Moran NA, Mira A. The process of genome shrinkage in the obligate symbiont Buchnera aphidicola. Genome Biol. 2001;2:1–0054.0012.
Article
Google Scholar
Bandi C, Anderson TJ, Genchi C, Blaxter ML. Phylogeny of Wolbachia in filarial nematodes. Proc R Soc Lond Ser B Biol Sci. 1998;265:2407–13.
Article
CAS
Google Scholar
Ley RE, Lozupone CA, Hamady M, Knight R, Gordon JI. Worlds within worlds: evolution of the vertebrate gut microbiota. Nat Rev Microbiol. 2008;6:776–88.
Article
PubMed Central
CAS
PubMed
Google Scholar
Ley RE, Hamady M, Lozupone C, Turnbaugh PJ, Ramey RR, Bircher JS, et al. Evolution of mammals and their gut microbes. Science. 2008;320:1647–51.
Article
PubMed Central
CAS
PubMed
Google Scholar
Ochman H, Worobey M, Kuo CH, Ndjango JB, Peeters M, Hahn BH, et al. Evolutionary relationships of wild hominids recapitulated by gut microbial communities. PLoS Biol. 2010;8:e1000546.
Article
PubMed Central
PubMed
Google Scholar
Douglas AE. Lessons from studying insect symbioses. Cell Host Microbe. 2011;10:359–67.
Article
PubMed Central
CAS
PubMed
Google Scholar
Brune A. Symbiotic digestion of lignocellulose in termite guts. Nat Rev Microbiol. 2014;12:168–80.
Article
CAS
PubMed
Google Scholar
Krishna K, Grimaldi DA, Krishna V, Engel MS. Treatise on the Isoptera of the world. Bull Am Mus Nat Hist. 2013;377:200–623.
Article
Google Scholar
Noda S, Kitade O, Inoue T, Kawai M, Kanuka M, Hiroshima K, et al. Cospeciation in the triplex symbiosis of termite gut protists (Pseudotrichonympha spp.), their hosts, and their bacterial endosymbionts. Mol Ecol. 2007;16:1257–66.
Article
CAS
PubMed
Google Scholar
Liu H, Beckenbach AT. Evolution of the mitochondrial cytochrome oxidase II gene among 10 orders of insects. Mol Phylogenet Evol. 1992;1:41–52.
Article
CAS
PubMed
Google Scholar
Legendre F, Whiting MF, Bordereau C, Cancello EM, Evans TA, Grandcolas P. The phylogeny of termites (Dictyoptera: Isoptera) based on mitochondrial and nuclear markers: Implications for the evolution of the worker and pseudergate castes, and foraging behaviors. Mol Phylogenet Evol. 2008;48:615–27.
Article
CAS
PubMed
Google Scholar
Thompson G, Kitade O, Lo N, Crozier R. Phylogenetic evidence for a single, ancestral origin of a ‘true’ worker caste in termites. J Evol Biol. 2000;13:869–81.
Article
Google Scholar
Ware JL, Grimaldi DA, Engel MS. The effects of fossil placement and calibration on divergence times and rates: an example from the termites (Insecta: Isoptera). Arthropod Struct Dev. 2010;39:204–19.
Article
PubMed
Google Scholar
Inward DJ, Vogler AP, Eggleton P. A comprehensive phylogenetic analysis of termites (Isoptera) illuminates key aspects of their evolutionary biology. Mol Phylogenet Evol. 2007;44:953–67.
Article
CAS
PubMed
Google Scholar
Scheffrahn RH, Postle A. New termite species and newly recorded genus for Australia: Marginitermes absitus (Isoptera: Kalotermitidae). Aust J Entomol. 2013;52:199–205.
Article
Google Scholar
Lane DJ. Nucleic acid techniques in bacterial systematics. In: SEG M, editor. Nucleic Acid Techniques in Bacterial Systematics. New York: Wiley; 1991. p. 115–75.
Google Scholar
Angly FE, Dennis PG, Skarshewski A, Vanwonterghem I, Hugenholtz P, Tyson GW. CopyRighter: a rapid tool for improving the accuracy of microbial community profiles through lineage-specific gene copy number correction. Microbiome. 2014;2:11.
Article
PubMed Central
PubMed
Google Scholar
Turnbaugh PJ, Quince C, Faith JJ, McHardy AC, Yatsunenko T, Niazi F, et al. Organismal, genetic, and transcriptional variation in the deeply sequenced gut microbiomes of identical twins. Proc Natl Acad Sci. 2010;107:7503–8.
Article
PubMed Central
CAS
PubMed
Google Scholar
Kunin V, Engelbrektson A, Ochman H, Hugenholtz P. Wrinkles in the rare biosphere: pyrosequencing errors can lead to artificial inflation of diversity estimates. Environ Microbiol. 2010;12:118–23.
Article
CAS
PubMed
Google Scholar
Patin N, Kunin V, Lidström U, Ashby M. Effects of OTU clustering and PCR artifacts on microbial diversity estimates. Microb Ecol. 2013;65:709–19.
Article
CAS
PubMed
Google Scholar
Großkopf R, Stubner S, Liesack W. Novel euryarchaeotal lineages detected on rice roots and in the anoxic bulk soil of flooded rice microcosms. Appl Environ Microbiol. 1998;64:4983–9.
PubMed Central
Google Scholar
Gong J, Dong J, Liu X, Massana R. Extremely high copy numbers and polymorphisms of the rDNA operon estimated from single cell analysis of oligotrich and peritrich ciliates. Protist. 2013;164:369–79.
Article
CAS
PubMed
Google Scholar
He S, Ivanova N, Kirton E, Allgaier M, Bergin C, Scheffrahn RH, et al. Comparative metagenomic and metatranscriptomic analysis of hindgut paunch microbiota in wood- and dung-feeding higher termites. PLoS One. 2013;8:e61126.
Article
PubMed Central
CAS
PubMed
Google Scholar
Dietrich C, Köhler T, Brune A. The cockroach origin of the termite gut microbiota: patterns in bacterial community structure reflect major evolutionary events. Appl Environ Microbiol. 2014;80:2261–9.
Article
PubMed Central
PubMed
Google Scholar
Hongoh Y. Diversity and genomes of uncultured microbial symbionts in the termite gut. Biosci Biotechnol Biochem. 2010;74:1145–51.
Article
CAS
PubMed
Google Scholar
Douglas A. The microbial dimension in insect nutritional ecology. Funct Ecol. 2009;23:38–47.
Article
Google Scholar
Engel P, Moran NA. The gut microbiota of insects—diversity in structure and function. FEMS Microbiol Rev. 2013;37:699–735.
Article
CAS
PubMed
Google Scholar
Hongoh Y, Deevong P, Inoue T, Moriya S, Trakulnaleamsai S, Ohkuma M, et al. Intra- and interspecific comparisons of bacterial diversity and community structure support coevolution of gut microbiota and termite host. Appl Environ Microbiol. 2005;71:6590–9.
Article
PubMed Central
CAS
PubMed
Google Scholar
Hongoh Y, Ohkuma M, Kudo T. Molecular analysis of bacterial microbiota in the gut of the termite Reticulitermes speratus (Isoptera; Rhinotermitidae). FEMS Microbiol Ecol. 2003;44:231–42.
Article
CAS
PubMed
Google Scholar
Husseneder C. Symbiosis in subterranean termites: a review of insights from molecular studies. Environ Entomol. 2010;39:378–88.
Article
CAS
PubMed
Google Scholar
Ikeda-Ohtsubo W, Faivre N, Brune A. Putatively free-living ‘Endomicrobia’—ancestors of the intracellular symbionts of termite gut flagellates? Environ Microbiol Rep. 2010;2:554–9.
Article
PubMed
Google Scholar
Kohler T, Stingl U, Meuser K, Brune A. Novel lineages of planctomycetes densely colonize the alkaline gut of soil-feeding termites (Cubitermes spp.). Environ Microbiol. 2008;10:1260–70.
Article
PubMed
Google Scholar
Nakajima H, Hongoh Y, Noda S, Yoshida Y, Usami R, Kudo T, et al. Phylogenetic and morphological diversity of Bacteroidales members associated with the gut wall of termites. Biosci Biotechnol Biochem. 2006;70:211–8.
Article
CAS
PubMed
Google Scholar
Schauer C, Thompson CL, Brune A. The bacterial community in the gut of the cockroach Shelfordella lateralis reflects the close evolutionary relatedness of cockroaches and termites. Appl Environ Microbiol. 2012;78:2758–67.
Article
PubMed Central
CAS
PubMed
Google Scholar
Tholen A, Brune A. Localization and in situ activities of homoacetogenic bacteria in the highly compartmentalized hindgut of soil-feeding higher termites (Cubitermes spp.). Appl Environ Microbiol. 1999;65:4497–505.
PubMed Central
CAS
PubMed
Google Scholar
Shinzato N, Muramatsu M, Matsui T, Watanabe Y. Molecular phylogenetic diversity of the bacterial community in the gut of the termite Coptotermes formosanus. Biosci Biotechnol Biochem. 2005;69:1145–55.
Article
CAS
PubMed
Google Scholar
Warnecke F, Hugenholtz P. Building on basic metagenomics with complementary technologies. Genome Biol. 2007;8:231.
Article
PubMed Central
PubMed
Google Scholar
Yang H, Schmitt‐Wagner D, Stingl U, Brune A. Niche heterogeneity determines bacterial community structure in the termite gut (Reticulitermes santonensis). Environ Microbiol. 2005;7:916–32.
Article
CAS
PubMed
Google Scholar
Morgan JL, Darling AE, Eisen JA. Metagenomic sequencing of an in vitro-simulated microbial community. PLoS One. 2010;5:e10209.
Article
PubMed Central
PubMed
Google Scholar
Engelbrektson A, Kunin V, Wrighton KC, Zvenigorodsky N, Chen F, Ochman H, et al. Experimental factors affecting PCR-based estimates of microbial species richness and evenness. Int Soc Microbial Ecol J. 2010;4:642–7.
CAS
Google Scholar
Sabree ZL, Moran NA. Host-specific assemblages typify gut microbial communities of related insect species. SpringerPlus. 2014;3:138.
Article
PubMed Central
PubMed
Google Scholar
Noda S, Inoue T, Hongoh Y, Kawai M, Nalepa CA, Vongkaluang C, et al. Identification and characterization of ectosymbionts of distinct lineages in Bacteroidales attached to flagellated protists in the gut of termites and a wood‐feeding cockroach. Environ Microbiol. 2006;8:11–20.
Article
CAS
PubMed
Google Scholar
Noda S, Iida T, Kitade O, Nakajima H, Kudo T, Ohkuma M. Endosymbiotic Bacteroidales bacteria of the flagellated protist Pseudotrichonympha grassii in the gut of the termite Coptotermes formosanus. Appl Environ Microbiol. 2005;71:8811–7.
Article
PubMed Central
CAS
PubMed
Google Scholar
Hongoh Y, Sharma VK, Prakash T, Noda S, Toh H, Taylor TD, et al. Genome of an endosymbiont coupling N2 fixation to cellulolysis within protist cells in termite gut. Science. 2008;322:1108–9.
Article
CAS
PubMed
Google Scholar
Stingl U, Maass A, Radek R, Brune A. Symbionts of the gut flagellate Staurojoenina sp. from Neotermes cubanus represent a novel, termite-associated lineage of Bacteroidales: description of ‘Candidatus Vestibaculum illigatum’. Microbiology. 2004;150:2229–35.
Article
CAS
PubMed
Google Scholar
Yamin MA. Flagellates of the orders Trichomonadida Kirby, Oxymonadida Grassé, and Hypermastigida Grassi and Foà: reported from Lower Termites (Isoptera families Mastotermitidae, Kalotermitidae, Hodotermitidae, Termopsidae, Rhinotermitidae, and Serritermitidae) and from the wood-feeding roach Cryptocercus (Dictyoptera: Cryptocercidae). California: California State University; 1979
Gile GH, Carpenter KJ, James ER, Scheffrahn RH, Keeling PJ. Morphology and molecular phylogeny of Staurojoenina mulleri sp. nov. (Trichonymphida, Parabasalia) from the hindgut of the Kalotermitid Neotermes jouteli. J Eukaryot Microbiol. 2013;60:203–13.
Article
CAS
PubMed
Google Scholar
Stingl U, Radek R, Yang H, Brune A. “Endomicrobia”: cytoplasmic symbionts of termite gut protozoa form a separate phylum of prokaryotes. Appl Environ Microbiol. 2005;71:1473–9.
Article
PubMed Central
CAS
PubMed
Google Scholar
Ikeda-Ohtsubo W, Desai M, Stingl U, Brune A. Phylogenetic diversity of ‘Endomicrobia’and their specific affiliation with termite gut flagellates. Microbiology. 2007;153:3458–65.
Article
CAS
PubMed
Google Scholar
Ohkuma M, Sato T, Noda S, Ui S, Kudo T, Hongoh Y. The candidate phylum ‘Termite Group 1’ of bacteria: phylogenetic diversity, distribution, and endosymbiont members of various gut flagellated protists. FEMS Microbiol Ecol. 2007;60:467–76.
Article
CAS
PubMed
Google Scholar
Brandl R, Hyodo F, Korff-Schmising M, Maekawa K, Miura T, Takematsu Y, et al. Divergence times in the termite genus Macrotermes (Isoptera: Termitidae). Mol Phylogenet Evol. 2007;45:239–50.
Article
CAS
PubMed
Google Scholar
Eutick ML, Veivers P, O’Brien RW, Slaytor M. Dependence of the higher termite, Nasutitermes exitiosus and the lower termite, Coptotermes lacteus on their gut flora. J Insect Physiol. 1978;24:363–8.
Article
CAS
Google Scholar
Warnecke F, Luginbuhl P, Ivanova N, Ghassemian M, Richardson TH, Stege JT, et al. Metagenomic and functional analysis of hindgut microbiota of a wood-feeding higher termite. Nature. 2007;450:560–5.
Article
CAS
PubMed
Google Scholar
Ohkuma M, Iida T, Kudo T. Phylogenetic relationships of symbiotic spirochetes in the gut of diverse termites. FEMS Microbiol Lett. 1999;181:123–9.
Article
CAS
PubMed
Google Scholar
Berlanga M, Paster BJ, Guerrero R. The taxophysiological paradox: changes in the intestinal microbiota of the xylophagous cockroach Cryptocercus punctulatus depending on the physiological state of the host. Int Microbiol. 2009;12:227–36.
CAS
PubMed
Google Scholar
Breznak JA, Leadbetter JR. Termite gut spirochetes. In: The prokaryotes. New York: Springer; 2006. p. 318–29.
Chapter
Google Scholar
Kuhnigk T, Branke J, Krekeler D, Cypionka H, König H. A feasible role of sulfate-reducing bacteria in the termite gut. Syst Appl Microbiol. 1996;19:139–49.
Article
CAS
Google Scholar
Rosenthal AZ, Zhang X, Lucey KS, Ottesen EA, Trivedi V, Choi HM, et al. Localizing transcripts to single cells suggests an important role of uncultured deltaproteobacteria in the termite gut hydrogen economy. Proc Natl Acad Sci. 2013;110:16163–8.
Article
PubMed Central
CAS
PubMed
Google Scholar
Bignell DE, Eggleton P. On the elevated intestinal pH of higher termites (Isoptera: Termitidae). Ins Soc. 1995;42:57–69.
Article
Google Scholar
Brauman A, Dore J, Eggleton P, Bignell D, Breznak JA, Kane MD. Molecular phylogenetic profiling of prokaryotic communities in guts of termites with different feeding habits. FEMS Microbiol Ecol. 2001;35:27–36.
Article
CAS
PubMed
Google Scholar
Ohkuma M, Noda S, Kudo T. Phylogenetic diversity of nitrogen fixation genes in the symbiotic microbial community in the gut of diverse termites. Appl Environ Microbiol. 1999;65:4926–34.
PubMed Central
CAS
PubMed
Google Scholar
Tokura M, Ohkuma M, Kudo T. Molecular phylogeny of methanogens associated with flagellated protists in the gut and with the gut epithelium of termites. FEMS Microbiol Ecol. 2000;33:233–40.
Article
CAS
PubMed
Google Scholar
Shinzato N, Matsumoto T, Yamaoka I, Oshima T, Yamagishi A. Methanogenic symbionts and the locality of their host lower termites. Microbes Environ. 2001;16:43–7.
Article
Google Scholar
Paul K, Nonoh JO, Mikulski L, Brune A. “Methanoplasmatales”, Thermoplasmatales-related archaea in termite guts and other environments, are the seventh order of methanogens. Appl Environ Microbiol. 2012;78:8245–53.
Article
PubMed Central
CAS
PubMed
Google Scholar
Hadziavdic K, Lekang K, Lanzen A, Jonassen I, Thompson EM, Troedsson C. Characterization of the 18S rRNA gene for designing universal eukaryote specific primers. PLoS One. 2014;9:e87624.
Article
PubMed Central
PubMed
Google Scholar
Wang Y, Tian RM, Gao ZM, Bougouffa S, Qian P-Y. Optimal eukaryotic 18S and universal 16S/18S ribosomal RNA primers and their application in a study of symbiosis. PLoS One. 2014;9:e90053.
Article
PubMed Central
PubMed
Google Scholar
Lewis JL, Forschler BT. Protist communities from four castes and three species of Reticulitermes (Isoptera: Rhinotermitidae). Ann Entomol Soc Am. 2004;97:1242–51.
Article
Google Scholar
Hongoh Y. Toward the functional analysis of uncultivable, symbiotic microorganisms in the termite gut. Cell Mol Life Sci. 2011;68:1311–25.
Article
CAS
PubMed
Google Scholar
Brune A, Ohkuma M. Role of the termite gut microbiota in symbiotic digestion. In: Bignell DE, Roisin Y, Lo N, editors. Biology of Termites: a Modern Synthesis. Netherlands: Springer; 2011. p. 439–75.
Google Scholar
Hongoh Y. Who digests the lignocellulose? Environ Microbiol. 2014;9:2644–5.
Article
Google Scholar
Lynn DH, Wright A-DG. Biodiversity and molecular phylogeny of Australian Clevelandella species (class Armophorea, order Clevelandellida, family Clevelandellidae), intestinal endosymbiotic ciliates in the wood-feeding roach Panesthia cribrata Saussure, 1864. J Eukaryot Microbiol. 2013;60:335–41.
Article
PubMed
Google Scholar
Kirby H. Protozoa in termites of the genus Amitermes. Parasitology. 1932;24:289–304.
Article
Google Scholar
Abe T, Bignell DE, Higashi M. Termites: evolution, sociality, symbioses, ecology. Dordrecht: Kluwer Academic Publishers; 2000.
Google Scholar
Huang Q-Y, Wang W-P, Mo R-Y, Lei C-L. Studies on feeding and trophallaxis in the subterranean termite Odontotermes formosanus using rubidium chloride. Entomol Exp Appl. 2008;129:210–5.
Article
Google Scholar
Mikaelyan A, Strassert JF, Tokuda G, Brune A. The fibre‐associated cellulolytic bacterial community in the hindgut of wood‐feeding higher termites (Nasutitermes spp.). Environ Microbiol. 2014;16:2711–22.
Article
CAS
Google Scholar
Andersen AN, Jacklyn P. Termites of the top end. Australia: CSIRO Publishing; 1993.
Google Scholar
Huang X-F, Bakker MG, Judd TM, Reardon KF, Vivanco JM. Variations in diversity and richness of gut bacterial communities of termites (Reticulitermes flavipes) fed with grassy and woody plant substrates. Microbial Ecol. 2013;65:1–6.
Article
CAS
Google Scholar
Boucias DG, Cai Y, Sun Y, Lietze VU, Sen R, Raychoudhury R, et al. The hindgut lumen prokaryotic microbiota of the termite Reticulitermes flavipes and its responses to dietary lignocellulose composition. Mol Ecol. 2013;22:1836–53.
Article
CAS
PubMed
Google Scholar
Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics. 2011;27:2194–200.
Article
PubMed Central
CAS
PubMed
Google Scholar
Bragg L, Stone G, Imelfort M, Hugenholtz P, Tyson GW. Fast, accurate error-correction of amplicon pyrosequences using Acacia. Nat Methods. 2012;9:425–6.
Article
CAS
PubMed
Google Scholar
Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods. 2010;7:335–6.
Article
PubMed Central
CAS
PubMed
Google Scholar
Fu L, Niu B, Zhu Z, Wu S, Li W. CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics. 2012;28:3150–2.
Article
PubMed Central
CAS
PubMed
Google Scholar
Kunin V, Hugenholtz P. PyroTagger: A fast, accurate pipeline for analysis of rRNA amplicon pyrosequence data. Open J. 2010;1:1–8.
Google Scholar
McDonald D, Price MN, Goodrich J, Nawrocki EP, DeSantis TZ, Probst A, et al. An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea. ISME J. 2012;6:610–8.
Article
PubMed Central
CAS
PubMed
Google Scholar
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215:403–10.
Article
CAS
PubMed
Google Scholar
Parks DH, Beiko RG. Measures of phylogenetic differentiation provide robust and complementary insights into microbial communities. ISME J. 2013;7:173–83.
Article
PubMed Central
CAS
PubMed
Google Scholar
Lozupone C, Knight R. UniFrac: a new phylogenetic method for comparing microbial communities. Appl Environ Microbiol. 2005;71:8228–35.
Article
PubMed Central
CAS
PubMed
Google Scholar
Lozupone C, Hamady M, Knight R. UniFrac—an online tool for comparing microbial community diversity in a phylogenetic context. BMC Bioinformatics. 2006;7:371.
Article
PubMed Central
PubMed
Google Scholar
Lozupone C, Lladser ME, Knights D, Stombaugh J, Knight R. UniFrac: an effective distance metric for microbial community comparison. ISME J. 2011;5:169–72.
Article
PubMed Central
PubMed
Google Scholar
Parks DH, Beiko RG. Identifying biologically relevant differences between metagenomic communities. Bioinformatics. 2010;26:715–21.
Article
CAS
PubMed
Google Scholar
Ohkuma M, Yuzawa H, Amornsak W, Sornnuwat Y, Takematsu Y, Yamada A, et al. Molecular phylogeny of Asian termites (Isoptera) of the families Termitidae and Rhinotermitidae based on mitochondrial COII sequences. Mol Phylogenet Evol. 2004;31:701–10.
Article
CAS
PubMed
Google Scholar
Ludwig W, Strunk O, Westram R, Richter L, Meier H, Buchner A, et al. ARB: a software environment for sequence data. Nucleic Acids Res. 2004;32:1363–71.
Article
PubMed Central
CAS
PubMed
Google Scholar
Price MN, Dehal PS, Arkin AP. FastTree: computing large minimum evolution trees with profiles instead of a distance matrix. Mol Biol Evol. 2009;26:1641–50.
Article
PubMed Central
CAS
PubMed
Google Scholar