Turnbaugh PJ, Ley RE, Hamady M, Fraser-Liggett CM, Knight R, Gordon JI. The human microbiome project. Nature. 2007;449:804–10.
Article
CAS
PubMed
PubMed Central
Google Scholar
Afshinnekoo E, Meydan C, Chowdhury S, Jaroudi D, Boyer C, Bernstein N, et al. Geospatial resolution of human and bacterial diversity with city-scale metagenomics. Cell Syst. 2015;1:72–87.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hsu T, Joice R, Vallarino J, Abu-Ali G, Hartmann EM, Shafquat A, et al. Urban transit system microbial communities differ by surface type and interaction with humans and the environment. mSystems. 2016;1:18–6.
Article
Google Scholar
Kelley ST, Gilbert JA. Studying the microbiology of the indoor environment. Genome Biol. 2013;14:202.
Article
PubMed
PubMed Central
CAS
Google Scholar
Konya T, Scott JA. Recent advances in the microbiology of the built environment. Curr Sustain Energy Reports. 2014;1:35–42.
Article
Google Scholar
Adams RI, Bateman AC, Bik HM, Meadow JF. Microbiota of the indoor environment: a meta-analysis. Microbiome. 2015;3:49.
Article
PubMed
PubMed Central
Google Scholar
Coil DA, Neches RY, Lang JM, Brown WE, Severance M, Cavalier DD, et al. Growth of 48 built environment bacterial isolates on board the International Space Station (ISS). PeerJ. 2016;4:1–11.
Article
Google Scholar
Stephens B. What have we learned about the microbiomes of indoor environments? mSystems. 2016;1:e00083–16.
Zheng P, Zeng B, Zhou C, Liu M, Fang Z, Xu X, et al. Gut microbiome remodeling induces depressive-like behaviors through a pathway mediated by the host’s metabolism. Mol Psychiatry. 2016;21:786–96.
Article
CAS
PubMed
Google Scholar
Vuong HE, Yano JM, Fung TC, Hsiao EY. The microbiome and host behavior. Annu Rev Neurosci. 2017;40:16–47.
Article
CAS
Google Scholar
Alfred P. Sloan Foundation. Microbiology of the built environment. https://sloan.org/programs/science/microbiology-of-the-built-environment. Accessed 26 Jul 2017.
Gibbons SM, Schwartz T, Fouquier J, Mitchell M, Sangwan N, Gilbert JA, et al. Ecological succession and viability of human-associated microbiota on restroom surfaces. Appl Environ Microbiol. 2015;81:765–73.
Article
PubMed
PubMed Central
CAS
Google Scholar
Flores GE, Bates ST, Caporaso JG, Lauber CL, Leff JW, Knight R, et al. Diversity, distribution and sources of bacteria in residential kitchens. Environ Microbiol. 2013;15:588–96.
Article
CAS
PubMed
Google Scholar
Gilbert MTP. Documenting DNA in the dust. Mol Ecol. 2017;26:969–71.
Article
CAS
PubMed
Google Scholar
Robertson CE, Baumgartner LK, Harris JK, Peterson KL, Stevens MJ, Frank DN, et al. Culture-independent analysis of aerosol microbiology in a metropolitan subway system. Appl Environ Microbiol. 2013;79:3485–93.
Article
CAS
PubMed
PubMed Central
Google Scholar
Leung MHY, Wilkins D, Li EKT, Kong FKF, Lee PKH. Indoor-air microbiome in an urban subway network: diversity and dynamics. Appl Environ Microbiol. 2014;80:6760–70.
Article
PubMed
PubMed Central
CAS
Google Scholar
O’Hara NB, Reed HJ, Afshinnekoo E, Harvin D, Caplan N, Rosen G, Frye B, Woloszynek S, Ounit R, Levy S, Butler E, Mason CE. Metagenomic characterization of ambulances across the USA. Microbiome. 2017. 10.1186/s40168-017-0339-6.
Adams RI, Bhangar S, Dannemiller KC, Eisen JA, Fierer N, Gilbert JA, et al. Ten questions concerning the microbiomes of buildings. Build Environ. 2016;109:224–34.
Article
Google Scholar
Wassenaar M. Bacteria: more than pathogens. 2002. http://www.actionbioscience.org/biodiversity/wassenaar.html. Accessed 30 May 2017.
Google Scholar
Schmidt C. Living in a microbial world. Nat Biotechnol. 2017;35:401–3.
Article
CAS
PubMed
Google Scholar
Mendes R, Garbeva P, Raaijmakers JM. The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiol Rev. 2013;37:634–63.
Article
CAS
PubMed
Google Scholar
Mason CE, Garbarino J, Whitlock M, Sherlock G, Spellman P, Stoeckert C, et al. The power of engaging citizen scientists for scientific progress. J Microbiol Biol Educ. 2016;17:7–12.
Article
PubMed
PubMed Central
Google Scholar
Schmidt C. Living in a microbial world. Nat Biotech. 2017;35:401–3.
Article
CAS
Google Scholar
Leuwenhoek V. An extract of a letter from Mr. Anth. van Leuwenhoek, concerning animalcules found on the teeth; of the scaleyness of the skin,&c. Philos Trans. 1693;17:646–9.
Article
Google Scholar
White P, Pullen A. Dispersing of dirt: inscribing bodies and polluting organisation. In: Dirty Work. London: Palgrave Macmillan UK; 2012. p. 143–64.
Chapter
Google Scholar
Bashford A, Hooker C. Sanitary failure and risk: pasteurisation, immunisation and the logics of prevention. In: Bashford A, Hooker C, editors. Contagion: Historical and cultural studies. London: Routledge; 2001. p. 129–52.
Google Scholar
Metro News Reporter. Nine antibacterial-resistant superbugs found on the London Underground. 2017. http://metro.co.uk/2017/05/16/nine-of-worlds-deadliest-superbugs-have-been-found-on-london-underground-6640628/. Accessed 10 Aug 2017.
Google Scholar
Osborne S. The map that shows Britain’s “dirtiest” areas. 2016. http://www.independent.co.uk/news/uk/home-news/the-map-that-shows-britains-dirtiest-areas-a6949191.html. Accessed 10 Aug 2017.
Google Scholar
Priest N, Paradies Y, Stevens M, Bailie R. Exploring relationships between racism, housing and child illness in remote indigenous communities. J Epidemiol Community Heal. 2010;66:440–7.
Article
Google Scholar
Clucas DB, Carville KS, Connors C, Currie BJ, Carapetis JR, Andrews RM. Disease burden and health-care clinic attendances for young children in remote Aboriginal communities of northern Australia. Bull World Health Organ. 2008;86:275–81.
Bik HM, Maritz JM, Luong A, Shin H, Dominguez-Bello MG, Carlton JM. Microbial community patterns associated with automated teller machine keypads in New York City. mSphere. 2016;1:226–16.
Article
Google Scholar
City-Data.com. Auburn, Washington (WA) poverty rate data—information about poor and low income residents living in this city. http://www.city-data.com/poverty/poverty-New-York-New-York.html. Accessed 17 May 2017.
Camossi LG, Fornazari F, Richini-Pereira VB, da Silva RC, Cardia DFF, Langoni H. Immunization of Wistar female rats with 255-Gy-irradiated Toxoplasma gondii: preventing parasite load and maternofoetal transmission. Exp Parasitol. 2014;145:157–63.
Article
CAS
PubMed
Google Scholar
Fall T, Lundholm C, Örtqvist AK, Fall K, Fang F, Hedhammar Å, et al. Early exposure to dogs and farm animals and the risk of childhood asthma. JAMA Pediatr. 2015;169:219.
Article
Google Scholar
Knight J. Puppy power. Nurs Stand. 2011;25:20–1.
PubMed
Google Scholar
Agg J. How clean are your hands? The answer may change how you wash. 2015. http://www.dailymail.co.uk/health/article-3269827/How-clean-hands-answer-revealed-unique-experiment-shock-change-wash.html. Accessed 29 May 2017.
Google Scholar
World Health Organisation. Ambient air pollution: a global assessment of exposure and burden of disease. 2016. http://apps.who.int/iris/bitstream/10665/250141/1/9789241511353-eng.pdf?ua=1. Accessed 18 Aug 2017.
Google Scholar
Pemberton B. Infographic reveals whether three, four or five-star hotels have the highest levels of bacteria in their bedrooms (and expensive doesn’t always mean clean): Daily Mail; 2016. http://www.dailymail.co.uk/travel/travel_news/article-3406623/Infographic-reveals-three-four-five-star-hotels-highest-levels-bacteria-bedrooms-results-surprise-you.html. Accessed 29 May 2017.
Manfredi P. & D'Onofrio A. Modeling the Interplay Between Human Behavior and the Spread of Infectious Diseases. Berlin: Springer-Verlag; 2013. p.329.
Jacobson SH, Yu G, Jokela JA. A double-risk monitoring and movement restriction policy for Ebola entry screening at airports in the United States. Prev Med. 2016;88:33–8.
Article
PubMed
Google Scholar
World Health Organisation. “WHO interim guidance for Ebola virus disease exit screening at airports, ports and land crossings.” 2014.
Google Scholar
Brown C. Airport exit and entry screening for Ebola: Centers for Disease Control and Prevention; 2014. https://www.cdc.gov/mmwr/preview/mmwrhtml/mm6349a5.htm. Accessed 29 May 2017.
World Bank. The economic impact of the 2014 Ebola epidemic: short- and medium-term estimates for West Africa. 2014.
Book
Google Scholar
SteelFisher GK, Blendon RJ, Kang M, Ward JR, Kahn EB, Maddox KE, et al. Adoption of preventive behaviors in response to the 2009 H1N1 influenza pandemic: a multiethnic perspective. Influ Other Respir Viruses. 2015;9:131–42.
Article
Google Scholar
Sharma S, Chatterjee S, Datta S, Prasad R, Dubey D, Prasad RK, et al. Bacteriophages and its applications: an overview. Folia Microbiol. 2017;62:17–55.
Article
CAS
Google Scholar
Otter JA, French GL. Bacterial contamination on touch surfaces in the public transport system and in public areas of a hospital in London. Lett Appl Microbiol. 2009;49:803–5.
Article
CAS
PubMed
Google Scholar
Mathur P. Hand hygiene: back to the basics of infection control. Indian J Med Res. 2011;134:611–20.
Article
PubMed
PubMed Central
Google Scholar
MTA. Highest Figures Since 1948. 2016. http://www.mta.info/news-ridership-subway-new-york-city-transit/2016/04/18/highest-figures-1948. Accessed 17 May 2017.
Google Scholar
Lai KM, Emberlin J, Colbeck I. Outdoor environments and human pathogens in air. Environ Health. 2009;8:593–600.
Article
Google Scholar
Cai L, Ju F, Zhang T. Tracking human sewage microbiome in a municipal wastewater treatment plant. Appl Microbiol Biotechnol. 2014;98:3317–26.
Article
CAS
PubMed
Google Scholar
Bibby K, Viau E, Peccia J. Pyrosequencing of the 16S rRNA gene to reveal bacterial pathogen diversity in biosolids. Water Res. 2010;44:4252–60.
Article
CAS
PubMed
Google Scholar
Bibby K, Peccia J. Identification of viral pathogen diversity in sewage sludge by metagenome analysis. Environ Sci Technol. 2013;47:1945–51.
Article
CAS
PubMed
PubMed Central
Google Scholar
McClure JA, DeLongchamp JZ, Conly JM, Zhang K. A novel multiplex PCR assay for the detection of chlorhexidine/quaternary ammonium, mupirocin and methicillin resistance genes with simultaneous discrimination of Staphylococcus aureus from coagulase-negative staphylococci. J Clin Microbiol. 2017;55:1857–64.
Article
PubMed
Google Scholar
Madigan MT, Clark DP, Stahl D, Martinko JM. Brock Biology of Microorganisms 13th edition. Benjamin Cummings; 2010.
Google Scholar
Chosewood LC, Wilson DE. Biosafety in microbiological and biomedical laboratories. Public Heal Serv. 1999;5:1–250.
U.S. Department of Health and Human Services. Personal protective equipment for infection control— masks and N95 respirators. https://www.fda.gov/MedicalDevices/ProductsandMedicalProcedures/GeneralHospitalDevicesandSupplies/PersonalProtectiveEquipment/ucm055977.htm. Accessed 29 July 2017.
Miesner EA, Rudnick SN, Hu F-C, Spengler JD, Preller L, Özkaynak H, et al. Particulate and nicotine sampling in public facilities and offices. JAPCA. 1989;39:1577–82.
Article
CAS
PubMed
Google Scholar
Kuske CR, Barns SM, Grow CC, Merrill L, Dunbar J. Environmental survey for four pathogenic bacteria and closely related species using phylogenetic and functional genes. J Forensic Sci. 2006;51:548–58.
Article
CAS
PubMed
Google Scholar
Shao M, Tang X, Zhang Y, Li W. City clusters in China: air and surface water pollution. Front Ecol Environ. 2006;4:353–61.
Article
Google Scholar
Mensah-Attipoe J, Täubel M, Hernandez M, Pitkäranta M, Reponen T. An emerging paradox: toward a better understanding of the potential benefits and adversity of microbe exposures in the indoor environment. Indoor Air. 2017;27:3–5.
Article
CAS
PubMed
Google Scholar
Posa D, Hofmaier S, Arasi S, Matricardi PM. Natural evolution of Ige responses to mite allergens and relationship to progression of allergic disease: a review. Curr Allergy Asthma Rep. 2017;17:28.
Article
PubMed
CAS
Google Scholar
Fox A, Rosario RM, Larsson L. Monitoring of bacterial sugars and hydroxy fatty acids in dust from air conditioners by gas chromatography-mass spectrometry. Appl Env Microbiol. 1993;59:4354–60.
CAS
Google Scholar
Stanley NJ, Kuehn TH, Kim SW, Raynor PC, Anantharaman S, Ramakrishnan MA, et al. Background culturable bacteria aerosol in two large public buildings using HVAC filters as long term, passive, high-volume air samplers. J Env Monit. 2008;10:474–81.
Article
CAS
Google Scholar
Murphy A, Allen J. Schools can be a hotbed of bacteria. 2006. http://abcnews.go.com/GMA/OnCall/story?id=2455073&page=1. Accessed 17 May 2017.
Google Scholar
Lee RL, Lee PH. To evaluate the effects of a simplified hand washing improvement program in schoolchildren with mild intellectual disability: a pilot study. Res Dev Disabil. 2014;35:3014–25.
Article
PubMed
Google Scholar
Magill SS, Edwards JR, Bamberg W, Beldavs ZG, Dumyati G, Kainer MA, et al. Multistate point-prevalence survey of health care-associated infections. N Engl J Med. 2014;370:1198–208.
Article
CAS
PubMed
PubMed Central
Google Scholar
Guggenbichler JP, Assadian O, Boeswald M, Kramer A. Incidence and clinical implication of nosocomial infections associated with implantable biomaterials—catheters, ventilator-associated pneumonia, urinary tract infections. GMS Krankenhhyg Interdiszip. 2011;6:1.
Google Scholar
itv news. Avoid A&E unless necessary warn hospitals. 2015. http://www.itv.com/news/wales/update/2015-01-06/avoid-a-e-unless-necessary-warn-hospitals/. Accessed 15 May 2017.
Google Scholar
Callahan A. New type of baby monitors offers “peace of mind” but may deliver just the opposite. 2017. https://www.washingtonpost.com/national/health-science/new-type-of-baby-monitors-offers-peace-of-mind-but-may-deliver-just-the-opposite/2017/05/05/8d31a07e-09b7-11e7-93dc-00f9bdd74ed1_story.html?utm_term=.0a1f9eca6993. Accessed 15 May 2017.
Google Scholar
Quach C, McArthur M, McGeer A, Li L, Simor A, Dionne M, et al. Risk of infection following a visit to the emergency department: a cohort study. CMAJ. 2012;184:232–9.
Article
Google Scholar
Lee C-R, Cho IH, Jeong BC, Lee SH. Strategies to minimize antibiotic resistance. Int J Environ Res Public Health. 2013;10:4274–305.
Article
CAS
PubMed
PubMed Central
Google Scholar
Moritz A. Hospitals are a major health hazard: Natural news; 2008. http://www.naturalnews.com/023892_hospital_hospitals_health.html. Accessed 17 May 2017.
Hodgekiss A. Antibiotic resistance “could end modern medicine”: UK’s chief doctor issues stark warning as study reveals most of us don’t even know what term really means. 2015. http://www.dailymail.co.uk/health/article-3178432/Antibiotic-resistance-end-modern-medicine-UK-s-chief-doctor-issues-stark-warning-study-reveals-don-t-know-term-really-means.html. Accessed 25 May 2017.
Google Scholar
Borland S, Norton J. Shocking photos reveal the true scale of Britain’s A&E crisis— with mothers and children on floors and pensioners on trolleys being cared for by “corridor nurses.” 2017. http://www.dailymail.co.uk/news/article-4201548/In-one-hospital-picture-shambles-Casualty.html. Accessed 12 May 2017.
Google Scholar
Lowe C, Willey B, O’Shaughnessy A, Lee W, Lum M, Pike K, et al. Outbreak of extended-spectrum β-lactamase-producing Klebsiella oxytoca infections associated with contaminated handwashing sinks. Emerg Infect Dis. 2012;18:1242–7.
Article
PubMed
PubMed Central
Google Scholar
Edelsberg J, Weycker D, Barron R, Li X, Wu H, Oster G, et al. Prevalence of antibiotic resistance in US hospitals. Diagn Microbiol Infect Dis. 2014;78:255–62.
Article
CAS
PubMed
Google Scholar
Dancer SJ. Importance of the environment in methicillin-resistant Staphylococcus aureus acquisition: the case for hospital cleaning. Lancet Infect Dis. 2008;8:101–13.
Article
PubMed
Google Scholar
Kaatz GW, Gitlin SD, Schaberg DR, Wilson KH, Kauffman CA, Seo SM, et al. Acquisition of Clostridium difficile from the hospital environment. Am J Epidemiol. 1988;127:1289–94.
Article
CAS
PubMed
Google Scholar
Martínez JA, Ruthazer R, Hansjosten K, Barefoot L, Snydman DR. Role of environmental contamination as a risk factor for acquisition of vancomycin-resistant enterococci in patients treated in a medical intensive care unit. Arch Intern Med. 2003;163:1905.
Article
PubMed
Google Scholar
Green J, Wright PA, Gallimore CI, Mitchell O, Morgan-Capner P, Brown DW. The role of environmental contamination with small round structured viruses in a hospital outbreak investigated by reverse-transcriptase polymerase chain reaction assay. J Hosp Infect. 1998;39:39–45.
Article
CAS
PubMed
Google Scholar
Yarygin KS, Kovarsky BA, Bibikova TS, Melnikov DS, Tyakht AV, Alexeev DG. ResistoMap-online visualization of human gut microbiota antibiotic resistome. Bioinformatics. 2017;33:2205–6.
Li Y, Lv Y, Xue F, Zheng B, Liu J, Zhang J. Antimicrobial resistance surveillance of doripenem in China. J Antibiot. 2015;68:496–500.
Article
CAS
PubMed
Google Scholar
NERC. The UK’s seven research councils unite to fight AMR. 2014. http://www.nerc.ac.uk/press/releases/2014/18-amr/. Accessed 15 May 2017.
Google Scholar
Wilensky J. Collaborative startup will monitor pathogens in hospital settings. 2017. http://news.cornell.edu/stories/2017/05/collaborative-startup-will-monitor-pathogens-hospital-settings. Accessed 24 May 2017.
Google Scholar
Lax S, Sangwan N, Smith D, Larsen P, Handley KM, Richardson M, et al. Bacterial colonization and succession in a newly opened hospital. Sci Transl Med. 2017;9:1–11.
Article
Google Scholar
Baron JL, Vikram A, Duda S, Stout JE, Bibby K. Shift in the microbial ecology of a hospital hot water system following the introduction of an on-site monochloramine disinfection system. PLoS One. 2014;9:69.
Google Scholar
Wang H, Edwards MA, Falkinham JO, Pruden A. Probiotic approach to pathogen control in premise plumbing systems? A review Environ Sci Technol. 2013;47:10117–28.
Article
CAS
PubMed
Google Scholar
Doria MF. Bottled water versus tap water: understanding consumers’ preferences. J Water Health. 2006;4:271–6.
PubMed
Google Scholar
Brody H, Rip MR, Vinten-Johansen P, Paneth N, Rachman S. Map-making and myth-making in Broad Street: the London cholera epidemic, 1854. Lancet. 2000;356:64–8.
Article
CAS
PubMed
Google Scholar
Dufour A, Snozzi M, Koster W, Bartram J, Ronchi E, Fawtrell L, World Health Organization. Water, Sanitation and Health Team. Assessing Microbial Safety of Drinking Water: Improving Approaches and Methods. WHO Drinking Water Quality Series, OECD—WHO, Paris, France. London: IWA Publishing; 2003, p. 1–16.
Stachler E, Kelty C, Sivaganesan M, Li X, Bibby K, Shanks OC. Quantitative CrAssphage pcr assays for human fecal pollution measurement. Environ Sci Technol. 2017;51 https://doi.org/10.1021/acs.est.7b02703.
Stachler E, Bibby K. Metagenomic evaluation of the highly abundant human gut bacteriophage crassphage for source tracking of human fecal pollution. Environ Sci Technol Lett. 2014;1:405–9.
Article
CAS
Google Scholar
Kaufman DJ, Murphy-Bollinger J, Scott J, Hudson KL. Public opinion about the importance of privacy in biobank research. Am J Hum Genet. 2009;85:643–54.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fierer N, Lauber CL, Zhou N, McDonald D, Costello EK, Knight R. Forensic identification using skin bacterial communities. Proc Natl Acad Sci U S A. 2010;107:6477–81.
Article
CAS
PubMed
PubMed Central
Google Scholar
Qian J, Hospodsky D, Yamamoto N, Nazaroff WW, Peccia J. Size-resolved emission rates of airborne bacteria and fungi in an occupied classroom. Indoor Air. 2012;22:339–51.
Article
CAS
PubMed
PubMed Central
Google Scholar
Meadow JF, Altrichter AE, Bateman AC, Stenson J, Brown GZ, Green JL, et al. Humans differ in their personal microbial cloud. PeerJ. 2015;3:e1258.
Article
PubMed
PubMed Central
Google Scholar
Franzosa EA, Huang K, Meadow JF, Gevers D, Lemon KP, Bohannan BJM, et al. Identifying personal microbiomes using metagenomic codes. Proc Natl Acad Sci U S A. 2015;112:2930–8.
Article
CAS
Google Scholar
Findley K, Williams DR, Grice EA, Bonham VL. Health disparities and the microbiome. Trends Microbiol. 2016;24:847–50.
Article
CAS
PubMed
Google Scholar
Hampton-Marcell JT, Lopez JV, Gilbert JA. The human microbiome: an emerging tool in forensics. Microb Biotechnol. 2017;10:228–30.
Article
PubMed
PubMed Central
Google Scholar
Biononymous.me. http://biononymous.me/. Accessed 24 May 2017.
Wagner J, Paulson JN, Wang X, Bhattacharjee B, Corrada BH. Privacy-preserving microbiome analysis using secure computation. Bioinformatics. 2016;32:1873–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
NIH. Roadmap Epigenomics Project - Overview; 2013. p. 1–2. http://www.roadmapepigenomics.org/. Accessed 17 May 2017.
Google Scholar
Gymrek M, McGuire AL, Golan D, Halperin E, Erlich Y. Identifying personal genomes by surname inference. Science. 2013;339:321–4.
Article
CAS
PubMed
Google Scholar
NIH. Implementation guidance and instructions for applicants: policy for sharing of data obtained in NIH-supported or conducted genome-wide association studies (GWAS); 2007. p. 1–4. https://grants.nih.gov/grants/guide/notice-files/NOT-OD-08-013.html. Accessed 17 May 2017.
Google Scholar
Di Bella JM, Bao Y, Gloor GB, Burton JP, Reid G. High throughput sequencing methods and analysis for microbiome research. J Microbiol Methods. 2013;95:401–14.
Article
CAS
PubMed
Google Scholar
Beskow LM, Burke W, Merz JF, Barr PA, Terry S, Penchaszadeh VB, et al. Informed consent for population-based research involving genetics. JAMA. 2001;286:2315–21.
Article
CAS
PubMed
Google Scholar
Bäckhed F, Fraser CM, Ringel Y, Sanders ME, Sartor RB, Sherman PM, et al. Defining a healthy human gut microbiome: current concepts, future directions, and clinical applications. Cell Host Microbe. 2012;12:611–22.
Article
PubMed
CAS
Google Scholar
Department of Health. Research governance framework for health and social care. Health Soc Care Community. 2005;10:1–54.
Google Scholar
Ormond KE, Cirino AL, Helenowski IB, Chisholm RL, Wolf WA. Assessing the understanding of biobank participants. Am J Med Genet Part A. 2009;149A:188–98.
Article
CAS
PubMed
Google Scholar
Albala I, Doyle M, Appelbaum PS. The evolution of consent forms for research: a quarter century of changes. IRB Ethics Hum Res. 2010;32:7–11.
Google Scholar
McGuire AL, Achenbaum LS, Whitney SN, Slashinski MJ, Versalovic J, Keitel WA, et al. Perspectives on human microbiome research ethics. J Empir Res Hum Res Ethics. 2012;7:1–14.
Article
PubMed
PubMed Central
Google Scholar
Bialik C. Kills 99.9% of Germs—Under Some Lab Conditions. 2009. https://www.wsj.com/articles/SB126092257189692937. Accessed 18 Aug 2017.
Google Scholar
Littman DR, Pamer EG. Role of the commensal microbiota in normal and pathogenic host immune responses. Cell Host and Microbe. 2011;10:311–23.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ursell LK, Metcalf JL, Parfrey LW, Knight R. Defining the human microbiome. Nutr Rev. 2012;70:38–44.
Article
Google Scholar
Caporaso JG, Lauber CL, Costello EK, Berg-Lyons D, Gonzalez A, Stombaugh J, et al. Moving pictures of the human microbiome. Genome Biol. 2011;12:50.
Article
Google Scholar
Cho I, Blaser MJ. The human microbiome: at the interface of health and disease. Nat Rev Genet. 2012;13:260–70.
CAS
PubMed
PubMed Central
Google Scholar
Gilbert JA, Neufeld JD, Raux-Deery E, Warren M, Smith A. Life in a world without microbes. PLoS Biol. 2014;12:e1002020.
Article
PubMed
PubMed Central
Google Scholar
Hanauer SB. Inflammatory bowel disease: epidemiology, pathogenesis, and therapeutic opportunities. Inflamm Bowel Dis. 2006;12:3–9.
Article
Google Scholar
Waldor MK, Tyson G, Borenstein E, Ochman H, Moeller A, Finlay BB, et al. Where next for microbiome research? PLoS Biol. 2015;13:e1002050.
Article
PubMed
PubMed Central
CAS
Google Scholar
Tringe SG, Zhang T, Liu X, Yu Y, Lee WH, Yap J, et al. The airbone metagenome in an indoor urban environment. PLoS One. 2008;3:e1862.
Article
PubMed
PubMed Central
CAS
Google Scholar
Hospodsky D, Qian J, Nazaroff WW, Yamamoto N, Bibby K, Rismani-Yazdi H, et al. Human occupancy as a source of indoor airborne bacteria. PLoS One. 2012;7:e34867.
Article
CAS
PubMed
PubMed Central
Google Scholar
Elhaik E, Greenspan E, Staats S, Krahn T, Tyler-Smith C, Xue Y, et al. The GenoChip: a new tool for genetic anthropology. Genome Biol Evol. 2013;5:1021–31.
Article
PubMed
PubMed Central
CAS
Google Scholar
Yuhas A. Plague, anthrax and cheese? Scientists map bacteria on New York subway. 2015. https://www.theguardian.com/us-news/2015/feb/07/scientists-map-bacteria-new-york-city-subways. Accessed 24 May 2017.
Google Scholar
Wolinsky H. More than a blog. Eur Mol Biol Organ. 2011;12:1102–5.
CAS
Google Scholar
Leshner AI. Public engagement with science. Science. 2003;299:977.
Article
CAS
PubMed
Google Scholar
Horizon 2020. Responsible research & innovation—European Commission. 2014. https://ec.europa.eu/programmes/horizon2020/en/h2020-section/responsible-research-innovation. Accessed 29 May 2017.
Google Scholar
Stilgoe J, Lock SJ, Wilsdon J. Why should we promote public engagement with science? Public Underst Sci. 2014;23:4–15.
Article
PubMed
Google Scholar
Mason CE, Afshinnekoo E, Tighe S, Wu S, Levy S. International standards for genomes, transcriptomes, and metagenomes. J Biomol Tech. 2017;28:8–18.
Article
PubMed
PubMed Central
Google Scholar
Tighe S, Afshinnekoo E, Rock TM, McGrath K, Alexander N, McIntyre A, et al. Genomic methods and microbiological technologies for profiling novel and extreme environments for the Extreme Microbiome Project (XMP). J Biomol Tech. 2017;28:31–9.
Article
PubMed
PubMed Central
Google Scholar
McIntyre ABR, Rizzardi L, Yu AM, Alexander N, Rosen GL, Botkin DJ, et al. Nanopore sequencing in microgravity. NPJ Microgravity. 2016;2:16035.
Article
PubMed
PubMed Central
Google Scholar
National Institutes of Health. Human Microbiome Project. 2013.
Google Scholar
Wolfson R. Using big data and next-generation sequencing to improve your pet’s health. 2017. http://www.huffingtonpost.com/entry/using-big-data-and-next-generation-sequencing-to-improve_us_595de0d1e4b085e766b51070?ncid=engmodushpmg00000004. Accessed 29 Jul 2017.
Google Scholar