WHO. Global Action Plan on Antimicrobial Resistance. Geneva: WHO; 2015. 2017.
Lushniak BD. Antibiotic resistance: a public health crisis. Public Health Rep. 2014;129(4):314–6.
Article
PubMed
PubMed Central
Google Scholar
Martínez JL. Antibiotics and antibiotic resistance genes in natural environments. Science. 2008;321(5887):365–7.
Article
PubMed
CAS
Google Scholar
Smillie CS, et al. Ecology drives a global network of gene exchange connecting the human microbiome. Nature. 2011;480(7376):241.
Article
CAS
PubMed
Google Scholar
Novo A, et al. Antibiotic resistance, antimicrobial residues and bacterial community composition in urban wastewater. Water Res. 2013;47(5):1875–87.
Article
CAS
PubMed
Google Scholar
Schmieder R, Edwards R. Insights into antibiotic resistance through metagenomic approaches. Future Microbiol. 2012;7(1):73–89.
Article
CAS
PubMed
Google Scholar
Holmes AH, et al. Understanding the mechanisms and drivers of antimicrobial resistance. Lancet. 2016;387(10014):176–87.
Article
CAS
PubMed
Google Scholar
Gaze WH, et al. Influence of humans on evolution and mobilization of environmental antibiotic resistome. Emerg Infec Dis. 2013;19(7).
Martinez JL. The role of natural environments in the evolution of resistance traits in pathogenic bacteria. Proc Royal Soc. of London B: Biol Sci. 2009;276(1667):2521–30.
Article
PubMed
PubMed Central
Google Scholar
Wright GD. Antibiotic resistance in the environment: a link to the clinic? Curr Opin Microbiol. 2010;13(5):589–94.
Article
CAS
PubMed
Google Scholar
Alonso A, Sanchez P, Martinez JL. Environmental selection of antibiotic resistance genes. Environ Microbiol. 2001;3(1):1–9.
Article
CAS
PubMed
Google Scholar
Wright GD. The antibiotic resistome: the nexus of chemical and genetic diversity. Nat Rev Microbiol. 2007;5:175.
Article
CAS
PubMed
Google Scholar
D'Costa VM, et al. Sampling the antibiotic resistome. Science. 2006;311(5759):374–7.
Article
CAS
PubMed
Google Scholar
Garner E, et al. A human exposome framework for guiding risk management and holistic assessment of recycled water quality. Environ Sci: Water Res Technol. 2016;2(4):580–98.
Google Scholar
Aminov RI. The role of antibiotics and antibiotic resistance in nature. Environ Microbiol. 2009;11(12):2970–88.
Article
CAS
PubMed
Google Scholar
Storteboom H, et al. Tracking antibiotic resistance genes in the South Platte River basin using molecular signatures of urban, agricultural, and pristine sources. Environ Sci Technol. 2010;44(19):7397–404.
Article
CAS
PubMed
Google Scholar
Bruchmann J, Kirchen S, Schwartz T. Sub-inhibitory concentrations of antibiotics and wastewater influencing biofilm formation and gene expression of multi-resistant Pseudomonas aeruginosa wastewater isolates. Environ Sci Pollut Res. 2013;20(6):3539–49.
Article
CAS
Google Scholar
McEneff G, et al. A year-long study of the spatial occurrence and relative distribution of pharmaceutical residues in sewage effluent, receiving marine waters and marine bivalves. Sci Total Environ. 2014;476:317–26.
Article
PubMed
CAS
Google Scholar
Rowe WP, et al. Overexpression of antibiotic resistance genes in hospital effluents over time. J Antimicrob Chemother. 2017;72(6):1617–23.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fick J, et al. Contamination of surface, ground, and drinking water from pharmaceutical production. Environ Toxicol Chem. 2009;28(12):2522–7.
Article
CAS
PubMed
Google Scholar
Kristiansson E, et al. Pyrosequencing of antibiotic-contaminated river sediments reveals high levels of resistance and gene transfer elements. PloS One. 2011;6(2):e17038.
Article
CAS
PubMed
PubMed Central
Google Scholar
LaPara TM, et al. Tertiary-treated municipal wastewater is a significant point source of antibiotic resistance genes into Duluth-Superior Harbor. Environ Sci Technol. 2011;45(22):9543–9.
Article
CAS
PubMed
Google Scholar
Walsh TR, et al. Dissemination of NDM-1 positive bacteria in the New Delhi environment and its implications for human health: an environmental point prevalence study. Lancet Infect Dis. 2011;11(5):355–62.
Article
PubMed
Google Scholar
Pruden A, Arabi M, Storteboom HN. Correlation between upstream human activities and riverine antibiotic resistance genes. Environ Sci Technol. 2012;46(21):11541–9.
Article
CAS
PubMed
Google Scholar
Gao P, Munir M, Xagoraraki I. Correlation of tetracycline and sulfonamide antibiotics with corresponding resistance genes and resistant bacteria in a conventional municipal wastewater treatment plant. Sci Total Environ. 2012;421:173–83.
Article
PubMed
CAS
Google Scholar
Nagulapally SR, et al. Occurrence of ciprofloxacin-, trimethoprim-sulfamethoxazole-, and vancomycin-resistant bacteria in a municipal wastewater treatment plant. Water Environ Res. 2009;81(1):82–90.
Article
CAS
PubMed
Google Scholar
Goldstein RER, et al. Methicillin-resistant Staphylococcus aureus (MRSA) detected at four US wastewater treatment plants. Environ Health Perspect. 2012;120(11):1551.
Koike S, et al. Monitoring and source tracking of tetracycline resistance genes in lagoons and groundwater adjacent to swine production facilities over a 3-year period. Appl Environ Microbiol. 2007;73(15):4813–23.
Article
CAS
PubMed
PubMed Central
Google Scholar
Munir M, Wong K, Xagoraraki I. Release of antibiotic resistant bacteria and genes in the effluent and biosolids of five wastewater utilities in Michigan. Water Res. 2011;45(2):681–93.
Article
CAS
PubMed
Google Scholar
Smith CJ, Osborn AM. Advantages and limitations of quantitative PCR (Q-PCR)-based approaches in microbial ecology. FEMS Microbiol Ecol. 2009;67(1):6–20.
Article
CAS
PubMed
Google Scholar
Simon C, Daniel R. Metagenomic analyses: past and future trends. Appl Environ Microbiol. 2011;77(4):1153–61.
Article
CAS
PubMed
Google Scholar
Lindgreen S, Adair KL, Gardner PP. An evaluation of the accuracy and speed of metagenome analysis tools. Scientific Reports. 2016;6:19233.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li B, et al. Metagenomic and network analysis reveal wide distribution and co-occurrence of environmental antibiotic resistance genes. The ISME J. 2015;9(11):2490.
Article
CAS
PubMed
Google Scholar
Rizzo L, et al. Urban wastewater treatment plants as hotspots for antibiotic resistant bacteria and genes spread into the environment: a review. Sci Total Environ. 2013;447:345–60.
Article
CAS
PubMed
Google Scholar
Ju F, et al. Metagenomic analysis on seasonal microbial variations of activated sludge from a full-scale wastewater treatment plant over 4 years. Environ Microbiol Reports. 2014;6(1):80–9.
Article
CAS
Google Scholar
Ramette A. Multivariate analyses in microbial ecology. FEMS Microbiol Ecol. 2007;62(2):142–60.
Article
CAS
PubMed
Google Scholar
Teeling H, Glöckner FO. Current opportunities and challenges in microbial metagenome analysis—a bioinformatic perspective. Briefings in Bioinf. 2012;13(6):728–42.
Article
Google Scholar
Segata N, et al. Metagenomic biomarker discovery and explanation. Genome Biol. 2011;12(6):R60.
Article
PubMed
PubMed Central
Google Scholar
Anders S, Huber W. Differential expression analysis for sequence count data. Genome Biol. 2010;11(10):R106.
Article
CAS
PubMed
PubMed Central
Google Scholar
Marco, D., Metagenomics. 2017: Caister Academic Press.
Sánchez-Maroño N, Alonso-Betanzos A, Tombilla-Sanromán M. Filter methods for feature selection–a comparative study. In: International Conference on Intelligent Data Engineering and Automated Learning. Springer; 2007.
Guyon I, Elisseeff A. An introduction to variable and feature selection. J Machine Learning Res. 2003;3(Mar):1157–82.
Geurts P, Ernst D, Wehenkel L. Extremely randomized trees. Machine Learning. 2006;63(1):3–42.
Article
Google Scholar
Liaw A, Wiener M. Classification and regression by randomForest. R News. 2002;2(3):18–22.
Google Scholar
Packwood D. Theory of Bayesian Optimization, in Bayesian Optimization for Materials Science: Springer; 2017. p. 11–28.
Packwood D. Bayesian Optimization for Materials Science. Springer; 2017.
Zhou Z-H. Ensemble Methods: Foundations and Algorithms. Chapman and Hall/CRC; 2012.
Kuncheva LI. Combining Pattern Classifiers: Methods and Algorithms. Wiley; 2004.
Breiman L. Classification and Regression Trees. Routledge; 2017.
Breiman L. Random Forests. Machine Learning. 2001;45(1):5–32.
Article
Google Scholar
Breiman L. Manual on setting up, using, and understanding random forests v3. 1, 2002.
Arango-Argoty G, et al. MetaStorm: a public resource for customizable metagenomics annotation. PloS One. 2016;11(9):e0162442.
Article
PubMed
PubMed Central
CAS
Google Scholar
Gourlé H, et al. Simulating Illumina metagenomic data with InSilicoSeq. Bioinformatics. 2018;35(3):521–22.
Article
PubMed Central
Google Scholar
Zhou J, Bruns MA, Tiedje JM. DNA recovery from soils of diverse composition. Appl Environ Microbiol. 1996;62(2):316–22.
Satinsky BM, et al. Metagenomic and metatranscriptomic inventories of the lower Amazon River, May 2011. Microbiome. 2015;3(1):39.
Satinsky BM, et al. The Amazon continuum dataset: quantitative metagenomic and metatranscriptomic inventories of the Amazon River plume June 2010. Microbiome. 2014;2(1):17.
Article
PubMed
PubMed Central
Google Scholar
Meziti A, et al. Anthropogenic effects on bacterial diversity and function along a river-to-estuary gradient in Northwest Greece revealed by metagenomics. Environ. Microbiol. 2016;18(12):4640–52.
Article
PubMed
Google Scholar
Ng C, et al. Characterization of metagenomes in urban aquatic compartments reveals high prevalence of clinically relevant antibiotic resistance genes in wastewaters. Front Microbiol. 2017;8.
Pelikan M. Bayesian optimization algorithm, in Hierarchical Bayesian optimization algorithm: toward a new generation of evolutionary algorithms. Berlin, Heidelberg: Springer Berlin Heidelberg; 2005. p. 31–48.
Chapter
Google Scholar
Rand W. Objective criteria for the evaluation of clustering methods. J Amer Stat Associ. 1971;66(336):846–50.
Article
Google Scholar
Santos JM, Embrechts M. On the use of the adjusted rand index as a metric for evaluating supervised classification. In International Conference on Artificial Neural Networks: Springer; 2009.
Zhang S, Wong H-S. ARImp: a generalized adjusted rand index for cluster ensembles. In: Pattern Recognition (ICPR), 2010 20th International Conference on: IEEE; 2010.
Rousseeuw PJ. Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J Comput Appl Math. 1987;20:53–65.
Article
Google Scholar
Gu Z, Eils R, Schlesner M. Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics. 2016;32(18):2847–9.
Article
CAS
PubMed
Google Scholar
Guyon I, et al. Gene selection for cancer classification using support vector machines. Machine Learning. 2002;46(1):389–422.
Article
Google Scholar
Mulvey MR, Simor AE. Antimicrobial resistance in hospitals: how concerned should we be? Cmaj. 2009;180(4):408–15.
Article
PubMed
PubMed Central
Google Scholar
van Hoek AH, et al. Acquired antibiotic resistance genes: an overview, Front. Microbiol. 2011;2:203.
Blackwell GA, Hall RM. The tet39 determinant and the msrE-mphE genes in Acinetobacter plasmids are each part of discrete modules flanked by inversely oriented pdif (XerC-XerD) sites. Antimicrob Agents Chemo. 2017;61(8):e00780–e00717.
Tatar LD, et al. An Escherichia coli undecaprenyl-pyrophosphate phosphatase implicated in undecaprenyl phosphate recycling. Microbiology. 2007;153(8):2518–29.
Article
CAS
PubMed
Google Scholar
Shaaly A, et al. Undecaprenyl pyrophosphate phosphatase confers low-level resistance to bacitracin in Enterococcus faecalis. J Antimicrob Chemother. 2013;68(7):1583–93.
Article
CAS
PubMed
Google Scholar
Hu Y, et al. Metagenome-wide analysis of antibiotic resistance genes in a large cohort of human gut microbiota. Nature Comm. 2013;4:2151.
Volkers, G., et al., Structural basis for a new tetracycline resistance mechanism relying on the TetX monooxygenase. FEBS Letters. 2011. 585(7):1061–1066.
Article
CAS
PubMed
Google Scholar
Connell SR, et al. Ribosomal protection proteins and their mechanism of tetracycline resistance. Antimicrob Agents Chemo. 2003;47(12):3675–81.
Article
CAS
PubMed
PubMed Central
Google Scholar
Oh M, et al. MetaCompare: a computational pipeline for prioritizing environmental resistome risk. FEMS Microbiol Ecol. 2018;94(7).
Singer AC, et al. Review of antimicrobial resistance in the environment and its relevance to environmental regulators. Front Microbiol. 2016;7:1728.
Chen B, et al. Metagenomic profiles of antibiotic resistance genes (ARGs) between human impacted estuary and deep ocean sediments. Environ Sci Technol. 2013;47(22):12753–60.
Article
CAS
PubMed
Google Scholar
Berglund B. Environmental dissemination of antibiotic resistance genes and correlation to anthropogenic contamination with antibiotics. Infect Ecol Epidemiol. 2015;5(1):28564.
PubMed
Google Scholar
Larsson DGJ, Bengtsson-Palme J, Kristiansson E. Environmental factors influencing the development and spread of antibiotic resistance. FEMS Microbiology Reviews. 2017;42(1).
Yang Y, et al. ARGs-OAP: online analysis pipeline for antibiotic resistance genes detection from metagenomic data using an integrated structured ARG-database. Bioinformatics. 2016;32(15):2346–51.
Article
CAS
PubMed
Google Scholar
Arango-Argoty G, et al. DeepARG: a deep learning approach for predicting antibiotic resistance genes from metagenomic data. Microbiome. 2018;6(1):23.
Evers S, Courvalin P. Regulation of VanB-type vancomycin resistance gene expression by the VanS(B)-VanR (B) two-component regulatory system in Enterococcus faecalis V583. J. Bacteriol. 1996;178(5):1302–09.
Article
CAS
PubMed
PubMed Central
Google Scholar
Köhler T, et al. Characterization of MexT, the regulator of the MexE-MexF-OprN multidrug efflux system of Pseudomonas aeruginosa. J Bacteriol. 1999;181(20):6300–5.
PubMed
PubMed Central
Google Scholar
Kruse T, et al. vanI: a novel d-Ala-d-Lac vancomycin resistance gene cluster found in Desulfitobacterium hafniense. Microbiol. Biotech. 2014;7(5):456–66.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gudeta DD, et al. vanO, a new glycopeptide resistance operon in environmental Rhodococcus equi isolates. Antimicro Agents Chemo. 2014;58(3):1768–70.
Article
PubMed
CAS
Google Scholar
Nagakubo S, et al. The putative response regulator BaeR stimulates multidrug resistance of Escherichia coli via a novel multidrug exporter system. MdtABC. J. Bacteriol. 2002;184(15):4161–7.
Nembrini S, König IR, Wright MN. The revival of the Gini importance? Bioinformatics. 2018;34(21):3711–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li A-D, et al. Effects of sample preservation and DNA extraction on enumeration of antibiotic resistance genes in wastewater. FEMS Microbiol Ecol. 2017;94(2):fix189.
Wilke A, et al. MG-RAST technical report and manual for version 3.3. 6–Rev 1. Lemont, IL: Argonne National Laboratory; 2013.
Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using DIAMOND. Nature Methods. 2015;12(1):59.
Article
PubMed
CAS
Google Scholar
Pearson WR. An introduction to sequence similarity (“homology”) searching. Current Protocols Bioinform. 2013;42(1):3.1.1–3.1.8.
Article
Google Scholar
McArthur AG, et al. The comprehensive antibiotic resistance database. Antimicro Agents Chemo. 2013:57(7):3348–57.
Bray JR, Curtis JT. An ordination of the upland forest communities of southern Wisconsin. Ecologial Monographs. 1957;27(4):325–349.
Article
Google Scholar