Hughes TP, Anderson KD, Connolly SR, Heron SF, Kerry JT, Lough JM, et al. Spatial and temporal patterns of mass bleaching of corals in the Anthropocene. Science. 2018;359:80–3.
Article
CAS
PubMed
Google Scholar
Hughes TP, Kerry JT, Álvarez-Noriega M, Álvarez-romero JG, Anderson KD, Baird A, et al. Global warming and recurrent mass bleaching of corals. Nature. 2017;543:373–7 https://doi.org/10.1038/nature21707.
Article
CAS
PubMed
Google Scholar
Dixon GB, Davies SW, Aglyamova GA, Meyer E, Bay LK, Matz MV. Coral reefs. Genomic determinants of coral heat tolerance across latitudes. Science. 2015;348:1460–2 https://doi.org/10.1126/science.1261224.
Article
CAS
PubMed
Google Scholar
Osman EO, Smith DJ, Ziegler M, Kürten B, Conrad C, El-Haddad KM, et al. Thermal refugia against coral bleaching throughout the northern Red Sea. Glob Chang Biol. 2018;24:474–84 https://doi.org/10.1111/gcb.13895.
Article
Google Scholar
Oliver TA, Palumbi SR. Do fluctuating temperature environments elevate coral thermal tolerance? Coral Reefs. 2011;30:429–40 https://doi.org/10.1007/s00338-011-0721-y.
Article
Google Scholar
Schoepf V, Stat M, Falter JL, McCulloch MT. Limits to the thermal tolerance of corals adapted to a highly fluctuating, naturally extreme temperature environment. Sci Rep. 2015;5:17639 https://doi.org/10.1038/srep17639.
Article
CAS
PubMed
PubMed Central
Google Scholar
Camp EF, Smith DJ, Evenhuis C, Enochs I, Manzello D, Woodcock S, et al. Acclimatization to high-variance habitats does not enhance physiological tolerance of two key Caribbean corals to future temperature and pH. Proc R Soc Lond B Biol Sci. 2016;283:20160442 https://doi.org/10.1098/rspb.2016.0442.
Article
CAS
Google Scholar
Camp EF, Nitschke MR, Rodolfo-Metalpa R, Houlbreque F, Gardner SG, Smith DJ, et al. Reef-building corals thrive within hot-acidified and deoxygenated waters. Sci Rep. 2017;7:2434 https://doi.org/10.1038/s41598-017-02383-y.
Article
CAS
PubMed
PubMed Central
Google Scholar
D’Angelo C, Hume BCC, Burt J, Smith EG, Achterberg EP, Wiedenmann J. Local adaptation constrains the distribution potential of heat-tolerant Symbiodinium from the Persian/Arabian Gulf. ISME J. 2015;9:1–10 https://doi.org/10.1038/ismej.2015.80.
Article
CAS
Google Scholar
Camp EF, Schoepf V, Mumby PJ, Hardtke LA, Rodolfo-Metalpa R, Smith DJ, et al. The future of coral reefs subject to rapid climate change: lessons from natural extreme environments. Front Mar Sci. 2018;5:4 https://doi.org/10.3389/fmars.2018.00004.
Article
Google Scholar
Gegner HM, Ziegler M, Rä Decker N, Buitrago-Loez C, Aranda M, Voolstra CR. High salinity conveys thermotolerance in the coral model Aiptasia. Biol Open. 2017;6:1943–8 https://doi.org/10.1242/bio.028878.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gegner HM, Rädecker N, Ochsenkühn M, Barreto MM, Ziegler M, Reichert J, Schubert P, Wilke T, Voolstra CR. High levels of floridoside at high salinity link osmoadaptation with bleaching susceptibility in the cnidarian-algal endosymbiosis. Biology Open. 2019;8(12):bio045591.
Article
PubMed
PubMed Central
Google Scholar
Rohwer F, Seguritan V, Azam F, Knowlton N. Diversity and distribution of coral-associated bacteria. Mar Ecol Prog Ser. 2002;243:1–10.
Article
Google Scholar
Palumbi SR, Barshis DJ, Traylor-Knowles N, Bay RA, Hoegh-Guldberg O, Hughes TP, et al. Mechanisms of reef coral resistance to future climate change. Science. 2014;344:895–8 https://doi.org/10.1126/science.1251336.
Article
CAS
PubMed
Google Scholar
Torda G, Donelson JM, Aranda M, Barshis DJ, Bay L, Berumen ML, et al. Rapid adaptive responses to climate change in corals. Nat Clim Chang. 2017;7:627–36 https://doi.org/10.1038/nclimate3374.
Article
Google Scholar
Ziegler M, Seneca FO, Yum LK, Palumbi SR, Voolstra CR. Bacterial community dynamics are linked to patterns of coral heat tolerance. Nat Commun. 2017;8:14213 https://doi.org/10.1038/ncomms14213.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ziegler M, Grupstra CGB, Barreto MM, Eaton M, BaOmar J, Zubier K, Al-Sofyani A, Turki AJ, Ormond R, Voolstra CR. Coral bacterial community structure responds to environmental change in a host-specific manner. Nat Commun. 2019;10(1).
LaJeunesse TC, Parkinson JE, Gabrielson PW, Jeong HJ, Reimer JD, Voolstra CR, et al. Systematic revision of Symbiodiniaceae highlights the antiquity and diversity of coral Endosymbionts. Curr Biol. 2018;28(16):2570–2580.e6.
Article
CAS
PubMed
Google Scholar
Hume BCC, Angelo CD, Smith EG, Stevens JR, Burt J, Wiedenmann J. Symbiodinium thermophilum sp. nov., a thermotolerant symbiotic alga prevalent in corals of the world’s hottest sea, the Persian/Arabian Gulf. Sci Rep. 2015;5:8562.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hume BCC, Voolstra CR, Arif C, D’Angelo C, Burt JA, Eyal G, et al. Ancestral genetic diversity associated with the rapid spread of stress-tolerant coral symbionts in response to Holocene climate change. Proc Natl Acad Sci U S A. 2016;113:4416–21 https://doi.org/10.1073/pnas.1601910113.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gardner SG, Camp EF, Smith DJ, Voolstra CR, Kahlke T, Osman EO, et al. Coral microbiome diversity reflects mass coral bleaching susceptibility during the 2016 El Niño heat wave. Ecol Evol. 2019;9:938–56 https://onlinelibrary.wiley.com/doi/full/10.1002/ece3.4662.
Article
PubMed
PubMed Central
Google Scholar
Suggett DJ, Warner ME, Leggat W. Symbiotic dinoflagellate functional diversity mediates coral survival under ecological crisis. Trends Ecol Evol. 2017;32(10):735–45 https://www.sciencedirect.com/science/article/abs/pii/S0169534717301908.
Article
PubMed
Google Scholar
Reshef L, Koren O, Loya Y, Zilber-Rosenberg I, Rosenberg E. The coral probiotic hypothesis. Environ Microbiol. 2006;8:2068–73 https://doi.org/10.1111/j.1462-2920.2006.01148.x.
Article
CAS
PubMed
Google Scholar
Bang C, Dagan T, Deines P, Dubilier N, Duschl WJ, Fraune S, Hentschel U, Hirt H, Hülter N, Lachnit T, Picazo D, Pita L, Pogoreutz C, Rädecker N, Saad MM, Schmitz RA, Schulenburg H, Voolstra CR, Weiland-Bräuer N, Ziegler M, Bosch TCG. Metaorganisms in extreme environments: do microbes play a role in organismal adaptation? Zoology. 2018;127:1–19.
Article
PubMed
Google Scholar
Gates RD, Ainsworth TD. The nature and taxonomic composition of coral symbiomes as drivers of performance limits in scleractinian corals. J Exp Mar Biol Ecol. 2011;408:94–101.
Article
Google Scholar
Röthig T, Yum LK, Kremb SG, Roik A, Voolstra CR. Microbial community composition of deep-sea corals from the Red Sea provides insight into functional adaption to a unique environment. Sci Rep. 2017:44714 https://doi.org/10.1038/srep44714.
Morrow KM, Bourne DG, Humphrey C, Botté ES, Laffy P, Zaneveld J, et al. Natural volcanic CO2 seeps reveal future trajectories for host–microbial associations in corals and sponges. ISME J. 2015;9:894–908 https://doi.org/10.1038/ismej.2014.188.
Article
CAS
PubMed
Google Scholar
Röthig T, Ochsenkühn MA, Roik A, van der Merwe R, Voolstra CR. Long-term salinity tolerance is accompanied by major restructuring of the coral bacterial microbiome. Mol Ecol. 2016;25:1308–23 https://doi.org/10.1111/mec.13567.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sweet MJ, Croquer A, Bythell JC. Bacterial assemblages differ between compartments within the coral holobiont. Coral Reefs. 2011;30:39–52.
Article
Google Scholar
Shnit-Orland M, Kushmaro A. Coral mucus-associated bacteria: a possible first line of defense. FEMS Microbiol Ecol. 2009;67:371–80 https://doi.org/10.1111/j.1574-6941.2008.00644.x.
Article
CAS
PubMed
Google Scholar
Brown BE, Bythell JC. Perspectives on mucus secretion in reef corals. Mar Ecol Prog Ser. 2005;296:291–309.
Article
CAS
Google Scholar
Krediet CJ, Ritchie KB, Alagely A, Teplitski M. Members of native coral microbiota inhibit glycosidases and thwart colonization of coral mucus by an opportunistic pathogen. ISME J. 2013;7:980–90 https://doi.org/10.1038/ismej.2012.164.
Article
CAS
PubMed
Google Scholar
Glasl B, Herndl GJ, Frade PR. The microbiome of coral surface mucus has a key role in mediating holobiont health and survival upon disturbance. ISME J. 2016;8:1–13 https://doi.org/10.1038/ismej.2016.9.
Article
CAS
Google Scholar
Pollock FJ, McMinds R, Smith S, Bourne DG, Willis BL, Medina M, et al. Coral-associated bacteria demonstrate phylosymbiosis and cophylogeny. Nat Commun. 2018;9:4921 https://doi.org/10.1038/s41467-018-07275-x.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rosado PM, DCA L, GAS D, Chaloub RM, Jospin G, Nunes da Rocha U, et al. Marine probiotics: increasing coral resistance to bleaching through microbiome manipulation. ISME J. 2018;1 https://doi.org/10.1038/s41396-018-0323-6.
Eakin CM, Morgan JA, Heron SF, Smith TB, Liu G, Alvarez-Filip L, et al. Caribbean corals in crisis: record thermal stress, bleaching, and mortality in 2005. PLoS One. 2010;5:1–9.
Article
CAS
Google Scholar
Fine M, Gildor H, Genin A. A coral reef refuge in the Red Sea. Glob Chang Biol. 2013;19:3640–7 https://doi.org/10.1111/gcb.12356.
Article
PubMed
Google Scholar
Arrigoni R, Benzoni F, Terraneo TI, Caragnano A, Berumen ML. Recent origin and semi-permeable species boundaries in the scleractinian coral genus Stylophora from the Red Sea. Sci Rep. 2016;6 https://www.nature.com/articles/srep34612.
Robitzch V, Banguera-Hinestroza E, Sawall Y, Al-Sofyani A, Voolstra CR. Absence of genetic differentiation in the coral Pocillopora verrucosa along environmental gradients of the Saudi Arabian Red Sea. Front Mar Sci. 2015;2:5 https://doi.org/10.3389/fmars.2015.00005.
Article
Google Scholar
LaJeunesse TC, Pettay DT, Sampayo EM, Phongsuwan N, Brown B, Obura DO, et al. Long-standing environmental conditions, geographic isolation and host-symbiont specificity influence the relative ecological dominance and genetic diversification of coral endosymbionts in the genus Symbiodinium. J Biogeogr. 2010;37:785–800 https://doi.org/10.1111/j.1365-2699.2010.02273.x.
Article
Google Scholar
Chauka LJ. Diversity of symbiotic algae in the genus Symbiodinium in Scleractinian corals of Tanzania. West Indian Ocean J Mar Sci. 2013;11:67–76 http://www.ajol.info/index.php/wiojms/article/view/78566%0Apapers3://publication/uuid/9CEF6E2C-AF3A-4880-B32A-FC476DE647C2.
Google Scholar
LaJeunesse TC, Bhagooli R, Hidaka M, DeVantier L, Done T, Schmidt GW, et al. Closely related Symbiodinium spp. differ in relative dominance in coral reef host communities across environmental, latitudinal and biogeographic gradients. Mar Ecol Prog Ser. 2004;284:147–61.
Article
Google Scholar
Tonk L, Sampayo EM, LaJeunesse TC, Schrameyer V, Hoegh-Guldberg O. Symbiodinium (Dinophyceae) diversity in reef-invertebrates along an offshore to inshore reef gradient near Lizard Island. Great Barrier Reef J Phycol. 2014;50:552–63 https://doi.org/10.1111/jpy.12185.
CAS
PubMed
Google Scholar
Ainsworth TD, Krause L, Bridge T, Torda G, Raina J-B, Zakrzewski M, et al. ISME J. 2015:1–14. https://doi.org/10.1038/ismej.2015.39.
Fine M, Gildor H, Genin A. A coral reef refuge in the Red Sea. Glob Chang Biol. 2013;19(12):3640–7.
Article
PubMed
Google Scholar
Tonk L, Sampayo EME, Weeks SSS, Magno-Canto M, Hoegh-Guldberg O, Hoegh-Guldberg O, et al. Host-specific interactions with environmental factors shape the distribution of Symbiodinium across the great barrier reef. PLoS One. 2013;8:e68533 https://doi.org/10.1371/journal.pone.0068533.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tonk L, Sampayo EM, Chai A, Schrameyer V, Hoegh-Guldberg O. Symbiodinium (Dinophyceae) community patterns in invertebrate hosts from inshore marginal reefs of the southern great barrier reef. Australia J Phycol. 2017;53:589–600.
Article
CAS
PubMed
Google Scholar
LaJeunesse TC, Loh WKW, van Woesik R, Hoegh-Guldberg O, Schmidt GW, Fitt WK. Low symbiont diversity in southern great barrier reef corals relative to those of the Caribbean. Limnol Oceanogr. 2003;48:2046–54.
Article
Google Scholar
van Oppen MJ, Palstra FP, Piquet AM, Miller DJ. Patterns of coral-dinoflagellate associations in Acropora: significance of local availability and physiology of Symbiodinium strains and host-symbiont selectivity. Proc Biol Sci / R Soc. 2001;268:1759–67 https://doi.org/10.1098/rspb.2001.1733.
Article
Google Scholar
Davy SK, Allemand D, Weis VM. Cell Biology of Cnidarian-Dinoflagellate Symbiosis. Microbiol Mol Biol Rev. 2012;76(2):229–61 https://mmbr.asm.org/content/76/2/229.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rädecker N, Raina J-B, Pernice M, Perna G, Guagliardo P, Kilburn MR, Aranda M, Voolstra CR. Using Aiptasia as a Model to Study Metabolic Interactions in Cnidarian-Symbiodinium Symbioses. Front Physiol. 2018;9.
Roth MS. The engine of the reef: photobiology of the coral-algal symbiosis. Front Microbiol. 2014;422 https://doi.org/10.3389/fmicb.2014.00422.
Enríquez S, Méndez ER, Iglesias-Prieto R. Multiple scattering on coral skeletons enhances light absorption by symbiotic algae. Limnol Oceanogr. 2005;50:1025–32.
Article
Google Scholar
Stat M, Loh WKW, Hoegh-Guldberg O, Carter DA. Symbiont acquisition strategy drives host-symbiont associations in the southern great barrier reef. Coral Reefs. 2008;27:763–72.
Article
Google Scholar
Ziegler M, Arif C, Burt JA, Dobretsov S, Roder C, LaJeunesse TC, et al. Biogeography and molecular diversity of coral symbionts in the genus Symbiodinium around the Arabian peninsula. J Biogeogr. 2017;44:674–86 https://doi.org/10.1111/jbi.12913.
Article
PubMed
PubMed Central
Google Scholar
Ziegler M, Arif C, Voolstra CR. Symbiodiniaceae Diversity in Red Sea Coral Reefs & Coral Bleaching. In: Voolstra C, Berumen M, editors. Coral Reefs of the Red Sea. Coral Reefs of the World, vol. 11. Cham: Springer; 2019.
Google Scholar
Kennedy EV, Tonk L, Foster NL, Chollett I, Ortiz J-C, Dove S, et al. Symbiodinium biogeography tracks environmental patterns rather than host genetics in a key Caribbean reef-builder, Orbicella annularis. https://doi.org/10.1098/rspb.2016.1938.
Silverstein RN, Cunning R, Baker AC. Change in algal symbiont communities after bleaching, not prior heat exposure, increases heat tolerance of reef corals. Glob Chang Biol. 2015;21:236–49.
Article
PubMed
Google Scholar
Boulotte NM, Dalton SJ, Carroll AG, Harrison PL, Putnam HM, Peplow LM, et al. Exploring the Symbiodinium rare biosphere provides evidence for symbiont switching in reef-building corals. ISME J. 2016:1–9 https://doi.org/10.1038/ismej.2016.54.
Yang SY, Keshavmurthy S, Obura D, Sheppard CRC, Visram S, Chen CA. Diversity and distribution of symbiodinium associated with seven common coral species in the Chagos Archipelago, Central Indian ocean. PLoS One. 2012;7:1–9 https://doi.org/10.1371/journal.pone.0035836.
Google Scholar
McClanahan T, Baker A, Ateweberhan M. Preparing for climate change in the western Indian Ocean Identifying climate refugia, biodiversity responses and preferred management. WIOMSA Book Series No. 12. viii; 2011.
Google Scholar
Baker A, McClanahan T, Starger C, Boonstra R. Long-term monitoring of algal symbiont communities in corals reveals stability is taxon dependent and driven by site-specific thermal regime. Mar Ecol Prog Ser. 2013;479:85–97 https://doi.org/10.3354/meps10102.
Article
Google Scholar
Baker AC, Jones SHIV, Lee TS, Abuzinada AH, Joubert E, Krupp F. Symbiont diversity in Arabian corals and its relation to patterns of contemporary and historical environmental stress. In: Proceedings of an international symposium on: the extent and impact of coral bleaching in the Arabian region: Riyadh (5–9 February 2000) Kingdom of Saudi Arabia; 2005. p. 24–36.
Google Scholar
Sawall Y, Al-sofyani A, Banguera-hinestroza E, Voolstra CR. Spatio-temporal analyses of Symbiodinium physiology of the coral Pocillopora verrucosa along large-scale nutrient and temperature gradients in the Red Sea. Photobiology. 2014;9:1–12 https://doi.org/10.1371/journal.pone.0103179.
Google Scholar
Hoadley KD, Pettay DT, Dodge D, Warner ME. Contrasting physiological plasticity in response to environmental stress within different cnidarians and their respective symbionts. Coral Reefs. 2016;35:529–42 https://doi.org/10.1007/s00338-016-1404-5.
Article
Google Scholar
Chakravarti LJ, Beltran VH, van Oppen MJH. Rapid thermal adaptation in photosymbionts of reef-building corals. Glob Chang Biol. 2017;23:4675–88 https://doi.org/10.1111/gcb.13702.
Article
PubMed
Google Scholar
Howells EJ, Beltran VH, Larsen NW, Bay LK, Willis BL, van Oppen MJH. Coral thermal tolerance shaped by local adaptation of photosymbionts. Nat Clim Chang. 2012;2:116–20 https://doi.org/10.1038/nclimate1330.
Article
Google Scholar
Levin RA, Beltran VH, Hill R, Kjelleberg S, McDougald D, Steinberg PD, et al. Sex, scavengers, and chaperones: transcriptome secrets of divergent symbiodinium thermal tolerances. Mol Biol Evol. 2016;33:3032 https://doi.org/10.1093/molbev/msw119.
Article
CAS
PubMed
PubMed Central
Google Scholar
Thornhill DJ, Howells EJ, Wham DC, Steury TD, Santos SR. Population genetics of reef coral endosymbionts ( Symbiodinium , Dinophyceae). Mol Ecol. 2017;26:2640–59 https://doi.org/10.1111/mec.14055.
Article
CAS
PubMed
Google Scholar
Thornhill DJ, Lewis AM, Wham DC, LaJeunesse TC. Host-specialist lineages dominate the adaptive radiation of reef coral endosymbionts. Evolution. 2014;68:352–67 https://doi.org/10.1111/evo.12270.
Article
CAS
PubMed
Google Scholar
LaJeunesse TC, Thornhill DJ. Improved resolution of reef-coral Endosymbiont (Symbiodinium) species diversity, ecology, and evolution through psbA non-coding region genotyping. PLoS One. 2011;6:e29013 https://doi.org/10.1371/journal.pone.0029013.
Article
CAS
PubMed
PubMed Central
Google Scholar
Smith EG, Ketchum RN, Burt JA. Host specificity of Symbiodinium variants revealed by an ITS2 metahaplotype approach. ISME J. 2017;11(6):1500–3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hume BCC, Smith EG, Ziegler M, Warrington HJM, Burt JA, LaJeunesse TC, et al. SymPortal: A novel analytical framework and platform for coral algal symbiont next-generation sequencing ITS2 profiling. Mol Ecol Resour. 2019:1755–0998.13004 https://doi.org/10.1111/1755-0998.13004.
Ziegler M, Roik A, Porter A, Zubier K, Mudarris MS, Ormond R, et al. Coral microbial community dynamics in response to anthropogenic impacts near a major city in the Central Red Sea. Mar Pollut Bull. 2015; https://doi.org/10.1016/j.marpolbul.2015.12.045.
Zaneveld JR, Burkepile DE, Shantz AA, Pritchard CE, McMinds R, Payet JP, et al. Overfishing and nutrient pollution interact with temperature to disrupt coral reefs down to microbial scales. Nat Commun. 2016;7:1–12.
Article
CAS
Google Scholar
Wang L, Shantz AA, Payet JP, Sharpton TJ, Foster A, Burkepile DE, et al. Corals and their microbiomes are differentially affected by exposure to elevated nutrients and a natural thermal anomaly. Front Mar Sci. 2018;5:1–16 https://doi.org/10.3389/fmars.2018.00101.
Article
Google Scholar
Webster NS, Negri AP, Botté ES, Laffy PW, Flores F, Noonan S, et al. Host-associated coral reef microbes respond to the cumulative pressures of ocean warming and ocean acidification. Sci Rep. 2016;6:19324 https://doi.org/10.1038/srep19324.
Article
CAS
PubMed
PubMed Central
Google Scholar
Grottoli AG, Dalcin Martins P, Wilkins MJ, Johnston MD, Warner ME, Cai W-J, et al. Coral physiology and microbiome dynamics under combined warming and ocean acidification. PLoS One. 2018;13:e0191156 https://doi.org/10.1371/journal.pone.0191156.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jessen C, Villa Lizcano JF, Bayer T, Roder C, Aranda M, Wild C, et al. In-situ effects of eutrophication and overfishing on physiology and bacterial diversity of the Red Sea coral Acropora hemprichii. PLoS One. 2013;8:e62091 https://doi.org/10.1371/journal.pone.0062091.
Article
CAS
PubMed
PubMed Central
Google Scholar
Carlos C, Torres TT, Ottoboni LMM. Bacterial communities and species-specific associations with the mucus of Brazilian coral species. Sci Rep. 2013;3:1–7 https://doi.org/10.1038/srep01624.
Article
CAS
Google Scholar
Lee OO, Yang J, Bougouffa S, Wang Y, Batang Z, Tian R, et al. Spatial and species variations in bacterial communities associated with corals from the Red Sea as revealed by pyrosequencing. Appl Environ Microbiol. 2012;78:7173–84 https://doi.org/10.1128/AEM.01111-12.
Article
CAS
PubMed
PubMed Central
Google Scholar
Morrow KM, Moss AG, Chadwick NE, Liles MR. Bacterial associates of two caribbean coral species reveal species-specific distribution and geographic variability. Appl Environ Microbiol. 2012;78:6438–49.
Article
CAS
PubMed
PubMed Central
Google Scholar
Neave MJ, Rachmawati R, Xun L, Michell CT, Bourne DG, Apprill A, Voolstra CR. Differential specificity between closely related corals and abundant Endozoicomonas endosymbionts across global scales. ISME J. 2017;11(1):186–200.
Article
PubMed
Google Scholar
Nelson CE, Goldberg SJ, Wegley Kelly L, Haas AF, Smith JE, Rohwer F, et al. Coral and macroalgal exudates vary in neutral sugar composition and differentially enrich reef bacterioplankton lineages. ISME J. 2013;7:962–79 https://doi.org/10.1038/ismej.2012.161.
Article
CAS
PubMed
PubMed Central
Google Scholar
Meikle P, Richards GN, Yellowlees D. Structural investigations on the mucus from six species of coral. Mar Biol. 1988;99:187–93 https://doi.org/10.1007/BF00391980.
Article
CAS
Google Scholar
Ducklow HW, Mitchell R. Composition of mucus released by coral reef coelenteratesl. Limnol Oceanogr. 1979;24:706–14.
Article
CAS
Google Scholar
Lee STM, Davy SK, Tang S-L, Kench PS. Mucus sugar content shapes the bacterial community structure in thermally stressed Acropora muricata. Front Microbiol. 2016;7:371 https://doi.org/10.3389/fmicb.2016.00371.
PubMed
PubMed Central
Google Scholar
Hadaidi G, Gegner HM, Ziegler M, Voolstra CR. Carbohydrate composition of mucus from scleractinian corals from the central Red Sea. Coral Reefs. 2019;38(1):21–7.
Article
Google Scholar
Leite DCA, Leão P, Garrido AG, Lins U, Santos HF, Pires DO, et al. Broadcast spawning coral Mussismilia hispida can vertically transfer its associated bacterial Core. Front Microbiol. 2017;8:176 https://doi.org/10.3389/fmicb.2017.00176.
Article
PubMed
PubMed Central
Google Scholar
Thompson JR, Rivera HE, Closek CJ, Medina M. Microbes in the coral holobiont: partners through evolution, development, and ecological interactions. Front Cell Infect Microbiol. 2015;4:176 https://doi.org/10.3389/fcimb.2014.00176.
Article
PubMed
PubMed Central
Google Scholar
Sharp KH, Distel D, Paul VJ. Diversity and dynamics of bacterial communities in early life stages of the Caribbean coral Porites astreoides. ISME J. 2012;6:790–801 https://doi.org/10.1038/ismej.2011.144.
Article
CAS
PubMed
Google Scholar
Ceh J, Kilburn MR, Cliff JB, Raina J-BB, Van Keulen M, Bourne DG. Nutrient cycling in early coral life stages: Pocillopora damicornis larvae provide their algal symbiont (Symbiodinium) with nitrogen acquired from bacterial associates. Ecol Evol. 2013;3(8):2393–400 https://onlinelibrary.wiley.com/doi/full/10.1002/ece3.642.
Article
Google Scholar
Neave MJ, Apprill A, Ferrier-Pagès C, Voolstra CR. Diversity and function of prevalent symbiotic marine bacteria in the genus Endozoicomonas. Appl Microbiol Biotechnol. 2016;100:8315–24 https://doi.org/10.1007/s00253-016-7777-0.
Article
CAS
PubMed
PubMed Central
Google Scholar
Arndt D, Xia J, Liu Y, Zhou Y, Guo AC, Cruz JA, et al. METAGENassist: a comprehensive web server for comparative metagenomics. Nucleic Acids Res. 2012;40.
Raina J-B, Tapiolas D, Willis BL, Bourne DG. Coral-associated bacteria and their role in the biogeochemical cycling of sulfur. Appl Environ Microbiol. 2009;75:3492–501 https://doi.org/10.1128/AEM.02567-08.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bourne DG, Dennis PG, Uthicke S, Soo RM, Tyson GW, Webster N. Coral reef invertebrate microbiomes correlate with the presence of photosymbionts. ISME J. 2013;7:1452–8 https://doi.org/10.1038/ismej.2012.172.
Article
CAS
PubMed
PubMed Central
Google Scholar
Raina JB, Tapiolas DM, Forêt S, Lutz A, Abrego D, Ceh J, et al. DMSP biosynthesis by an animal and its role in coral thermal stress response. Nature. 2013;502:677–80.
Article
CAS
PubMed
Google Scholar
Gardner SG, Nielsen DA, Laczka O, Shimmon R, Beltran VH, Ralph PJ, et al. Dimethylsulfoniopropionate, superoxide dismutase and glutathione as stress response indicators in three corals under short-term hyposalinity stress. Proc R Soc B Biol Sci. 2016;283:20152418 https://doi.org/10.1098/rspb.2015.2418.
Article
CAS
Google Scholar
Hopkins FE, Bell TG, Yang M, Suggett DJ, Steinke M. Air exposure of coral is a significant source of dimethylsulfide (DMS) to the atmosphere. Sci Rep. 2016;6:36031 https://doi.org/10.1038/srep36031.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sunda W, Kieber DJ, Kiene RP, Huntsman S. An antioxidant function for DMSP and DMS in marine algae. Nature. 2002;418:317–20.
Article
CAS
PubMed
Google Scholar
Hadaidi G, Röthig T, Yum LK, Ziegler M, Arif C, Roder C, et al. Stable mucus-associated microbial communities in bleached and healthy corals of Porites lobata from the Arabian seas. Sci Rep. 2017;7:45362 https://doi.org/10.1038/srep45362.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shnit-Orland M, Sivan A, Kushmaro A. Antibacterial activity of Pseudoalteromonas in the coral Holobiont. Microb Ecol. 2012;64:851–9 https://doi.org/10.1007/s00248-012-0086-y.
Article
CAS
PubMed
Google Scholar
Holmström C, Kjelleberg S, Baumann L, Baumann P, Mandel M, Allen RD, et al. Marine Pseudoalteromonas species are associated with higher organisms and produce biologically active extracellular agents. FEMS Microbiol Ecol. 1999;30:285–93 https://doi.org/10.1111/j.1574-6941.1999.tb00656.x.
Article
PubMed
Google Scholar
Wright RM, Kenkel CD, Dunn CE, Shilling EN, Bay LK, Matz MV. Intraspecific differences in molecular stress responses and coral pathobiome contribute to mortality under bacterial challenge in Acropora millepora. Sci Rep. 2017;7:2609.
Article
CAS
PubMed
PubMed Central
Google Scholar
Denner EBM, Vybiral D, Koblízek M, Kämpfer P, Busse H-J, Velimirov B. Erythrobacter citreus sp. nov., a yellow-pigmented bacterium that lacks bacteriochlorophyll a, isolated from the western Mediterranean Sea. Int J Syst Evol Microbiol. 2002;52(Pt 5):1655–61 https://doi.org/10.1099/00207713-52-5-1655.
CAS
PubMed
Google Scholar
Koblízek M, Béjà O, Bidigare RR, Christensen S, Benitez-Nelson B, Vetriani C, et al. Isolation and characterization of Erythrobacter sp. strains from the upper ocean. Arch Microbiol. 2003;180:327–38 https://doi.org/10.1007/s00203-003-0596-6.
Article
CAS
PubMed
Google Scholar
Yurkov V, Stackebrandt E, Holmes A, Fuerst JA, Hugenholtz P, Golecki J, et al. Phylogenetic positions of novel aerobic, bacteriochlorophyll a-containing bacteria and description of Roseococcus thiosulfatophilus gen. nov., sp. nov., Erythromicrobium ramosum gen. nov., sp. nov., and Erythrobacter litoralis sp. nov. Int J Syst Bacteriol. 1994;44:427–34.
Article
CAS
PubMed
Google Scholar
Yuki ST, Hamasaki K, Suzuki K. Photosynthetic characteristics of marine aerobic anoxygenic phototrophic bacteria Roseobacter and Erythrobacter strains. Arch Microbiol. 2012;194:331–41.
Article
CAS
Google Scholar
Fiedor J, Burda K. Potential role of carotenoids as antioxidants in human health and disease. Nutrients. 2014;6:466–88.
Article
CAS
PubMed
PubMed Central
Google Scholar
Diaz JM, Hansel CM, Apprill A, Brighi C, Zhang T, Weber L, et al. Species-specific control of external superoxide levels by the coral holobiont during a natural bleaching event. Nat Commun. 2016;7:13801 https://doi.org/10.1038/ncomms13801.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kuguru B, Winters G, Beer S, Santos SR, Chadwick NE. Adaptation strategies of the corallimorpharian Rhodactis rhodostoma to irradiance and temperature. Mar Biol. 2007;151:1287–98 https://doi.org/10.1007/s00227-006-0589-5.
Article
Google Scholar
Gaither MR, Szabó Z, Crepeau MW, Bird CE, Toonen RJ. Preservation of corals in salt-saturated DMSO buffer is superior to ethanol for PCR experiments. Coral Reefs. 2011;30:329–33.
Article
Google Scholar
Mieog JC, van Oppen MJH, Berkelmans R, Stam WT, Olsen JL. Quantification of algal endosymbionts ( Symbiodinium ) in coral tissue using real-time PCR. Mol Ecol Resour. 2009;9:74–82 https://doi.org/10.1111/j.1755-0998.2008.02222.x.
Article
CAS
PubMed
Google Scholar
Arif C, Daniels C, Bayer T, Banguera-Hinestroza E, Barbrook A, Howe CJ, et al. Assessing Symbiodinium diversity in scleractinian corals via next-generation sequencing-based genotyping of the ITS2 rDNA region. Mol Ecol. 2014;23:4418–33 https://doi.org/10.1111/mec.12869.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bongaerts P, Sampayo EM, Bridge TCL, Ridgway T, Vermeulen F, Englebert N, et al. Symbiodinium diversity in mesophotic coral communities on the great barrier reef: a first assessment. Mar Ecol Prog Ser. 2011;439:117–26 https://doi.org/10.3354/meps09315.
Article
Google Scholar
Santos SR, Taylor DJ, Coffroth MA. Genetic comparisons of freshly isolated versus cultured symbiotic dinoflagellates: implications for extrapolating to the intact symbiosis. J Phycol. 2001;37:900–12 https://doi.org/10.1046/j.1529-8817.2001.00194.x.
Article
CAS
Google Scholar
LaJeunesse T, Trench R. Biogeography of two species of Symbiodinium (Freudenthal) inhabiting the intertidal sea anemone Anthopleura elegantissima (Brandt). Biol Bull. 2000;199:126–34 https://doi.org/10.2307/1542872.
Article
CAS
PubMed
Google Scholar
LaJeunesse TC. Diversity and community structure of symbiotic dinoflagellates from Caribbean coral reefs. Mar Biol. 2002;141:387–400 https://doi.org/10.1007/s00227-002-0829-2.
Article
Google Scholar
Griffiths RI, Whiteley AS, O’Donnell AG, Bailey MJ. Rapid method for coextraction of DNA and RNA from natural environments for analysis of ribosomal DNA- and rRNA-based microbial community composition. Appl Environ Microbiol. 2000;66:5488–91.
Article
CAS
PubMed
PubMed Central
Google Scholar
Anderson MJ. A new method for non-parametric multivariate analysis of variance. Austral Ecol. 2001;26:32–46 https://doi.org/10.1111/j.1442-9993.2001.tb00081.x.
Google Scholar
Clarke KR. Non-parametric multivariate analyses of changes in community structure: Blackwell Publishing Ltd; 1993. https://doi.org/10.1111/j.1442-9993.1993.tb00438.x.
Book
Google Scholar
Joshi N, Fass J. Sickle: A sliding-window, adaptive, quality-based trimming tool for FastQ files (Version 1.33) [Software]. Available at https://github.com/najoshi/sickle, vol. 2011; 2011.
Google Scholar
Nikolenko SI, Korobeynikov AI, Alekseyev MA. BayesHammer: Bayesian clustering for error correction in single-cell sequencing. BMC Genomics. 2013;14(Suppl 1):S7 https://doi.org/10.1186/1471-2164-14-S1-S7.
Article
PubMed
PubMed Central
Google Scholar
Nurk S, Bankevich A, Antipov D, Gurevich A, Korobeynikov A, Lapidus A, et al. Assembling genomes and mini-metagenomes from highly chimeric reads. In: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); 2013. p. 158–170.
Zhang J, Kobert K, Flouri T, Stamatakis A. PEAR: a fast and accurate Illumina paired-end reAd mergeR. Bioinformatics. 2014;30:614–20.
Article
CAS
PubMed
Google Scholar
Masella AP, Bartram AK, Truszkowski JM, Brown DG, Neufeld JD. PANDAseq: paired-end assembler for illumina sequences. BMC Bioinformatics. 2012;13:31 https://doi.org/10.1186/1471-2105-13-31.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang Q, Garrity GM, Tiedje JM, Cole JR. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol. 2007;73:5261–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods. 2010;7:335–6 https://doi.org/10.1038/nmeth.f.303.
Article
CAS
PubMed
PubMed Central
Google Scholar
Weiss S, Xu ZZ, Peddada S, Amir A, Bittinger K, Gonzalez A, et al. Normalization and microbial differential abundance strategies depend upon data characteristics. Microbiome. 2017;5(27) https://microbiomejournal.biomedcentral.com/articles/10.1186/s40168-017-0237-y.
Shapiro SS, Francia RS. An approximate analysis of variance test for normality. J Am Stat Assoc. 1972;67:215–6 https://doi.org/10.2307/2284728.
Article
Google Scholar
De Cáceres M, Legendre P. Associations between species and groups of sites: indices and statistical inference. Ecology. 2009;90:3566–74 https://doi.org/10.1890/08-1823.1.
Article
PubMed
Google Scholar
Dhariwal A, Chong J, Habib S, King IL, Agellon LB, Xia J. MicrobiomeAnalyst: A web-based tool for comprehensive statistical, visual and meta-analysis of microbiome data. Nucleic Acids Res. 2017.
R Developement Core Team. R: A Language and Environment for Statistical Computing. R Found Stat Comput. 2015;1:409 https://doi.org/10.1007/978-3-540-74686-7.
Google Scholar