Garcia-Pichel F. Desert environments: biological soil crusts. Environemental Microbiol: Encycl; 2003.
Google Scholar
Belnap J, Budel B, Lange OL. Biological soil crusts: characteristics and distribution. In: Biol soil crusts struct funct manag. Berlin: Springer; 2001. p. 3–30.
Webber B, Budel B, Belnap J. Biological soil crusts: an organizing principle in drylands. Ecological. Switzerland: Springer; 2016.
Abed RMM, Ramette A, Hübner V, De Deckker P, de Beer D. Microbial diversity of eolian dust sources from saline lake sediments and biological soil crusts in arid Southern Australia. FEMS Microbiol Ecol. 2012;80:294–304 Available from: http://www.ncbi.nlm.nih.gov/pubmed/22224563. [cited 20 Dec 2013].
Article
CAS
Google Scholar
Kuske CR, Yeager CM, Johnson S, Ticknor LO, Belnap J. Response and resilience of soil biocrust bacterial communities to chronic physical disturbance in arid shrublands. ISME J. 2012;6:886–97 Available from: http://www.ncbi.nlm.nih.gov/pubmed/22113374. [cited 2012 Dec 20]. Nature Publishing Group.
Article
CAS
Google Scholar
Garcia-Pichel F, Wojciechowski MF. The evolution of a capacity to build supra-cellular ropes enabled filamentous cyanobacteria to colonize highly erodible substrates Rodriguez-Valera F, editor PLoS One. 2009;4:e7801. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2773439&tool=pmcentrez&rendertype=abstract. [cited 2012 Oct 16]. Public Library of Science
Yeager CM, Kornosky JL, Morgan RE, Cain EC, Garcia-Pichel F, Housman DC, et al. Three distinct clades of cultured heterocystous cyanobacteria constitute the dominant N2-fixing members of biological soil crusts of the Colorado Plateau, USA. FEMS Microbiol Ecol. 2007;60:85–97 Available from: http://www.ncbi.nlm.nih.gov/pubmed/17381526. [cited 2013 Jun 26].
Article
CAS
Google Scholar
Gundlapally SR, Garcia-Pichel F. The community and phylogenetic diversity of biological soil crusts in the Colorado Plateau studied by molecular fingerprinting and intensive cultivation. Microb Ecol. 2006;52:345–57 Available from: http://www.ncbi.nlm.nih.gov/pubmed/16691327. [cited 5 Jun 2013].
Article
Google Scholar
Soule T, Anderson IJ, Johnson SL, Bates ST, Garcia-Pichel F. Archaeal populations in biological soil crusts from arid lands in North America. Soil biol Biochem. 2009;41:2069–74. https://doi.org/10.1016/j.soilbio.2009.07.023 Elsevier Ltd.
Article
CAS
Google Scholar
Bates ST, Nash TH, Garcia-Pichel F. Patterns of diversity for fungal assemblages of biological soil crusts from the southwestern United States. Mycologia. 2012;104:353–61 Available from: https://www.tandfonline.com/doi/full/10.3852/11-232.
Article
CAS
Google Scholar
Bates ST, Nash TH, Sweat KG, Garcia-Pichel F. Fungal communities of lichen-dominated biological soil crusts: diversity, relative microbial biomass, and their relationship to disturbance and crust cover. J Arid Environ. 2010;74:1192–9. https://doi.org/10.1016/j.jaridenv.2010.05.033 Elsevier Ltd.
Article
Google Scholar
Antoninka A, Bowker MA, Reed SC, Doherty K. Production of greenhouse-grown biocrust mosses and associated cyanobacteria to rehabilitate dryland soil function. Restor Ecol. 2016;24:324–35.
Article
Google Scholar
Nunes da Rocha U, Cadillo-Quiroz H, Karaoz U, Rajeev L, Klitgord N, Dunn S, et al. Isolation of a significant fraction of non-phototroph diversity from a desert biological soil crust. Front Microbiol. 2015;6:1–14 Available from: http://journal.frontiersin.org/article/10.3389/fmicb.2015.00277/abstract.
Article
Google Scholar
Marusenko Y, Bates ST, Anderson I, Johnson SL, Soule T, Garcia-Pichel F. Ammonia-oxidizing archaea and bacteria are structured by geography in biological soil crusts across North American arid lands. Ecol Process. 2013;2:1–10.
Article
Google Scholar
Johnson SL, Budinoff CR, Belnap J, Garcia-Pichel F. Relevance of ammonium oxidation within biological soil crust communities. Environ Microbiol. 2005;7:1–12.
Article
CAS
Google Scholar
Karaoz U, Couradeau E, da Rocha UN, Lim H-C, Northen T, Garcia-Pichel F, et al. Large blooms of Bacillales (Firmicutes) underlie the response to wetting of cyanobacterial biocrusts at various stages of maturity. MBio. 2018;9:1–17.
Angel R, Matthies D, Conrad R. Activation of methanogenesis in arid biological soil crusts despite the presence of oxygen. PLoS One. 2011;6:1–8.
Article
Google Scholar
Couradeau E, Karaoz U, Lim HC, Nunes da Rocha U, Northen T, Brodie E, et al. Bacteria increase arid-land soil surface temperature through the production of sunscreens. Nat Commun. 2016;7:10373 Available from: http://www.nature.com/doifinder/10.1038/ncomms10373. Nature Publishing Group.
Article
CAS
Google Scholar
Nagy ML, Pérez A, Garcia-Pichel F. The prokaryotic diversity of biological soil crusts in the Sonoran Desert (Organ Pipe Cactus National Monument, AZ). FEMS Microbiol Ecol. 2005;54:233–45 Available from: http://www.ncbi.nlm.nih.gov/pubmed/16332322. [cited 23 may 2013].
Article
CAS
Google Scholar
Garcia-Pichel F, Loza V, Marusenko Y, Mateo P, Potrafka RM. Temperature drives the continental-scale distribution of key microbes in topsoil communities. Science. 2013;340:1574–7 Available from: http://www.sciencemag.org/cgi/doi/10.1126/science.1236404. American Association for the Advancement of Science; [cited 15 Aug 2013].
Article
CAS
Google Scholar
Rajeev L, da Rocha UN, Klitgord N, Luning EG, Fortney J, Axen SD, et al. Dynamic cyanobacterial response to hydration and dehydration in a desert biological soil crust. ISME J. 2013:1–14 Available from: http://www.nature.com/doifinder/10.1038/ismej.2013.83. Nature Publishing Group; [cited Jun 6 2013].
Garcia-Pichel F, Belnap J. Small-scale environments and distribution of biological soil crusts. Biol soil crusts Struct Funct Manag. Berlin: Springer; 2001. p. 193–201.
Rodríguez-Caballero E, Belnap J, Büdel B, Crutzen P, Andreae MO, Pöschl U, et al. Dryland photoautotrophic soil surface communities endangered by global change. Nat Geosci. 2017;11:181–9.
Elbert W, Weber B, Burrows S, Steinkamp J, Büdel B, Andreae MO, et al. Contribution of cryptogamic covers to the global cycles of carbon and nitrogen. Nat Geosci. 2012;5:459–62 Available from: http://www.nature.com/doifinder/10.1038/ngeo1486. Nature Publishing Group; [cited 2013 Mar 1].
Article
CAS
Google Scholar
Barger NN, Weber B, Garcia-Pichel F, Zaady E, Belnap J. Patterns and controls on nitrogen cycling of biological soil crusts. Biol soil crusts an Organ Princ drylands. Switzerland: Springer; 2016. p. 257–85.
Garcia-Pichel F, Belnap J, Neuer S, Schanz F. Estimates of global cyanobacterial biomass and its distribution. Arch Hydrobiol Suppl Algol Stud. 2006;109:213–27.
Google Scholar
Beraldi-Campesi H, Farmer JD, Garcia-Pichel F. Modern terrestrial sedimentary biostructures and their fossil analogs in Mesoproterozoic subaerial deposits. Palaios. 2014;29:45–54 Available from: http://palaios.sepmonline.org/content/29/2/45.abstract.
Article
Google Scholar
Thomazo C, Couradeau E, Garcia-Pichel F. Possible nitrogen fertilization of the early Earth Ocean by microbial continental ecosystems. Nat Commun. 2018;9:1–8.
Baran R, Brodie EL, Mayberry-Lewis J, Hummel E, Da Rocha UN, Chakraborty R, et al. Exometabolite niche partitioning among sympatric soil bacteria. Nat Commun. 2015;6:8289 Available from: http://www.nature.com/doifinder/10.1038/ncomms9289. Nature Publishing Group.
Article
CAS
Google Scholar
Baran R, Ivanova NN, Jose N, Garcia-Pichel F, Kyrpides NC, Gugger M, et al. Functional genomics of novel secondary metabolites from diverse cyanobacteria using untargeted metabolomics. Mar Drugs. 2013;11:3617–31 Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3826126&tool=pmcentrez&rendertype=abstract. [cited 23 Jan 2014].
Article
CAS
Google Scholar
Starkenburg SR, Reitenga KG, Freitas T, Johnson S, Chain PSG, Garcia-Pichel F, et al. Genome of the cyanobacterium Microcoleus vaginatus FGP-2, a photosynthetic ecosystem engineer of arid land soil biocrusts worldwide. J Bacteriol. 2011;193:4569–70 Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3165530&tool=pmcentrez&rendertype=abstract. [cited 2012 Oct 8].
Article
CAS
Google Scholar
Jose NA, Lau R, Swenson TL, Klitgord N, Garcia-Pichel F, Bowen BP, et al. Flux balance modeling to predict bacterial survival during pulsed-activity events. Biogeosciences. 2018;15:2219–29.
Article
Google Scholar
Pepe-Ranney C, Koechli C, Potrafka R, Andam C, Eggleston E, Garcia-Pichel F, et al. Non-cyanobacterial diazotrophs dominate dinitrogen fixation in biological soil crusts during early crust formation. Isme J. 2016;10:287–98.
Article
CAS
Google Scholar
Sasse J, Martinoia E, Northen T. Feed your friends: do plant exudates shape the root microbiome? Trends plant Sci. 2018;23:25–41 Elsevier Ltd. Available from: https://doi.org/10.1016/j.tplants.2017.09.003.
Article
CAS
Google Scholar
Ayuso Velasco S, Giraldo Silva A, Nelson C, Barger NN, Garcia-Pichel F. Microbial nursery production of high-quality biological soil crust biomass for restoration of degraded dryland soils. Appl Environ Microbiol. 2017;83:1–16.
Article
Google Scholar
McMurdie PJ, Holmes S. Waste not, want not: why rarefying microbiome data is inadmissible. McHardy AC, editor PLoS Comput Biol. 2014;10:e1003531. Available from: http://dx.plos.org/10.1371/journal.pcbi.1003531
Kuzyakov Y, Blagodatskaya E. Microbial hotspots and hot moments in soil: concept & review. Soil biol Biochem. 2015;83:184–99. https://doi.org/10.1016/j.soilbio.2015.01.025 Elsevier Ltd.
Article
CAS
Google Scholar
Graham LE, Graham JM, Wilcox LW, Cook ME, Arancibia-Avila P, Knack JJ. Evolutionary roots of plant microbiomes and biogeochemical impacts of nonvascular autotroph-microbiome systems over deep time. Int J Plant Sci. 2018;179:000 Available from: https://www.journals.uchicago.edu/doi/10.1086/698709.
Google Scholar
Lynch MDJ, Neufeld JD. Ecology and exploration of the rare biosphere. Nat rev Microbiol. 2015;13:217–29 Available from: http://www.nature.com/doifinder/10.1038/nrmicro3400. Nature Publishing Group.
Article
CAS
Google Scholar
Swenson TL, Karaoz U, Swenson JM, Bowen BP, Northen TR. Linking soil biology and chemistry in biological soil crust using isolate exometabolomics. Nat Commun. Springer US. 2018:9. https://doi.org/10.1038/s41467-017-02356-9.
Swenson TL, Couradeau E, Bowen BP, de Philippis R, Rossi F, Mugnai G, et al. A novel method to evaluate nutrient retention by biological soil crust exopolymeric matrix. Plant Soil. 2017;429:53–64.
Couradeau E, VJ MNLF, Parkinson D, Uteau D, Rochet A, Cuellar C, et al. In situ x-ray tomography imaging of soil water and cyanobacteria from biological soil crusts undergoing desiccation. Front Environ Sci. 2018;1:65 Available from: https://www.frontiersin.org/articles/10.3389/fenvs.2018.00065/full.
Coyte KZ, Schluter J, Foster KR. The ecology of the microbiome: networks, competition, and stability. Science (80- ). 2015;350:663–6 Available from: http://www.sciencemag.org/content/350/6261/663.abstract.
Article
CAS
Google Scholar
Samo TJ, Kimbrel JA, Nilson DJ, Pett-Ridge J, Weber PK, Mayali X. Attachment between heterotrophic bacteria and microalgae influences symbiotic microscale interactions. Environ Microbiol. 2018; Available from: http://doi.wiley.com/10.1111/1462-2920.14357.
Giraldo Silva A, Nelson C, Barger NN, Garcia-Pichel F. Nursing biocrusts: isolation, cultivation, and fitness test of indigenous cyanobacteria. Restor Ecol. 2018:1–11.
Parks DH, Rinke C, Chuvochina M, Chaumeil P-A, Woodcroft BJ, Evans PN, et al. Recovery of nearly 8,000 metagenome-assembled genomes substantially expands the tree of life. Nat Microbiol. 2017;903:1–10 Available from: http://www.nature.com/articles/s41564-017-0012-7. Springer US.
Google Scholar
Guidi L, Chaffron S, Bittner L, Eveillard D, Larhlimi A, Roux S, et al. Plankton networks driving carbon export in the oligotrophic ocean. Nature. 2015;532:in review. Nature Publishing Group; Available from: https://doi.org/10.1038/nature16942
Milo R, Shen-Orr S, Itzkovitz S, Kashtan N. Network motif: simple building blocks of complex networks. Science (80- ). 2002;298:298.
Article
Google Scholar
Hatzenpichler R, Connon SA, Goudeau D, Malmstrom RR, Woyke T, Orphan VJ. Visualizing in situ translational activity for identifying and sorting slow-growing archaeal−bacterial consortia. Proc Natl Acad Sci. 2016;113:E4069–78 Available from: http://www.pnas.org/lookup/doi/10.1073/pnas.1603757113.
Article
CAS
Google Scholar
Nadell CD, Foster KR, Xavier JB. Emergence of spatial structure in cell groups and the evolution of cooperation. PLoS Comput Biol. 2010;6:1–9.
Mitri S, Clarke E, Foster KR. Resource limitation drives spatial organization in microbial groups. ISME J. Nature Publishing Group; 2015;10:1–12. Available from: https://doi.org/10.1038/ismej.2015.208
Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Lozupone CA, Turnbaugh PJ, et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc Natl Acad Sci U S A. 2011;108 Suppl:4516–22 Available from: https://www.pnas.org/content/108/Supplement_1/4516. Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80309, USA.
Nübel U, Garcia-Pichel F, Muyzer G. PCR primers to amplify 16S rRNA genes from cyanobacteria PCR primers to amplify 16S rRNA genes from cyanobacteria. Appl Environ Microbiol. 1997;63:3327–32.
PubMed
PubMed Central
Google Scholar
Poly F, Monrozier LJ, Bally R. Improvement in the RFLP procedure for studying the diversity of nifH genes in communities of nitrogen fixers in soil. Res Microbiol. 2001;152:95–103.
Article
CAS
Google Scholar
Ceja-Navarro JA, Nguyen NH, Karaoz U, Gross SR, Herman DJ, Andersen GL, et al. Compartmentalized microbial composition, oxygen gradients and nitrogen fixation in the gut of Odontotaenius disjunctus. ISME J. 2014;8:6–18.
Article
CAS
Google Scholar
Masella AP, Bartram AK, Truszkowski JM, Brown DG, Neufeld JD. PANDAseq: paired-end assembler for illumina sequences. BMC Bioinf. 2012;13:31 Available from: http://www.biomedcentral.com/1471-2105/13/31. BioMed Central Ltd. [cited 23 May 2014].
Article
CAS
Google Scholar
Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Peña AG, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone CA, Mcdonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Turnbaugh PJKR. QIIME allows analysis of high-throughput community sequencing data. Nat Methods. 2010;7:335–6.
Article
CAS
Google Scholar
Edgar RC. Search and clustering orders of magnitude faster than BLAST. Bioinformatics. 2010;26:2460–1.
Article
CAS
Google Scholar
Wang Q, Garrity GM, Tiedje JM, Cole JR. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol. 2007;73:5261–7 Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1950982&tool=pmcentrez&rendertype=abstract. [cited 9 Jul 2014].
Article
CAS
Google Scholar
McDonald D, Price MN, Goodrich J, Nawrocki EP, DeSantis TZ, Probst A, et al. An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea. ISME J. 2012;6:610–8 Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3280142&tool=pmcentrez&rendertype=abstract. Nature Publishing Group. [cited 9 Jul 2014].
Article
CAS
Google Scholar
Nawrocki EP. Structural RNA homology search and alignment using covariance models. in St. Louis: Washington University; 2009.
Google Scholar
Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, et al. Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data, vol. 28; 2012. p. 1647–9. Available from: http://bioinformatics.oxfordjournals.org/cgi/doi/10.1093/bioinformatics/bts199
Google Scholar
Miller MA, Pfeiffer W, Schwartz T. Creating the CIPRES Science Gateway for inference of large phylogenetic trees. 2010 Gatew Comput Environ Work GCE 2010; 2010.
Google Scholar
Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30:1312–3.
Article
CAS
Google Scholar
Bethesda (MD): National Library of Medicine (US) NC for BI. National Center for Biotechnology Information (NCBI). 1988. p. https://www.ncbi.nlm.nih.gov/.
Bethesda (MD): National Library of Medicine (US) NC for BI. 16s ribosomal RNA sequences (bacteria/archaea). 2004. p. https://www.ncbi.nlm.nih.gov/refseq/targetedloci/.
Google Scholar
Berger SA, Stamatakis A. Aligning short reads to reference alignments and trees. Bioinformatics. 2011;27:2068–75.
Article
CAS
Google Scholar
Berger SA, Krompass D, Stamatakis A. Performance, accuracy, and web server for evolutionary placement of short sequence reads under maximum likelihood. Syst Biol. 2011;60:291–302 The Exelixis Lab, Scientific Computing Group, Heidelberg Institute for Theoretical Studies, Schloss-Wolfsbrunnenweg 35, D-69118 Heidelberg, Germany: Oxford University Press; Available from: http://sysbio.oxfordjournals.org/content/60/3/291.full.
Article
Google Scholar
Letunic I, Bork P. Interactive Tree Of Life (iTOL): an online tool for phylogenetic tree display and annotation. Bioinformatics. 2007;23:127–8.
Article
CAS
Google Scholar