Blair A, et al. Carcinogenicity of tetrachlorvinphos, parathion, malathion, diazinon, and glyphosate. Lancer Oncology. 2015;112:490–1.
Google Scholar
Wang L, et al. Glyphosate induces benign monoclonal gammopathy and promotes multiple myeloma progression in mice. J Hematol Oncol. 2019;12:70. https://doi.org/10.1186/s13045-019-0767-9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Samsel A, Seneff S. Glyphosate, pathways to modern diseases II: celiac sprue and gluten intolerance. Interdiscip Toxicol. 2013;6:159–84. https://doi.org/10.2478/intox-2013-0026.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pu Y, et al. Maternal glyphosate exposure causes autism-like behaviors in offspring through increased expression of soluble epoxide hydrolase. Proc Natl Acad Sci U S A. 2020;117:11753–9. https://doi.org/10.1073/pnas.1922287117.
Article
CAS
PubMed
PubMed Central
Google Scholar
Trevan JW. The error of determination of toxicity. Proc R Soc. 1927;101B:483–514.
Google Scholar
ECHA. Guidance on information requirements and chemical safety assessment. Helsinki: Euroepan Chemical Agency; 2016.
Google Scholar
Bopp SK, et al. Regulatory assessment and risk management of chemical mixtures: challenges and ways forward. Crit Rev Toxicol. 2019;49:174–89. https://doi.org/10.1080/10408444.2019.1579169.
Article
PubMed
Google Scholar
Pollegioni L, Schonbrunn E, Siehl D. Molecular basis of glyphosate resistance - different approaches through protein engineering. Febs J. 2011;278:2753–66. https://doi.org/10.1111/j.1742-4658.2011.08214.x.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lynch JB, Hsiao EY. Microbiomes as sources of emergent host phenotypes. Science. 2019;365:1405–8. https://doi.org/10.1126/science.aay0240.
Article
CAS
PubMed
Google Scholar
Motta EVS, Raymann K, Moran NA. Glyphosate perturbs the gut microbiota of honey bees. Proc Natl Acad Sci U S A. 2018;115:10305–10. https://doi.org/10.1073/pnas.1803880115.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shehata AA, Schrodl W, Aldin AA, Hafez HM, Kruger M. The effect of glyphosate on potential pathogens and beneficial members of poultry microbiota in vitro. Curr Microbiol. 2013;66:350–8. https://doi.org/10.1007/s00284-012-0277-2.
Article
CAS
PubMed
Google Scholar
Krüger M, Schrödl W, Neuhaus J, Shehata A. Journal of Environmental & Analytical Toxicology. J Environ Anal Toxicol. 2013;3:186.
Google Scholar
Carman JA, et al. A long-term toxicology study on pigs fed a combined genetically modified (GM) soy and GM maize diet. J Org Syst. 2013;8:38–54.
Google Scholar
Yang X, et al. Effects of the glyphosate-based herbicide roundup on the survival, immune response, digestive activities and gut microbiota of the Chinese mitten crab, Eriocheir sinensis. Aquat Toxicol. 2019;214:105243. https://doi.org/10.1016/j.aquatox.2019.105243.
Article
CAS
PubMed
Google Scholar
Dechartres J, et al. Glyphosate and glyphosate-based herbicide exposure during the peripartum period affects maternal brain plasticity, maternal behaviour and microbiome. J Neuroendocrinol. 2019;31:e12731. https://doi.org/10.1111/jne.12731.
Article
CAS
PubMed
Google Scholar
Sihtmae M, et al. Ecotoxicological effects of different glyphosate formulations. Appl Soil Ecol. 2013;72:215–24. https://doi.org/10.1016/j.apsoil.2013.07.005.
Article
Google Scholar
Van Bruggen AHC, et al. Environmental and health effects of the herbicide glyphosate. Sci Total Environ. 2018;616:255–68. https://doi.org/10.1016/j.scitotenv.2017.10.309.
Article
CAS
PubMed
Google Scholar
Grandcoin A, Piel S, Baures E. AminoMethylPhosphonic acid (AMPA) in natural waters: its sources, behavior and environmental fate. Water Res. 2017;117:187–97. https://doi.org/10.1016/j.watres.2017.03.055.
Article
CAS
PubMed
Google Scholar
Birch H, Mikkelsen PS, Jensen JK, Lutzhoft HCH. Micropollutants in stormwater runoff and combined sewer overflow in the Copenhagen area, Denmark. Water Sci Technol. 2011;64:485–93. https://doi.org/10.2166/wst.2011.687.
Article
CAS
PubMed
Google Scholar
Noori JS, Dimaki M, Mortensen J, Svendsen WE. Detection of glyphosate in drinking water: a fast and direct detection method without sample pretreatment. Sensors Basel. 2018;18, ARTN 2961. https://doi.org/10.3390/s18092961.
Székács A, Darvas B. Re-registration challenges of glyphosate in the European Union. Front Environ Sci. 2018. https://doi.org/10.3389/fenvs.2018.00078.
Colbourne JK, et al. The ecoresponsive genome of Daphnia pulex. Science. 2011;331:555–61. https://doi.org/10.1126/science.1197761.
Article
CAS
PubMed
PubMed Central
Google Scholar
Altshuler I, et al. An integrated multi-disciplinary approach for studying multiple stressors in freshwater ecosystems: Daphnia as a model organism. Integr Comp Biol. 2011;51:623–33. https://doi.org/10.1093/icb/icr103.
Article
CAS
PubMed
Google Scholar
Miner BE, De Meester L, Pfrender ME, Lampert W, Hairston NG. Linking genes to communities and ecosystems: Daphnia as an ecogenomic model. P Roy Soc B-Biol Sci. 2012;279:1873–82. https://doi.org/10.1098/rspb.2011.2404.
Article
Google Scholar
Ebert D. Ecology, epidemiology, and evolution of parasitism in Daphnia. Bethesda: National Library of Medicine (US), National Center for Biotechnology; 2005.
Cambronero Cuenca M, Orsini L. Resurrection of dormant Daphnia magna: protocol and applications. JoVE. 2018;131:e56637. https://doi.org/10.3791/56637.
Article
Google Scholar
Kerfoot WC, Weider LJ. Experimental paleoecology (resurrection ecology): Chasing Van Valen’s Red Queen hypothesis. Limnol Oceanogr. 2004;49:1300–16.
Article
Google Scholar
Cambronero CM, Beasley J, Kissane S, Orsini L. Evolution of thermal tolerance in multifarious environments. Mol Ecol. 2018;27:4529–41.
Article
Google Scholar
Cambronero CM, et al. Predictability of the impact of multiple stressors on the keystone species Daphnia. Sci Rep-Uk. 2018;8:17572.
Article
Google Scholar
Agency USEP. National primary drinking water regulation: Glyphosate. USA: EPA Office of Water; 1995.
Google Scholar
Speit G, Hartmann A. DNA Repair Protocols: Mammalian Systems. Totowa: Humana Press Inc; 2006.
Orsini L, et al. Early transcriptional response pathways in Daphnia magna are coordinated in networks of crustacean-specific genes. Mol Ecol. 2018;27:886–97. https://doi.org/10.1111/mec.14261.
Article
CAS
PubMed
Google Scholar
Fabregat A, et al. The Reactome Pathway Knowledgebase. Nucleic Acids Res. 2018;46:D649–55.
Article
CAS
PubMed
Google Scholar
Oksanen, J. Multivariate analysis of ecological communities in R: vegan tutorial. (2011). http://cc.oulu.fi/~jarioksa/opetus/metodi/vegantutor.pdf.
Google Scholar
Breiman L. Random Forests. Mach Learn. 2001;45:5–32.
Article
Google Scholar
Jacquemont C, Taniguchi T. The Fanconi anemia pathway and ubiquitin. BMC Biochem. 2007;8(Suppl 1):S10. https://doi.org/10.1186/1471-2091-8-S1-S10.
Article
CAS
PubMed
PubMed Central
Google Scholar
Smith CM, Vera MKM, Bhandari RK. Developmental and epigenetic effects of Roundup and glyphosate exposure on Japanese medaka (Oryzias latipes). Aquat Toxicol. 2019;210:215–26. https://doi.org/10.1016/j.aquatox.2019.03.005.
Article
CAS
PubMed
Google Scholar
Webster TMU, Laing LV, Florance H, Santos EM. Effects of glyphosate and its formulation, roundup, on reproduction in zebrafish (Danio rerio). Environ Sci Technol. 2014;48:1271–9. https://doi.org/10.1021/es404258h.
Article
CAS
Google Scholar
Alvarez-Moya C, et al. Comparison of the in vivo and in vitro genotoxicity of glyphosate isopropylamine salt in three different organisms. Genet Mol Biol. 2014;37:105–10. https://doi.org/10.1590/S1415-47572014000100016.
Article
PubMed
Google Scholar
Clements C, Ralph S, Petras M. Genotoxicity of select herbicides in Rana catesbeiana tadpoles using the alkaline single-cell gel DNA electrophoresis (comet) assay. Environ Mol Mutagen. 1997;29:277–88. https://doi.org/10.1002/(Sici)1098-2280 29:3 < 277::Aid-Em8 > 3.0.Co;2-9 (1997).
Article
CAS
PubMed
Google Scholar
Poletta GL, Larriera A, Kleinsorge E, Mudry MD. Genotoxicity of the herbicide formulation Roundup (R) (glyphosate) in broad-snouted caiman (Caiman latirostris) evidenced by the Comet assay and the Micronucleus test. Mutat Res Gen Tox En. 2009;672:95–102. https://doi.org/10.1016/j.mrgentox.2008.10.007.
Article
CAS
Google Scholar
Nwani CD, Nagpure NS, Kumar R, Kushwaha B, Lakra WS. DNA damage and oxidative stress modulatory effects of glyphosate-based herbicide in freshwater fish, Channa punctatus. Environ Toxicol Phar. 2013;36:539–47. https://doi.org/10.1016/j.etap.2013.06.001.
Article
CAS
Google Scholar
Moreno NC, Sofia SH, Martinez CBR. Genotoxic effects of the herbicide Roundup Transorb (R) and its active ingredient glyphosate on the fish Prochilodus lineatus. Environ Toxicol Phar. 2014;37:448–54. https://doi.org/10.1016/j.etap.2013.12.012.
Article
CAS
Google Scholar
Schaumburg LG, Siroski PA, Poletta GL, Mudry MD. Genotoxicity induced by Roundup (R) (Glyphosate) in tegu lizard (Salvator merianae) embryos. Pestic Biochem Phys. 2016;130:71–8. https://doi.org/10.1016/j.pestbp.2015.11.009.
Article
CAS
Google Scholar
Hong YH, Yang XZ, Huang Y, Yan GW, Cheng YX. Assessment of the oxidative and genotoxic effects of the glyphosate-based herbicide roundup on the freshwater shrimp, Macrobrachium nipponensis. Chemosphere. 2018;210:896–906. https://doi.org/10.1016/j.chemosphere.2018.07.069.
Article
CAS
PubMed
Google Scholar
Gill JPK, Sethi N, Mohan A, Datta S, Girdhar M. Glyphosate toxicity for animals. Environ Chem Lett. 2018;16:401–26. https://doi.org/10.1007/s10311-017-0689-0.
Article
CAS
Google Scholar
Kier LD, Kirkland DJ. Review of genotoxicity studies of glyphosate and glyphosate-based formulations. Crit Rev Toxicol. 2013;43:283–315. https://doi.org/10.3109/10408444.2013.770820.
Article
CAS
PubMed
Google Scholar
Asselman J, et al. Conserved transcriptional responses to cyanobacterial stressors are mediated by alternate regulation of paralogous genes in Daphnia. Mol Ecol. 2015;24:1844–55. https://doi.org/10.1111/mec.13148.
Article
CAS
PubMed
Google Scholar
Pereira JL, et al. Gene transcription in Daphnia magna: effects of acute exposure to a carbamate insecticide and an acetanilide herbicide. Aquat Toxicol. 2010; in press.
Tsui MTK, Wang WX. Multigenerational acclimation of Daphnia magna to mercury: relationships between biokinetics and toxicity. Environ Toxicol Chem. 2005;24:2927–33. https://doi.org/10.1897/05-085r.1.
Article
CAS
PubMed
Google Scholar
Tsui MT-K, Wang WX. Biokinetics and tolerance development of toxic metals in Daphnia magna. Environ Toxicol Chem. 2009;26:1023–32.
Article
Google Scholar
Webster TMU, Santos EM. Global transcriptomic profiling demonstrates induction of oxidative stress and of compensatory cellular stress responses in brown trout exposed to glyphosate and Roundup. Bmc Genomics. 2015;16, doi: ARTN 32. https://doi.org/10.1186/s12864-015-1254-5.
Mesnage, R. et al. Transcriptome profile analysis reflects rat liver and kidney damage following chronic ultra-low dose Roundup exposure. Environ Health Glob (14, pg 70, 2015). https://doi.org/10.1186/s12940-017-0236-2. 16. ARTN 28 (2017).
Simoes T, et al. An integrative omics approach to unravel toxicity mechanisms of environmental chemicals: effects of a formulated herbicide. Sci Rep-Uk. 2018:8. https://doi.org/10.1038/s41598-018-29662-6 ARTN 11376.
Snijders AM, et al. Influence of early life exposure, host genetics and diet on the mouse gut microbiome and metabolome. Nat Microbiol. 2016;2:16221.
Article
CAS
PubMed
Google Scholar
Kokou F, et al. Core gut microbial communities are maintained by beneficial interactions and strain variability in fish. Nat Microbiol. 2019;4:2456–65. https://doi.org/10.1038/s41564-019-0560-0.
Article
CAS
PubMed
Google Scholar
Benjamino J, Lincoln S, Srivastava R, Graf J. Low-abundant bacteria drive compositional changes in the gut microbiota after dietary alteration. Microbiome. 2018;6:86. https://doi.org/10.1186/s40168-018-0469-5.
Article
PubMed
PubMed Central
Google Scholar
Zhan H, Feng Y, Fan X, Chen S. Recent advances in glyphosate biodegradation. Appl Microbiol Biotechnol. 2018;102:5033–43. https://doi.org/10.1007/s00253-018-9035-0.
Article
CAS
PubMed
Google Scholar
Balthazor TM, Hallas LE. Glyphosate-degrading microorganisms from industrial activated sludge. Appl Environ Microbiol. 1986;51:432–4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu CM, McLean PA, Sookdeo CC, Cannon FC. Degradation of the herbicide glyphosate by members of the family Rhizobiaceae. Appl Environ Microbiol. 1991;57:1799–804.
Article
CAS
PubMed
PubMed Central
Google Scholar
Menendez E, Carro L. In: Giri B, Prasad R, Wu QS, Varma A, editors. Biofertilizers for Sustainable Agriculture and Environment vol. Soil Biology. Cham: Springer; 2019. p. 333–51.
Chapter
Google Scholar
Binda C, et al. Actinobacteria: a relevant minority for the maintenance of gut homeostasis. Dig Liver Dis. 2018;50:421–8. https://doi.org/10.1016/j.dld.2018.02.012.
Article
PubMed
Google Scholar
Rinninella E, et al. What is the healthy gut microbiota composition? A changing ecosystem across age, environment, diet, and diseases. Microorganisms. 2019;7:1–22.
Article
Google Scholar
Azad MAK, Sarker M, Li T, Yin J. Probiotic species in the modulation of gut microbiota: an overview. Biomed Res Int. 2018;2018:9478630. https://doi.org/10.1155/2018/9478630.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cheng SY. Thyroid hormone receptor mutations and disease: beyond thyroid hormone resistance. Trends Endocrinol Metab. 2005;16:176–82. https://doi.org/10.1016/j.tem.2005.03.008.
Article
CAS
PubMed
Google Scholar
Clement K, et al. A mutation in the human leptin receptor gene causes obesity and pituitary dysfunction. Nature. 1998;392:398–401. https://doi.org/10.1038/32911.
Article
CAS
PubMed
Google Scholar
Komiya Y, Habas R. Wnt signal transduction pathways. Organogenesis. 2008;4:68–75.
Article
PubMed
PubMed Central
Google Scholar
Jacob L, Lum L. Hedgehog signaling pathway in Drosophila. Sci STKE. 2007;2007:cm7. https://doi.org/10.1126/stke.4072007cm7.
Article
PubMed
Google Scholar
Jia Y, Wang Y, Xie J. The Hedgehog pathway: role in cell differentiation, polarity and proliferation. Arch Toxicol. 2015;89:179–91. https://doi.org/10.1007/s00204-014-1433-1.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu Y, et al. Critical role of FOXO3a in carcinogenesis. Mol Cancer. 2018;17:104. https://doi.org/10.1186/s12943-018-0856-3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Massague J. TGFbeta signalling in context. Nat Rev Mol Cell Biol. 2012;13:616–30. https://doi.org/10.1038/nrm3434.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pellegri V. Ecological risk assessment and development of innovative strategies for monitoring the quality of water bodies: application of a new integrated approach in a pilot basin: PhD in Biology thesis. University of Padova; 2015.
Team, R Core. 2019. R: A language and environment for statistical computing. In R Foundation for Statistical Computing. Vienna, Austria.
Pinheiro, J., Bates, D., DebRoy, S. & Sarkar, D. 1-137 (https://CRAN.R-project.org/package=nlme, 2018).
Team, R. C. (https://www.r-project.org/. Vienna. 2018).
Orsini L, et al. Daphnia magna transcriptome by RNA-Seq across 12 environmental stressors. Sci Data. 2016;3:160030. https://doi.org/10.1038/sdata.2016.30.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–20. https://doi.org/10.1093/bioinformatics/btu170.
Article
CAS
PubMed
PubMed Central
Google Scholar
Patro R, Duggal G, Love MI, Irizarry RA, Kingsford C. Salmon provides fast and bias-aware quantification of transcript expression. Nat Methods. 2017;14:417–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550.
Article
PubMed
PubMed Central
Google Scholar
Jones P, et al. InterProScan 5: genome-scale protein function classification. Bioinformatics. 2014;30:1236–40.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mi H, et al. Protocol update for large-scale genome and gene function analysis with the PANTHER classification system (v.14.0). Nat Protoc. 2019;14:703–21. https://doi.org/10.1038/s41596-019-0128-8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chakravorty S, Helb D, Burday M, Connell N, Alland D. A detailed analysis of 16S ribosomal RNA gene segments for the diagnosis of pathogenic bacteria. J Microbiol Methods. 2007;69:330–9. https://doi.org/10.1016/j.mimet.2007.02.005.
Article
CAS
PubMed
PubMed Central
Google Scholar
MacConaill LE, et al. Unique, dual-indexed sequencing adapters with UMIs effectively eliminate index crosstalk and significantly improve sensitivity of massively parallel sequencing. BMC Genomics. 2018;19:30.
Article
PubMed
PubMed Central
Google Scholar
Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 2011;17:1.
Article
Google Scholar
Zhang J, Kobert K, Flouri T, Stamatakis A. PEAR: a fast and accurate Illumina Paired-End reAd mergeR. Bioinformatics. 2014;30:614–20.
Article
CAS
PubMed
Google Scholar
FASTX-Toolkit (http://hannonlab.cshl.edu/fastx_toolkit. 2010).
Bolyen E, et al. QIIME 2: Reproducible, interactive, scalable, and extensible microbiome data science. PeerJ Preprints. 2018;6:e27295v27292.
Google Scholar
Pruesse E, et al. SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res. 2007;35:7188–96.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lahti, L., Shetty, S. & et al. (https://microbiome.github.io/microbiome/. 2017).
McMurdie PJ, Holmes S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One. 2013;8:e61217. https://doi.org/10.1371/journal.pone.0061217.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yilmaz P, et al. The SILVA and “All-species Living Tree Project (LTP)” taxonomic frameworks. Nucleic Acids Res. 2014;42:D643–8. https://doi.org/10.1093/nar/gkt1209.
Article
CAS
PubMed
Google Scholar
Bolyen E, et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol. 2019;37:852–7. https://doi.org/10.1038/s41587-019-0209-9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dixon P. VEGAN, a package of R functions for community ecology. J Veg Sci. 2003;14:927–30. https://doi.org/10.1111/j.1654-1103.2003.tb02228.x.
Article
Google Scholar
Asshauer KP, Wemheuer B, Daniel R, Meinicke P. Tax4Fun: predicting functional profiles from metagenomic 16S rRNA data. Bioinformatics. 2015;31:2882–4. https://doi.org/10.1093/bioinformatics/btv287.
Article
CAS
PubMed
PubMed Central
Google Scholar
Diaz-Uriarte R, de Andres SA. Gene selection and classification of microarray data using random forest. Bmc Bioinform. 2006;7. https://doi.org/10.1186/1471-2105-7-3 Artn 3.
Chen X, Ishwaran H. Random forests for genomic data analysis. Genomics. 2012;99:323–9.
Article
CAS
PubMed
Google Scholar