WHO. Antimicrobial resistance: global antibiotic resistance surveillance report. Geneva: World Health Organization; 2014. http://apps.who.int/iris/bitstream/10665/112642/1/9789241564748_eng.pdf.
Google Scholar
O’Neill J. Antimicrobial resistance: tackling a crisis for the future health and wealth of nations. London: Review on Antimicrobial Resistance; 2014. http://amr-review.org/sites/default/files/AMR%20Review%20Paper%20-%20Tackling%20a%20crisis%20for%20the%20health%20and%20wealth%20of%20nations_1.pdf.
Google Scholar
van Hoek AH, Mevius D, Guerra B, Mullany P, Roberts AP, Aarts HJ. Acquired antibiotic resistance genes: an overview. Front Microbiol. 2011;2:203.
PubMed
PubMed Central
Google Scholar
Hughes VM, Datta N. Conjugative plasmids in bacteria of the ‘pre-antibiotic’ era. Nature. 1983;302:725–6.
Article
CAS
PubMed
Google Scholar
Jones C, Stanley J. Salmonella plasmids of the pre-antibiotic era. J Gen Microbiol. 1992;138:189–97.
Article
CAS
PubMed
Google Scholar
Osterblad M, Norrdahl K, Korpimäki E, Huovinen P. Antibiotic resistance. How wild are wild mammals? Nature. 2011;409:37–8.
Article
Google Scholar
Thaller MC, Migliore L, Marquez C, Tapia W, Cedeño V, Rossolini GM, et al. Tracking acquired antibiotic resistance in commensal bacteria of Galápagos land iguanas: no man, no resistance. PLoS One. 2011;5:e8989.
Article
Google Scholar
Laxminarayan R. Antibiotic effectiveness: balancing conservation against innovation. Science. 2014;345:1299–301.
Article
CAS
PubMed
Google Scholar
Knapp CW, Dolfing J, Ehlert PA, Graham DW. Evidence of increasing antibiotic resistance gene abundances in archived soils since 1940. Environ Sci Technol. 2010;44:580–7.
Article
CAS
PubMed
Google Scholar
Graham DW, Knapp CW, Christensen BT, McCluskey S, Dolfing J. Appearance of β-lactam resistance genes in agricultural soils and clinical isolates over the 20th century. Sci Rep. 2016;6:21550.
Article
CAS
PubMed
PubMed Central
Google Scholar
de Been M, Lanza VF, de Toro M, Scharringa J, Dohmen W, Du Y, et al. Dissemination of cephalosporin resistance genes between Escherichia coli strains from farm animals and humans by specific plasmid lineages. PLoS Genet. 2014;10:e1004776.
Article
PubMed
PubMed Central
Google Scholar
Allen HK, Moe LA, Rodbumrer J, Gaarder A, Handelsman J. Functional metagenomics reveals diverse β-lactamases in a remote Alaskan soil. ISME J. 2009;3:243–51.
Article
CAS
PubMed
Google Scholar
D’Costa VM, King CE, Kalan L, Morar M, Sung WW, Schwarz C, et al. Antibiotic resistance is ancient. Nature. 2011;477:457–61.
Article
PubMed
Google Scholar
Bhullar K, Waglechner N, Pawlowski A, Koteva K, Banks ED, Johnston MD, et al. Antibiotic resistance is prevalent in an isolated cave microbiome. PLoS One. 2012;7:e34953.
Article
CAS
PubMed
PubMed Central
Google Scholar
Segawa T, Takeuchi N, Rivera A, Yamada A, Yoshimura Y, Barcaza G, et al. Distribution of antibiotic resistance genes in glacier environments. Environ Microbiol Rep. 2013;5:127–34.
Article
CAS
PubMed
Google Scholar
Humeniuk C, Arlet G, Gautier V, Grimont P, Labia R, Philippon A. Beta-lactamases of Kluyvera ascorbata, probable progenitors of some plasmid-encoded CTX-M types. Antimicrob Agents Chemother. 2002;46:3045–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Poirel L, Rodriguez-Martinez JM, Mammeri H, Liard A, Nordmann P. Origin of plasmid-mediated quinolone resistance determinant QnrA. Antimicrob Agents Chemother. 2005;49:3523–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Forsberg KJ, Reyes A, Wang B, Selleck EM, Sommer MO, Dantas G. The shared antibiotic resistome of soil bacteria and human pathogens. Science. 2012;337:1107–11.
Article
CAS
PubMed
PubMed Central
Google Scholar
WHO. Global action plan on antimicrobial resistance. Geneva: World Health Organization; 2015. http://apps.who.int/iris/bitstream/10665/193736/1/9789241509763_eng.pdf.
Google Scholar
Swedish Government. The national pharmaceutical strategy 2016-2018. 2016. https://lakemedelsverket.se/upload/om-lakemedelsverket/NLS/The%20National%20Pharmaceutical%20Strategy%202016-2018.pdf.
Google Scholar
Ashbolt NJ, Amézquita A, Backhaus T, Borriello P, Brandt KK, Collignon P, et al. Human health risk assessment (HHRA) for environmental development and transfer of antibiotic resistance. Environ Health Perspect. 2013;121:993–1001.
PubMed
PubMed Central
Google Scholar
Bengtsson-Palme J, Larsson DGJ. Antibiotic resistance genes in the environment: prioritizing risks. Nat Rev Microbiol. 2015;13:396.
Article
CAS
PubMed
Google Scholar
Zhu YG, Johnson TA, Su JQ, Qiao M, Guo GX, Stedtfeld RD, et al. Diverse and abundant antibiotic resistance genes in Chinese swine farms. Proc Natl Acad Sci U S A. 2013;110:3435–40.
Article
CAS
PubMed
PubMed Central
Google Scholar
Perron GG, Gonzalez A, Buckling A. Source–sink dynamics shape the evolution of antibiotic resistance and its pleiotropic fitness cost. Proc Biol Sci. 2007;274:2351–6.
Article
PubMed
PubMed Central
Google Scholar
Smillie CS, Smith MB, Friedman J, Cordero OX, David LA, Alm EJ. Ecology drives a global network of gene exchange connecting the human microbiome. Nature. 2011;480:241–4.
Article
CAS
PubMed
Google Scholar
SCENIHR. Assessment of the antibiotic resistance effects of biocides. Brussels: Scientific Committee on Emerging and Newly Identified Health Risks; 2009. http://ec.europa.eu/health/ph_risk/committees/04_scenihr/docs/scenihr_o_021.pdf.
Google Scholar
Pal C, Bengtsson-Palme J, Kristiansson E, Larsson DGJ. Co-occurrence of resistance genes to antibiotics, biocides and metals reveals novel insights into their co-selection potential. BMC Genomics. 2015;16:964.
Article
PubMed
PubMed Central
Google Scholar
Durso LM, Miller DN, Wienhold BJ. Distribution and quantification of antibiotic resistant genes and bacteria across agricultural and non-agricultural metagenomes. PLoS One. 2012;7:e48325.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nesme J, Delmont TO, Monier J, Vogel TM. Large-scale metagenomic-based study of antibiotic resistance in the environment. Curr Biol. 2014;24:1096–100.
Article
CAS
PubMed
Google Scholar
Fitzpatrick D, Walsh F. Antibiotic resistance genes across a wide variety of metagenomes. FEMS Microbiol Ecol. 2016. doi:10.1093/femsec/fiv168.
PubMed
Google Scholar
Yooseph S, Andrews-Pfannkoch C, Tenney A, McQuaid J, Williamson S, Thiagarajan M, et al. A metagenomic framework for the study of airborne microbial communities. PLoS One. 2013;8:e81862.
Article
PubMed
PubMed Central
Google Scholar
Baselga A. Partitioning the turnover and nestedness components of beta diversity. Glob Ecol Biogeogr. 2010;19:134–43.
Article
Google Scholar
Human Microbiome Project Consortium. Structure, function and diversity of the healthy human microbiome. Nature. 2012;486:207–14.
Article
Google Scholar
Martínez JL. Antibiotics and antibiotic resistance genes in natural environments. Science. 2008;18(321):365–7.
Article
Google Scholar
Dantas G, Sommer MO. Context matters—the complex interplay between resistome genotypes and resistance phenotypes. Curr Opin Microbiol. 2012;15:577–82.
Article
PubMed
Google Scholar
Cao C, Jiang W, Wang B, Fang J, Lang J, Tian G, et al. Inhalable microorganisms in Beijing’s PM2.5 and PM10 pollutants during a severe smog event. Environ Sci Technol. 2014;48:1499–507.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cheng Z, Luo L, Wang S, Wang Y, Sharma S, Shimadera H, et al. Status and characteristics of ambient PM2.5 pollution in global megacities. Environ Int. 2016;89-90:212–21.
Article
CAS
PubMed
Google Scholar
Teixeira JV, Cecílio P, Gonçalves D, Vilar VJ, Pinto E, Ferreira HN. Multidrug-resistant Enterobacteriaceae from indoor air of an urban wastewater treatment plant. Environ Monit Assess. 2016;188:388.
Article
PubMed
Google Scholar
Gregova G, Kmetova M, Kmet V, Venglovsky J, Feher A. Antibiotic resistance of Escherichia coli isolated from a poultry slaughterhouse. Ann Agric Environ Med. 2012;19:75–7.
PubMed
Google Scholar
Chapin A, Rule A, Gibson K, Buckley T, Schwab K. Airborne multidrug-resistant bacteria isolated from a concentrated swine feeding operation. Environ Health Perspect. 2005;113:137–42.
PubMed
Google Scholar
McEachran AD, Blackwell BR, Hanson JD, Wooten KJ, Mayer GD, Cox SB, et al. Antibiotics, bacteria, and antibiotic resistance genes: aerial transport from cattle feed yards via particulate matter. Environ Health Perspect. 2015;123:337–43.
CAS
PubMed
PubMed Central
Google Scholar
Nordmann P, Naas T, Poirel L. Global spread of carbapenemase-producing Enterobacteriaceae. Emerg Infect Dis. 2011;17:1791–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Laxminarayan R, Duse A, Wattal C, Zaidi AK, Wertheim HF, Sumpradit N, et al. Antibiotic resistance-the need for global solutions. Lancet Infect Dis. 2013;13:1057–98.
Article
PubMed
Google Scholar
Larsson DGJ. Pollution from drug manufacturing: review and perspectives. Phil Trans R Soc B. 2014;369:20130571.
Article
PubMed
PubMed Central
Google Scholar
Kristiansson E, Fick J, Janzon A, Grabic R, Rutgersson C, Weijdegård B, et al. Pyrosequencing of antibiotic-contaminated river sediments reveals high levels of resistance and gene transfer elements. PLoS One. 2011;6:e17038.
Article
CAS
PubMed
PubMed Central
Google Scholar
Marathe NP, Regina VR, Walujkar SA, Charan SS, Moore ER, Larsson DGJ, et al. A treatment plant receiving waste water from multiple bulk drug manufacturers is a reservoir for highly multi-drug resistant integron-bearing bacteria. PLoS One. 2013;8:e77310.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bengtsson-Palme J, Boulund F, Fick J, Kristiansson E, Larsson DGJ. Shotgun metagenomics reveals a wide array of antibiotic resistance genes and mobile elements in a polluted lake in India. Front Microbiol. 2014;5:648.
Article
PubMed
PubMed Central
Google Scholar
Flach CF, Johnning A, Nilsson I, Smalla K, Kristiansson E, Larsson DGJ. Isolation of novel IncA/C and IncN fluoroquinolone resistance plasmids from an antibiotic-polluted lake. J Antimicrob Chemother. 2015;70:2709–17.
Article
CAS
PubMed
Google Scholar
O’Neill J. Tackling drug-resistant infections globally: final report and recommendations. London: Review on Antimicrobial Resistance; 2016. http://amr-review.org/sites/default/files/160518_Final%20paper_with%20cover.pdf.
Google Scholar
Grace D. Review of evidence on antimicrobial resistance and animal agriculture in developing countries. Evidence on Demand, UK. 2015. doi:10.12774/eod_cr.june2015.graced.
Grave K, Torren-Edo J, Muller A, Greko C, Moulin G, Mackay D, et al. Variations in the sales and sales patterns of veterinary antimicrobial agents in 25 European countries. J Antimicrob Chemother. 2014;69:2284–91.
Article
CAS
PubMed
Google Scholar
Lundström SV, Östman M, Bengtsson-Palme J, Rutgersson C, Thoudal M, Sircar T, et al. Minimal selective concentrations of tetracycline in complex aquatic bacterial biofilms. Sci Total Environ. 2016;553:587–95.
Article
PubMed
Google Scholar
Bengtsson-Palme J, Hammarén R, Pal C, Östman M, Björlenius B, Flach CF, et al. Elucidating selection processes for antibiotic resistance in sewage treatment plants using metagenomics. Sci Total Environ. 2016. doi:10.1016/j.scitotenv.2016.06.228.
Google Scholar
Spencer SJ, Tamminen MV, Preheim SP, Guo MT, Briggs AW, Brito IL, et al. Massively parallel sequencing of single cells by epicPCR links functional genes with phylogenetic markers. ISME J. 2016;10:427–36.
Article
CAS
PubMed
Google Scholar
Pehrsson EC, Tsukayama P, Patel S, Mejía-Bautista M, Sosa-Soto G, Navarrete KM, et al. Interconnected microbiomes and resistomes in low-income human habitats. Nature. 2016;533:212–6.
Article
CAS
PubMed
Google Scholar
Rizzo L, Manaia C, Merlin C, Schwartz T, Dagot C, Ploy MC, et al. Urban wastewater treatment plants as hotspots for antibiotic resistant bacteria and genes spread into the environment: a review. Sci Total Environ. 2013;447:345–60.
Article
CAS
PubMed
Google Scholar
Bengtsson-Palme J, Larsson DGJ. Concentrations of antibiotics predicted to select for resistant bacteria: proposed limits for environmental regulation. Environ Int. 2016;86:140–9.
Article
CAS
PubMed
Google Scholar
Johnson AP, Woodford N. Global spread of antibiotic resistance; the example of New Delhi metallo-β-lactamase (NDM)-mediated carbapenem resistance type. J Med Microbiol. 2013;62:499–513.
Article
CAS
PubMed
Google Scholar
Gupta N, Limbago BM, Patel JB, Kallen AJ. Carbapenem-resistant Enterobacteriaceae: epidemiology and prevention. Clin Infect Dis. 2011;53:60–7.
Article
PubMed
Google Scholar
Forsberg KJ, Patel S, Gibson MK, Lauber CL, Knight R, Fierer N, et al. Bacterial phylogeny structures soil resistomes across habitats. Nature. 2014;509:612–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Baquero F, Tedim AP, Coque TM. Antibiotic resistance shaping multi-level population biology of bacteria. Front Microbiol. 2013;4:15.
Article
PubMed
PubMed Central
Google Scholar
Munck C, Albertsen M, Telke A, Ellabaan M, Nielsen PH, Sommer MO. Limited dissemination of the wastewater treatment plant core resistome. Nat Commun. 2015;6:8452.
Article
CAS
PubMed
PubMed Central
Google Scholar
Newton RJ, McLellan SL, Dila DK, Vineis JH, Morrison HG, Eren AM, et al. Sewage reflects the microbiomes of human populations. MBio. 2015;6:e02574.
Article
PubMed
PubMed Central
Google Scholar
McLellan SL, Huse SM, Mueller-Spitz SR, Andreishcheva EN, Sogin ML. Diversity and population structure of sewage-derived microorganisms in wastewater treatment plant influent. Environ Microbiol. 2010;12:378–92.
Article
CAS
PubMed
Google Scholar
Su J, Shi L, Yang L, Xiao Z, Li X, Yamasaki S. Analysis of integrons in clinical isolates of Escherichia coli in China during the last six years. FEMS Microbiol Lett. 2006;254:75–80.
Article
CAS
PubMed
Google Scholar
Toleman MA, Bennett PM, Walsh TR. ISCR elements: novel gene-capturing systems of the 21st century? Microbiol Mol Biol Rev. 2006;70:296–316.
Article
CAS
PubMed
PubMed Central
Google Scholar
Perron GG, Whyte L, Turnbaugh PJ, Goordial J, Hanage WP, Dantas G, Desai MM. Functional characterization of bacteria isolated from ancient arctic soil exposes diverse resistance mechanisms to modern antibiotics. PLoS One. 2015;10:e0069533.
Article
PubMed
PubMed Central
Google Scholar
Hatosy SM, Martiny AC. The ocean as a global reservoir of antibiotic resistance genes. Appl Environ Microbiol. 2015;81:7593–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jonsson V, Österlund T, Nerman O, Kristiansson E. Statistical evaluation of methods for identification of differentially abundant genes in comparative metagenomics. BMC Genomics. 2016;17:78.
Article
PubMed
PubMed Central
Google Scholar
Meyer F, Paarmann D, D’Souza M, Olson R, Glass EM, Kubal M, et al. The metagenomics RAST server - a public resource for the automatic phylogenetic and functional analysis of metagenomes. BMC Bioinf. 2008;9:386.
Article
CAS
Google Scholar
Peterson J, Garges S, Giovanni M, McInnes P, Wang L, Schloss JA, et al. The NIH human microbiome project. Genome Res. 2009;19:2317–23.
Article
PubMed
PubMed Central
Google Scholar
Li H. Seqtk: a toolkit for processing sequences in FASTA/Q formats. 2012. https://github.com/lh3/seqtk. Accessed 14 July 2015.
Google Scholar
The resqu database. http://www.1928diagnostics.com/resdb/. Accessed 16 Aug 2015.
Pal C, Bengtsson-Palme J, Rensing C, Kristiansson E, Larsson DGJ. BacMet: antibacterial biocide and metal resistance genes database. Nucleic Acids Res. 2014;42:D737–43.
Article
CAS
PubMed
Google Scholar
Edgar RC. Search and clustering orders of magnitude faster than BLAST. Bioinformatics. 2010;26:2460–1.
Article
CAS
PubMed
Google Scholar
Větrovský T, Baldrian P. The variability of the 16S rRNA gene in bacterial genomes and its consequences for bacterial community analyses. PLoS One. 2013;8:e57923.
Article
PubMed
PubMed Central
Google Scholar
Beszteri B, Temperton B, Frickenhaus S, Giovannoni SJ. Average genome size: a potential source of bias in comparative metagenomics. ISME J. 2010;4(8):1075–7.
Article
PubMed
Google Scholar
Nayfach S, Pollard KS. Toward accurate and quantitative comparative metagenomics. Cell. 2016;166:1103–16.
Article
CAS
PubMed
Google Scholar
Manor O, Borenstein E. MUSiCC: a marker genes based framework for metagenomic normalization and accurate profiling of gene abundances in the microbiome. Genome Biol. 2015;16:53.
Article
PubMed
PubMed Central
Google Scholar
Nayfach S, Pollard KS. Average genome size estimation improves comparative metagenomics and sheds light on the functional ecology of the human microbiome. Genome Biol. 2015;16:51.
Article
PubMed
PubMed Central
Google Scholar
Port JA, Cullen AC, Wallace JC, Smith MN, Faustman EM. Metagenomic frameworks for monitoring antibiotic resistance in aquatic environments. Environ Health Perspect. 2014;122:222–8.
Article
PubMed
Google Scholar
Tang J, Bu Y, Zhang XX, Huang K, He X, Ye L, et al. Metagenomic analysis of bacterial community composition and antibiotic resistance genes in a wastewater treatment plant and its receiving surface water. Ecotox Environ Safe. 2016;132:260–9.
Hu Y, Yang X, Qin J, Lu N, Cheng G, Wu N, et al. Metagenome-wide analysis of antibiotic resistance genes in a large cohort of human gut microbiota. Nat Commun. 2013;4:2151.
PubMed
Google Scholar
Li B, Yang Y, Ma L, Ju F, Guo F, Tiedje JM, Zhang T. Metagenomic and network analysis reveal wide distribution and co-occurrence of environmental antibiotic resistance genes. ISME J. 2015;9:2490–502.
Article
CAS
PubMed
Google Scholar
Petersen TN, Rasmussen S, Hasman H, Carøe C, Bælum J, Schultz AC, et al. Meta-genomic analysis of toilet waste from long distance flights; a step towards global surveillance of infectious diseases and antimicrobial resistance. Sci Rep. 2015;5:11444.
Article
Google Scholar
Ju F, Li B, Ma L, Wang Y, Huang D, Zhang T. Antibiotic resistance genes and human bacterial pathogens: co-occurrence, removal, and enrichment in municipal sewage sludge digesters. Water Res. 2016;91:1–10.
Article
CAS
PubMed
Google Scholar
Bengtsson-Palme J, Hartmann M, Eriksson KM, Pal C, Thorell K, Larsson DGJ, et al. metaxa2: improved identification and taxonomic classification of small and large subunit rRNA in metagenomic data. Mol Ecol Resour. 2015;15:1403–4.
Article
CAS
PubMed
Google Scholar
Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013;41:D590–6.
Article
CAS
PubMed
Google Scholar
D’Onorio de Meo P, D’Antonio M, Griggio F, Lupi R, Borsani M, Pavesi G, et al. MitoZoa 2.0: a database resource and search tools for comparative and evolutionary analyses of mitochondrial genomes in Metazoa. Nucleic Acids Res. 2012;40:D1168–72.
Article
PubMed
Google Scholar
Oksanen AJ, Kindt R, Legendre P, Hara BO, Simpson GL, Stevens MHH, et al. vegan: Community ecology package. 2015. https://cran.r-project.org/web/packages/vegan/vegan.pdf. Accessed 20 Jan 2016.
R Development Core Team. R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing; 2013. http://www.r-project.org/.
Google Scholar
Warnes GR, Bolker B, Bonebakker L, Gentleman R, Liaw WHA, Lumley T, et al. gplots: Various R programming tools for plotting data. The Comprehensive Archive Network. 2011. https://cran.r-project.org/web/packages/gplots/gplots.pdf.
Kim S. ppcor: an R package for a fast calculation to semi-partial correlation coefficients. Commun Stat Appl Methods. 2015;22:665–74.
PubMed
PubMed Central
Google Scholar
Wickham H. ggplot2: elegant graphics for data analysis (use R!). New York: Springer; 2009.
Book
Google Scholar