Morris JT, Sundberg K, Hopkinson CS. Salt marsh primary production and its responses to relative sea level and nutrients in estuaries at Plum Island, Massachusetts, and North Inlet, South Carolina, USA. Oceanography. 2013;26:78–84.
Article
Google Scholar
Trilla GG, De Marco S, Marcovecchio J, Vicari R, Kandus P. Net primary productivity of Spartina densiflora Brong in an SW Atlantic coastal salt marsh. Estuar Coasts. 2010;33:953–62.
Article
CAS
Google Scholar
Vera F, Gutierrez JL, Ribeiro PD. Aerial and detritus production of the cordgrass Spartina densiflora in a southwestern Atlantic salt marsh. Botany-Botanique. 2009;87:482–91.
Article
Google Scholar
Chmura GL. What do we need to assess the sustainability of the tidal salt marsh carbon sink? Ocean Coast Manag. 2013;83:25–31.
Article
Google Scholar
Hopkinson CS, Cai WJ, Hu XP. Carbon sequestration in wetland dominated coastal systems - a global sink of rapidly diminishing magnitude. Curr Opin Environ Sustain. 2012;4:186–94.
Article
Google Scholar
Ouyang X, Lee SY. Updated estimates of carbon accumulation rates in coastal marsh sediments. Biogeosciences. 2014;11:5057–71.
Article
Google Scholar
McLeod E, Chmura GL, Bouillon S, Salm R, Bjork M, Duarte CM, Lovelock CE, Schlesinger WH, Silliman BR. A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2. Front Ecol Environ. 2011;9:552–60.
Article
Google Scholar
Chmura GL, Anisfeld SC, Cahoon DR, Lynch JC. Global carbon sequestration in tidal, saline wetland soils. Glob Biogeochem Cycles. 2003;17:12.
Article
CAS
Google Scholar
Bouchard V, Lefeuvre JC. Primary production and macro-detritus dynamics in a European salt marsh: carbon and nitrogen budgets. Aquat Bot. 2000;67:23–42.
Article
CAS
Google Scholar
Fogel ML, Sprague EK, Gize AP, Frey RW. Diagenesis of organic-matter in georgia salt marshes. Estuar Coast Shelf Sci. 1989;28:211–30.
Article
CAS
Google Scholar
Benner R, Fogel ML, Sprague EK, Hodson RE. Depletion of C-13 in lignin and its implications for stable carbon isotope studies. Nature. 1987;329:708–10.
Article
CAS
Google Scholar
Barry SC, Bianchi TS, Shields MR, Hutchings JA, Jacoby CA, Frazer TK. Characterizing blue carbon stocks in Thalassia testudinum meadows subjected to different phosphorus supplies: A lignin biomarker approach. Limnol Oceanogr. 2018;63:2630–46.
Article
CAS
Google Scholar
Young LY, Frazer AC. The fate of lignin and lignin-derived compounds in anaerobic environments. Geomicrobiol J. 1987;5:261–93.
Article
CAS
Google Scholar
Hernes PJ, Robinson AC, Aufdenkampe AK. Fractionation of lignin during leaching and sorption and implications for organic matter “freshness”. Geophys Res Lett. 2007;34:6.
Article
CAS
Google Scholar
Bianchi TS, Cui XQ, Blair NE, Burdige DJ, Eglinton TI, Galy V. Centers of organic carbon burial and oxidation at the land-ocean interface. Org Geochem. 2018;115:138–55.
Article
CAS
Google Scholar
Hemingway JD, Rothman DH, Grant KE, Rosengard SZ, Eglinton TI, Derry LA, Galy VV. Mineral protection regulates long-term global preservation of natural organic carbon. Nature. 2019;570:228.
Article
CAS
PubMed
Google Scholar
Macreadie PI, Allen K, Kelaher BP, Ralph PJ, Skilbeck CG. Paleoreconstruction of estuarine sediments reveal human-induced weakening of coastal carbon sinks. Glob Chang Biol. 2012;18:891–901.
Article
Google Scholar
Marriott PE, Gomez LD, McQueen-Mason SJ. Unlocking the potential of lignocellulosic biomass through plant science. New Phytol. 2016;209:1366–81.
Article
CAS
PubMed
Google Scholar
Cragg SM, Beckham GT, Bruce NC, Bugg TDH, Distel DL, Dupree P, Etxabe AG, Goodell BS, Jellison J, McGeehan JE, et al. Lignocellulose degradation mechanisms across the Tree of Life. Curr Opin Chem Biol. 2015;29:108–19.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jackson D, Long SP, Mason CF. Net primary production, decomposition and export of spartina-anglica on a suffolk salt-marsh. J Ecol. 1986;74:647–62.
Article
Google Scholar
Dame RF, Stilwell D. Environmental-factors influencing macrodetritus flux in north inlet estuary. Estuar Coast Shelf Sci. 1984;18:721–6.
Article
Google Scholar
Buchan A, Newell SY, Butler M, Biers EJ, Hollibaugh JT, Moran MA. Dynamics of bacterial and fungal communities on decaying salt marsh grass. Appl Environ Microbiol. 2003;69:6676–87.
Article
CAS
PubMed
PubMed Central
Google Scholar
Torzilli AP, Sikaroodi M, Chalkley D, Gillevet PM. A comparison of fungal communities from four salt marsh plants using automated ribosomal intergenic spacer analysis (ARISA). Mycologia. 2006;98:690–8.
Article
CAS
PubMed
Google Scholar
Calado MD, Carvalho L, Barata M, Pang KL. Potential roles of marine fungi in the decomposition process of standing stems and leaves of Spartina maritima. Mycologia. 2019;111:371–83.
Article
PubMed
Google Scholar
Torzilli AP, Andrykovitch G. Degradation of spartina lignocellulose by individual and mixed cultures of salt-marsh fungi. Can J Botany-Revue Can Botanique. 1986;64:2211–5.
CAS
Google Scholar
Wilson JO, Buchsbaum R, Valiela I, Swain T. Decomposition in salt-marsh ecosystems - phenolic dynamics during decay of litter of Spartina alterniflora. Mar Ecol Prog Ser. 1986;29:177–87.
Article
Google Scholar
Baumann H, Wallace RB, Tagliaferri T, Gobler CJ. Large hatural pH, CO2 and O-2 fluctuations in a temperate tidal salt marsh on diel, seasonal, and interannual time scales. Estuar Coasts. 2015;38:220–31.
Article
CAS
Google Scholar
Negrin VL, Trilla GG, Kandus P, Marcovecchio JE. Decomposition and nutrient dynamics in a Spartina alterniflora marsh of the bahia blanca estuary, Argentina. Braz J Oceanogr. 2012;60:259–63.
Article
Google Scholar
White DA, Trapani JM, Thien LB, Weiss TE. Productivity and decomposition of dominant salt-marsh plants in Louisiana. Ecology. 1978;59:751–9.
Article
Google Scholar
Valiela I, Wilson J, Buchsbaum R, Rietsma C, Bryant D, Foreman K, Teal J. Importance of chemical-composition of salt-marsh litter on decay-rates and feeding by detritivores. Bull Mar Sci. 1984;35:261–9.
Google Scholar
Bouchard V, Creach V, Lefeuvre JC, Bertru G, Mariotti A. Fate of plant detritus in a European salt marsh dominated by Atriplex portulacoides (L.) Aellen. Hydrobiologia. 1998;374:75–87.
Article
Google Scholar
Darjany LE, Whitcraft CR, Dillon JG. Lignocellulose-responsive bacteria in a southern California salt marsh identified by stable isotope probing. Front Microbiol. 2014;5:9.
Article
Google Scholar
Benner R, Newell SY, Maccubbin AE, Hodson RE. Relative contributions of bacteria and fungi to rates of degradation of lignocellulosic detritus in salt-marsh sediments. Appl Environ Microbiol. 1984;48:36–40.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cortes-Tolalpa L, Norder J, van Elsas JD, Salles JF. Halotolerant microbial consortia able to degrade highly recalcitrant plant biomass substrate. Appl Microbiol Biotechnol. 2018;102:2913–27.
Article
CAS
PubMed
PubMed Central
Google Scholar
Alessi AM, Bird SM, Bennett JP, Oates NC, Li Y, Dowle AA, Polikarpov I, Young JPW, McQueen-Mason SJ, Bruce NC. Revealing the insoluble metasecretome of lignocellulose-degrading microbial communities. Sci Rep. 2017;7.
Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glockner FO. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013;41:D590–6.
Article
CAS
PubMed
Google Scholar
Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9:357–U354.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen C, Khaleel SS, Huang H, Wu CH. Software for pre-processing Illumina next-generation sequencing short read sequences. Source Code Biol Med. 2014;9:8.
Article
PubMed
PubMed Central
Google Scholar
Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng QD, et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol. 2011;29:644–U130.
Article
CAS
PubMed
PubMed Central
Google Scholar
Perkins DN, Pappin DJC, Creasy DM, Cottrell JS. Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis. 1999;20:3551–67.
Article
CAS
PubMed
Google Scholar
Ishihama Y, Oda Y, Tabata T, Sato T, Nagasu T, Rappsilber J, Mann M. Exponentially modified protein abundance index (emPAI) for estimation of absolute protein amount in proteomics by the number of sequenced peptides per protein. Mol Cell Proteomics. 2005;4:1265–72.
Article
CAS
PubMed
Google Scholar
Yin YB, Mao XZ, Yang JC, Chen X, Mao FL, Xu Y. dbCAN: a web resource for automated carbohydrate-active enzyme annotation. Nucleic Acids Res. 2012;40:W445–51.
Article
CAS
PubMed
PubMed Central
Google Scholar
Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, Madden TL. BLAST plus : architecture and applications. BMC Bioinformatics. 2009;10:9.
Article
CAS
Google Scholar
Huerta-Cepas J, Serra F, Bork P. ETE 3: Reconstruction, analysis, and visualization of phylogenomic data. Mol Biol Evol. 2016;33:1635–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Parada AE, Needham DM, Fuhrman JA. Every base matters: assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. Environ Microbiol. 2016;18:1403–14.
Article
CAS
PubMed
Google Scholar
Apprill A, McNally S, Parsons R, Weber L. Minor revision to V4 region SSU rRNA 806R gene primer greatly increases detection of SAR11 bacterioplankton. Aquat Microb Ecol. 2015;75:129–37.
Article
Google Scholar
Ihrmark K, Bodeker ITM, Cruz-Martinez K, Friberg H, Kubartova A, Schenck J, Strid Y, Stenlid J, Brandstrom-Durling M, Clemmensen KE, Lindahl BD. New primers to amplify the fungal ITS2 region - evaluation by 454-sequencing of artificial and natural communities. FEMS Microbiol Ecol. 2012;82:666–77.
Article
CAS
PubMed
Google Scholar
Tedersoo L, Bahram M, Polme S, Koljalg U, Yorou NS, Wijesundera R, Ruiz LV, Vasco-Palacios AM, Thu PQ, Suija A, et al. Global diversity and geography of soil fungi. Science. 2014;346:1078.
Article
CAS
Google Scholar
Lundberg DS, Yourstone S, Mieczkowski P, Jones CD, Dangl JL. Practical innovations for high-throughput amplicon sequencing. Nat Methods. 2013;10:999.
Article
CAS
PubMed
Google Scholar
Rognes T, Flouri T, Nichols B, Quince C, Mahe F. VSEARCH: a versatile open source tool for metagenomics. Peerj. 2016;4:22.
Article
Google Scholar
Bengtsson-Palme J, Ryberg M, Hartmann M, Branco S, Wang Z, Godhe A, De Wit P, Sanchez-Garcia M, Ebersberger I, de Sousa F, et al. Improved software detection and extraction of ITS1 and ITS2 from ribosomal ITS sequences of fungi and other eukaryotes for analysis of environmental sequencing data. Methods Ecol Evol. 2013;4:914–9.
Google Scholar
Edgar RC. Search and clustering orders of magnitude faster than BLAST. Bioinformatics. 2010;26:2460–1.
Article
CAS
PubMed
Google Scholar
Edgar RC. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods. 2013;10:996.
Article
CAS
PubMed
Google Scholar
Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Pena AG, Goodrich JK, Gordon JI, et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods. 2010;7:335–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Koljalg U, Nilsson RH, Abarenkov K, Tedersoo L, Taylor AFS, Bahram M, Bates ST, Bruns TD, Bengtsson-Palme J, Callaghan TM, et al. Towards a unified paradigm for sequence-based identification of fungi. Mol Ecol. 2013;22:5271–7.
Article
CAS
PubMed
Google Scholar
Nguyen NH, Song ZW, Bates ST, Branco S, Tedersoo L, Menke J, Schilling JS, Kennedy PG. FUNGuild: An open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecol. 2016;20:241–8.
Article
Google Scholar
Hagberg A, Swart P, Chult SD. Exploring network structure, dynamics, and function using NetworkX, Proceedings of the 7th Python in Science conference; 2008. p. 11–5.
Google Scholar
Marriott PE, Sibout R, Lapierre C, Fangel JU, Willats WGT, Hofte H, Gomez LD, McQueen-Mason SJ. Range of cell-wall alterations enhance saccharification in Brachypodium distachyon mutants. Proc Natl Acad Sci U S A. 2014;111:14601–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Updegraff DM. Semimicro determination of cellulose in biological materials. Anal Biochem. 1969;32:420.
Article
CAS
PubMed
Google Scholar
Saeman JF. Kinetics of wood saccharification - hydrolysis of cellulose and decomposition of sugars in dilute acid at high temperature. Ind Eng Chem. 1945;37:43–52.
Article
CAS
Google Scholar
Moreira-Vilar FC, Siqueira-Soares RD, Finger-Teixeira A, de Oliveira DM, Ferro AP, da Rocha GJ, Ferrarese MDL, dos Santos WD, Ferrarese O. The acetyl bromide method is faster, simpler and presents best recovery of lignin in different herbaceous tissues than klason and thioglycolic acid methods. PLoS One. 2014;9:7.
Article
CAS
Google Scholar
Foster CE, Martin TM, Pauly M. Comprehensive compositional analysis of plant cell walls (lignocellulosic biomass) part I: lignin. J Vis Exp. 2010.
Jones E, Oliphant T, Peterson P. SciPy: Open source scientific tools for Python; 2001.
Google Scholar
Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg VJJomlr. Scikit-learn: Machine learning in Python. 2011;12:2825–30.
Alessi AM, Bird SM, Oates NC, Li Y, Dowle AA, Novotny EH, de Azevedo ER, Bennett JP, Polikarpov I, Young JPW, et al. Defining functional diversity for lignocellulose degradation in a microbial community using multi-omics studies. Biotechnol Biofuels. 2018;11:16.
Article
CAS
Google Scholar
Hunter JD. Matplotlib: A 2D graphics environment. Comput Sci Eng. 2007;9:90–5.
Article
Google Scholar
Valiela I, Teal JM, Allen SD, Vanetten R, Goehringer D, Volkmann S. Decomposition in salt-marsh ecosystems - the phases and major factors affecting disappearance of above-ground organic-matter. J Exp Mar Biol Ecol. 1985;89:29–54.
Article
CAS
Google Scholar
Curco A, Ibanez C, Day JW, Prat N. Net primary production and decomposition of salt marshes of the Ebre delta (Catalonia, Spain). Estuaries. 2002;25:309–24.
Article
Google Scholar
Simoes MP, Calado ML, Madeira M, Gazarini LC. Decomposition and nutrient release in halophytes of a Mediterranean salt marsh. Aquat Bot. 2011;94:119–26.
Article
CAS
Google Scholar
Cragg SM, Friess DA, Gillis LG, Trevathan-Tackett SM, Terrett OM, Watts JEM, Distel DL, Dupree P. Vascular plants are globally significant contributors to marine carbon fluxes and sinks. Annu Rev Mar Sci. 2020;12:469–97 Annual Review of Marine Science.
Article
Google Scholar
Benner R, Fogel ML, Sprague EK. Diagenesis of belowground biomass of Spartina alterniflora in salt-marsh sediments. Limnol Oceanogr. 1991;36:1358–74.
Article
CAS
Google Scholar
Wilson JO, Valiela I, Swain T. Carbohydrate dynamics during decay of litter of Spartina alterniflora. Mar Biol. 1986;92:277–84.
Article
CAS
Google Scholar
Maccubbin AE, Hodson RE. Mineralization of detrital lignocelluloses by salt-marsh sediment microflora. Appl Environ Microbiol. 1980;40:735–40.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nakamura AM, Nascimento AS, Polikarpov I. Structural diversity of carbohydrate esterases. Biotechnol Res Innov. 2017;1:35–51.
Article
Google Scholar
Buanafina MMD. Feruloylation in grasses: current and future perspectives. Mol Plant. 2009;2:861–72.
Article
CAS
Google Scholar
Chiniquy D, Sharma V, Schultink A, Baidoo EE, Rautengarten C, Cheng K, Carroll A, Ulvskov P, Harholt J, Keasling JD, et al. XAX1 from glycosyltransferase family 61 mediates xylosyltransfer to rice xylan. Proc Natl Acad Sci U S A. 2012;109:17117–22.
Article
CAS
PubMed
PubMed Central
Google Scholar
de Souza WR, Martins PK, Freeman J, Pellny TK, Michaelson LV, Sampaio BL, Vinecky F, Ribeiro AP, da Cunha B, Kobayashi AK, et al. Suppression of a single BAHD gene in Setaria viridis causes large, stable decreases in cell wall feruloylation and increases biomass digestibility. New Phytol. 2018;218:81–93.
Article
PubMed
PubMed Central
CAS
Google Scholar
Grantham NJ, Wurman-Rodrich J, Terrett OM, Lyczakowski JJ, Stott K, Iuga D, Simmons TJ, Durand-Tardif M, Brown SP, Dupree R, et al. An even pattern of xylan substitution is critical for interaction with cellulose in plant cell walls. Nat Plants. 2017;3:859–65.
Article
CAS
PubMed
Google Scholar
Haddad RI, Newell SY, Martens CS, Fallon RD. Early diagenesis of lignin-associated phenolics in the salt-marsh grass Spartina alterniflora. Geochim Cosmochim Acta. 1992;56:3751–64.
Article
CAS
Google Scholar
Alzarhani AK, Clark DR, Underwood GJC, Ford H, Cotton TEA, Dumbrell AJ. Are drivers of root-associated fungal community structure context specific? Isme J. 2019;13:1330–44.
Article
PubMed
PubMed Central
Google Scholar
Wilhelm RC, Singh R, Eltis LD, Mohn WW. Bacterial contributions to delignification and lignocellulose degradation in forest soils with metagenomic and quantitative stable isotope probing. Isme J. 2019;13:413–29.
Article
CAS
PubMed
Google Scholar
Lee SH, Megonigal PJ, Langley AJ, Kang H. Elevated CO2 and nitrogen addition affect the microbial abundance but not the community structure in salt marsh ecosystem. Appl Soil Ecol. 2017;117:129–36.
Article
Google Scholar
Chaudhary DR, Kim J, Kang H. Influences of different halophyte vegetation on soil microbial community at temperate salt marsh. Microb Ecol. 2018;75:729–38.
Article
CAS
PubMed
Google Scholar
Cleary DFR, Coelho F, Oliveira V, Gomes NCM, Polonia ARM. Sediment depth and habitat as predictors of the diversity and composition of sediment bacterial communities in an inter-tidal estuarine environment. Mar Ecol-an Evol Perspect. 2017;38:15.
Google Scholar
Taylor LE, Henrissat B, Coutinho PM, Ekborg NA, Hutcheson SW, Weiner RA. Complete cellulase system in the marine bacterium Saccharophagus degradans strain 2-40(T). J Bacteriol. 2006;188:3849–61.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ekborg NA, Gonzalez JM, Howard MB, Taylor LE, Hutcheson SW, Weiner RM. Saccharophagus degradans gen. nov., sp nov., a versatile marine degrader of complex polysaccharides. Int J Syst Evol Microbiol. 2005;55:1545–9.
Article
CAS
PubMed
Google Scholar
Jung YH, Kim HK, Song DS, Choi IG, Yang TH, Lee HJ, Seung D, Kim KH. Feasibility test of utilizing Saccharophagus degradans 2-40(T) as the source of crude enzyme for the saccharification of lignocellulose. Bioprocess Biosyst Eng. 2014;37:707–10.
Article
CAS
PubMed
Google Scholar
Zhang HT, Hutcheson SW. Complex expression of the cellulolytic transcriptome of Saccharophagus degradans. Appl Environ Microbiol. 2011;77:5591–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Weiner RM, Taylor LE, Henrissat B, Hauser L, Land M, Coutinho PM, Rancurel C, Saunders EH, Longmire AG, Zhang HT, et al. Complete genome sequence of the complex carbohydrate-degrading marine bacterium, Saccharophagus degradans strain 2-40(T). PLoS Genet. 2008;4:13.
Article
CAS
Google Scholar
Fowler CA, Hemsworth GR, Cuskin F, Hart S, Turkenburg J, Gilbert HJ, Walton PH, Davies GJ. Structure and function of a glycoside hydrolase family 8 endoxylanase from Teredinibacter turnerae. Acta Crystallogr D Struct Biol. 2018;74:946–55.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fowler CA, Sabbadin F, Ciano L, Hemsworth GR, Elias L, Bruce N, McQueen-Mason S, Davies GJ, Walton PH. Discovery, activity and characterisation of an AA10 lytic polysaccharide oxygenase from the shipworm symbiont Teredinibacter turnerae. Biotechnol Biofuels. 2019;12:11.
Article
CAS
Google Scholar
Yang JC, Madupu R, Durkin AS, Ekborg NA, Pedamallu CS, Hostetler JB, Radune D, Toms BS, Henrissat B, Coutinho PM, et al. The complete genome of Teredinibacter turnerae T7901: an intracellular endosymbiont of marine wood-boring bivalves (Shipworms). PLoS One. 2009;4:17.
Google Scholar
Ekborg NA, Morrill W, Burgoyne AM, Li L, Distell DL. CelAB, a multifunctional cellulase encoded by Teredinibacter turnerae T7902(T), a culturable symbiont isolated from the wood-boring marine bivalve Lyrodus pedicellatus. Appl Environ Microbiol. 2007;73:7785–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Distel DL, Morrill W, MacLaren-Toussaint N, Franks D, Waterbury J. Teredinibacter turnerae gen. nov., sp nov., a dinitrogen-fixing, cellulolytic, endosymbiotic gamma-proteobacterium isolated from the gills of wood-boring molluscs (Bivalvia : Teredinidae). Int J Syst Evol Microbiol. 2002;52:2261–9.
CAS
PubMed
Google Scholar
Varnai A, Siika-aho M, Viikari L. Carbohydrate-binding modules (CBMs) revisited: reduced amount of water counterbalances the need for CBMs. Biotechnol Biofuels. 2013;6:11.
Article
CAS
Google Scholar
Bowen JL, Morrison HG, Hobbie JE, Sogin ML. Salt marsh sediment diversity: a test of the variability of the rare biosphere among environmental replicates. Isme J. 2012;6:2014–23.
Article
CAS
PubMed
PubMed Central
Google Scholar
Andrews JE, Samways G, Dennis PF, Maher BA. Origin, abundance and storage of organic carbon and sulphur in the Holocene Humber Estuary: emphasizing human impact on storage changes. Geol Soc Lond Spec Publ. 2000;166:145.
Article
Google Scholar
Lamb AL, Vane CH, Wilson GP, Rees JG, Moss-Hayes VL. Assessing delta C-13 and C/N ratios from organic material in archived cores as Holocene sea level and palaeoenvironmental indicators in the Humber Estuary, UK. Mar Geol. 2007;244:109–28.
Article
Google Scholar
Sechovcova H, Kulhava L, Fliegerova K, Trundova M, Morais D, Mrazek J, Kopecny J. Comparison of enzymatic activities and proteomic profiles of Butyrivibrio fibrisolvens grown on different carbon sources. Proteome Sci. 2019;17:12.
Article
CAS
Google Scholar