011;16:357–72 Springer.
Article
PubMed
PubMed Central
Google Scholar
Whist AC, Østerås O, Sølverød L. Streptococcus dysgalactiae isolates at calving and lactation performance within the same lactation. J Dairy Sci. 2007;90:766–78 American Dairy Science Association.
Article
CAS
PubMed
Google Scholar
Keefe GP. Streptococcus agalactiae mastitis: a review. Can Vet J. 1997;38:429–37 Canadian Veterinary Medical Association.
CAS
PubMed
PubMed Central
Google Scholar
Ruegg PL, Petersson-Wolfe CS. Mastitis in dairy cows [Internet]. Vet Clin North Am Food Anim Pract. 2018:ix–x [cited 2020 Jun 8]. Available from: https://dairy.ahdb.org.uk/technical-information/animal-health-welfare/mastitis/#.Xt5XWZ5Kjwc.