Baquero F, Nombela C. The microbiome as a human organ. Clin Microbiol Infect. 2012;18:2–4.
CAS
PubMed
Google Scholar
Proctor L. Priorities for the next 10 years of human microbiome research. Nature. 2019;569:623–5.
CAS
PubMed
Google Scholar
Blaser MJ, Cardon ZG, Cho MK, Dangl JL, Donohue TJ, Green JL, et al. Toward a predictive understanding of earth’s microbiomes to address 21st century challenges. mBio. 2016;7:e00714–6.
CAS
PubMed
PubMed Central
Google Scholar
Berg G, Rybakova D, Grube M, Köberl M. The plant microbiome explored: implications for experimental botany. J Exp Bot. 2016;67:995–1002.
CAS
PubMed
Google Scholar
Busby PE, Soman C, Wagner MR, Friesen ML, Kremer J, Bennett A, et al. Research priorities for harnessing plant microbiomes in sustainable agriculture. PLOS Biol. 2017;15:e2001793.
PubMed
PubMed Central
Google Scholar
Singh BK, Trivedi P. Microbiome and the future for food and nutrient security. Microb Biotechnol. 2017;10:50–3.
PubMed
PubMed Central
Google Scholar
Sessitsch A, Brader G, Pfaffenbichler N, Gusenbauer D, Mitter B. The contribution of plant microbiota to economy growth. Microb Biotechnol. 2018;11:801–5.
PubMed
PubMed Central
Google Scholar
Hutchins DA, Jansson JK, Remais JV, Rich VI, Singh BK, Trivedi P. Climate change microbiology - problems and perspectives. Nat Rev Microbiol. 2019;17:391–6.
CAS
PubMed
Google Scholar
Wu L, Ning D, Zhang B, Li Y, Zhang P, Shan X, et al. Global diversity and biogeography of bacterial communities in wastewater treatment plants. Nat Microbiol. 2019;4:1183–95.
CAS
PubMed
Google Scholar
Dunham Trimmer LLC. Biological control global market overview. 2017. http://wrir4.ucdavis.edu/events/2017_SLR_Meeting/Presentations/GeneralPresentations/1%20Trimmer%20-%20Global%20Biocontrol%20Market%202017.pdf. Accessed 12 Aug 2019.
Cavicchioli R, Ripple WJ, Timmis KN, Azam F, Bakken LR, Baylis M, et al. Scientists' warning to humanity: microorganisms and climate change. Nat Rev Microbiol. 2019;17:569–86.
CAS
PubMed
PubMed Central
Google Scholar
Zilber-Rosenberg I, Rosenberg E. Role of microorganisms in the evolution of animals and plants: the hologenome theory of evolution. FEMS Microbiol Rev. 2008;32:723–35.
CAS
PubMed
Google Scholar
Theis KR, Dheilly NM, Klassen JL, Brucker RM, Baines JF, TCG B, et al. Getting the hologenome concept right: an eco-evolutionary framework for hosts and their microbiomes. mSystems. 2016;1:e00028–16.
PubMed
PubMed Central
Google Scholar
Simon J-C, Marchesi JR, Mougel C, Selosse MA. Host-microbiota interactions: from holobiont theory to analysis. Microbiome. 2019;7:5.
PubMed
PubMed Central
Google Scholar
Mendes R, Raaijmakers JM. Cross-kingdom similarities in microbiome functions. ISME J. 2015;9:1905–7.
CAS
PubMed
PubMed Central
Google Scholar
Dominguez-Bello MG, Godoy-Vitorino F, Knight R, Blaser MJ. Role of the microbiome in human development. Gut. 2019;68:1108–14.
CAS
PubMed
PubMed Central
Google Scholar
Stegen JC, Bottos EM, Jansson JK. A unified conceptual framework for prediction and control of microbiomes. Curr Opin Microbiol. 2018;44:20–7.
PubMed
Google Scholar
Jones S. Trends in microbiome research. Nat Biotechnol. 2013;31:277.
CAS
Google Scholar
Tamboli CP, Neut C, Desreumaux P, Colombel JF. Dysbiosis in inflammatory bowel disease. Gut. 2004;53:1–4.
CAS
PubMed
PubMed Central
Google Scholar
Hooks KB, O’Malley MA. Dysbiosis and its discontents. mBio. 2017;8:e01492–17.
PubMed
PubMed Central
Google Scholar
Bello MGD, Knight R, Gilbert JA, Blaser MJ. Preserving microbial diversity. Science. 2018;362:33–4.
PubMed
Google Scholar
Blaser M. Antibiotic overuse: Stop the killing of beneficial bacteria. Nature. 2011;476:393–4.
CAS
PubMed
Google Scholar
Berg G, Köberl M, Rybakova D, Müller H, Grosch R, Smalla K. Plant microbial diversity is suggested as the key to future biocontrol and health trends. FEMS Microbiol Ecol. 2017;93:5.
Google Scholar
Brüssow H. Problems with the concept of gut microbiota dysbiosis. Microb Biotechnol. 2019. https://doi.org/10.1111/1751-7915.13479.
Marchesi JR, Ravel J. The vocabulary of microbiome research: a proposal. Microbiome. 2015;3:31.
PubMed
PubMed Central
Google Scholar
MicrobiomeSupport. https://www.microbiomesupport.eu (2018). Accessed 14 Oct 2019.
Hiltner L. Die Keimungsverhältnisse der Leguminosensamen und ihre Beeinflussung durch Organismenwirkung. In: Parey P, Springer J, editors. Arb Biol Abt Land u Forstw K Gsndhtsamt (3). Berlin, Germany; 1902. p. 1-545.
Metchnikoff E. The prolongation of life: optimistic studies. GP Putnam's Sons; 1908.
Bassler BL. Small Talk: Cell-to-cell communication in bacteria. Cell. 2002;109:421–4.
CAS
PubMed
Google Scholar
Brul S. Functional genomics for food microbiology: molecular mechanisms of weak organic acid preservative adaptation in yeast. CAB Rev Perspect Agric Vet Sci Nutr Nat Resour. 2008;3:1–14.
Google Scholar
Woese CR, Fox GE. Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proc Natl Acad Sci U S A. 1977;74:5088–90.
CAS
PubMed
PubMed Central
Google Scholar
Uksa M, Schloter M, Endesfelder D, Kublik S, Engel M, Kautz T, et al. Prokaryotes in subsoil—evidence for a strong spatial separation of different phyla by analysing co-occurrence networks. Front Microbiol. 2015;6:1269.
PubMed
PubMed Central
Google Scholar
Maritz JM, Rogers KH, Rock TM, Liu N, Joseph S, Land KM, et al. An 18S rRNA workflow for characterizing protists in sewage, with a focus on zoonotic trichomonads. Microb Ecol. 2017;74:923–36.
CAS
PubMed
PubMed Central
Google Scholar
Purahong W, Wubet T, Lentendu G, Schloter M, Pecyna MJ, Kapturska D, et al. Life in leaf litter: novel insights into community dynamics of bacteria and fungi during litter decomposition. Mol Ecol. 2016;25:4059–74.
CAS
PubMed
Google Scholar
Lozupone CA, Stombaugh JI, Gordon JI, Jansson JK, Knight R. Diversity, stability and resilience of the human gut microbiota. Nature. 2012;489:220–30.
CAS
PubMed
PubMed Central
Google Scholar
Venter JC, Remington K, Heidelberg JF, Halpern AL, Rusch D, Eisen JA, et al. Environmental genome shotgun sequencing of the Sargasso Sea. Science. 2004;304:66–74.
CAS
PubMed
Google Scholar
Liu L, Li Y, Li S, Hu N, He Y, Pong R, et al. Comparison of next-generation sequencing systems. BioMed Res. Int. 2012. https://doi.org/10.1155/2012/251364.
Knight R, Vrbanac A, Taylor BC, Aksenov A, Callewaert C, Debelius J, et al. Best practices for analysing microbiomes. Nat Rev Microbiol. 2018;16:410–22.
CAS
PubMed
Google Scholar
Konopka A. What is microbial community ecology? ISME J. 2009;3:1223–30.
PubMed
Google Scholar
Whipps J, Lewis K, Cooke R. Mycoparasitism and plant disease control. In: Burge M, editor. Fungi Biol Control Syst. Manchester University Press; 1988. p. 161-187.
Orozco-Mosqueda M, Rocha-Granados M, Glick BR, Santoyo G. Microbiome engineering to improve biocontrol and plant growth-promoting mechanisms. Microbiol Res. 2018;208:25–31.
CAS
PubMed
Google Scholar
Lederberg J, Mccray AT. `Ome Sweet `Omics--A genealogical treasury of words. The Scientist. 2001;15(7):8–8.
Google Scholar
Merriam-Webster Dictionary: Definition of Microbiome. https://www.merriam-webster.com/dictionary/microbiome. .
Human Microbiome Project. https://hmpdacc.org. Accessed 15 Oct 2019.
Nature.com: Microbiome. https://www.nature.com/subjects/microbiome. Accessed 15 Oct 2019.
ScienceDirect: Microbiome. https://www.sciencedirect.com/topics/immunology-and-microbiology/microbiome. Accessed 15 Oct 2019.
Arevalo P, VanInsberghe D, Elsherbini J, Gore J, Polz MF. A reverse ecology approach based on a biological definition of microbial populations. Cell. 2019;178:820–34.
CAS
PubMed
Google Scholar
Schlaeppi K, Bulgarelli D. The plant microbiome at work. Mol Plant-Microbe Interact. 2015;28:212–7.
CAS
PubMed
Google Scholar
Rogers Y-H, Zhang C. Genomic Technologies in Medicine and Health: Past, Present, and Future. In: Kumar D, Antonarakis S, editors. Med Health Genomics. Oxford: Academic Press; 2016. p. 15–28.
Google Scholar
Ho H, Bunyavanich S. Role of the microbiome in food allergy. Curr Allergy Asthma Rep. 2018;18:27.
PubMed
Google Scholar
Whiteside SA, Razvi H, Dave S, Reid G, Burton JP. The microbiome of the urinary tract—a role beyond infection. Nat Rev Urol. 2015;12(2):81.
PubMed
Google Scholar
Prosser JI, Bohannan BJM, Curtis TP, Ellis RJ, Firestone MK, Freckleton RP, et al. The role of ecological theory in microbial ecology. Nat Rev Microbiol. 2007;5:384–92.
CAS
PubMed
Google Scholar
Carini P, Marsden PJ, Leff JW, Morgan EE, Strickland MS, Fierer N. Relic DNA is abundant in soil and obscures estimates of soil microbial diversity. Nat Microbiol. 2016;2:16242.
PubMed
Google Scholar
Lennon JT, Muscarella ME, Placella SA, Lehmkuhl BK. How, when, and where relic DNA affects microbial diversity. mBio. 2018;9:e00637–18.
PubMed
PubMed Central
Google Scholar
Dupré JO, O’Malley MA. Varieties of living things: life at the intersection of lineage and metabolism. In: Normandin S, Wolfe C, editors. Vitalism and the Scientific Image in Post-Enlightenment Life Science; History, Philosophy and Theory of the Life Sciences. Dordrecht: Springer; 2009. p. 1800–2010.
Google Scholar
McDaniel L, Breitbart M, Mobberley J, Long A, Haynes M, Rohwer F, et al. Metagenomic analysis of lysogeny in Tampa Bay: implications for prophage gene expression. PloS One. 2008;3:e3263.
PubMed
PubMed Central
Google Scholar
Eisenberg JF. The evolution of the reproductive unit in the class mammalia. In: Rosenblatt JS, Komisaruk BR, editors. Reprod Behav Evol. Boston, MA: Springer US; 1977. p. 39–71.
Google Scholar
Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O, Krichevsky MI, et al. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Evol Microbiol. 1987;37:463–4.
Google Scholar
Freudenstein JV, Michael BB, Ryan AF, Sinn BT. Biodiversity and the species concept-lineages are not enough. Syst Biol. 2017;2017(66):644–56.
Google Scholar
Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P, Tiedje JM. DNA–DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol. 2007;57:81–91.
CAS
PubMed
Google Scholar
Segata N. On the road to strain-resolved comparative metagenomics. mSystems. 2018;3e00190-17.
Banerjee S, Schlaeppi K, van der Heijden MGA. Keystone taxa as drivers of microbiome structure and functioning. Nat Rev Microbiol. 2018;16:567–76.
CAS
PubMed
Google Scholar
Ho A, Di Lonardo DP, Bodelier PLE. Revisiting life strategy concepts in environmental microbial ecology. FEMS Microbiol Ecol. 2017;93:fix006.
Google Scholar
Noh S, Geist KS, Tian X, Strassmann JE, Queller DC. Genetic signatures of microbial altruism and cheating in social amoebas in the wild. Proc Natl Acad Sci USA. 2018;115:3096–101.
CAS
PubMed
Google Scholar
Papenfort K, Bassler BL. Quorum sensing signal–response systems in Gram-negative bacteria. Nat Rev Microbiol. 2016;14:576–58.
CAS
PubMed
PubMed Central
Google Scholar
Lovley DR. Syntrophy goes electric: direct interspecies electron transfer. Annu Rev Microbiol. 2017;71:643–64.
CAS
PubMed
Google Scholar
Schmidt R, Etalo DW, de Jager V, Gerards S, Zweers H, de Boer W, et al. Microbial small talk: volatiles in fungal–bacterial interactions. Front Microbiol. 2016;6:1495.
PubMed
PubMed Central
Google Scholar
Zhang Y, Kastman EK, Guasto JS, Wolfe BE. Fungal networks shape dynamics of bacterial dispersal and community assembly in cheese rind microbiomes. Nat Commun. 2018;9:336.
PubMed
PubMed Central
Google Scholar
Worrich A, Stryhanyuk H, Musat N, König S, Banitz T, Centler F, et al. Mycelium-mediated transfer of water and nutrients stimulates bacterial activity in dry and oligotrophic environments. Nat Commun. 2017;8:15472.
CAS
PubMed
PubMed Central
Google Scholar
Chevrette MG, Bratburd JR, Currie CR, Stubbendieck RM. Experimental microbiomes: models not to scale. mSystems. 2019;4:e00175–19.
PubMed
PubMed Central
Google Scholar
Barberán A, Bates ST, Casamayor EO, Fierer N. Using network analysis to explore co-occurrence patterns in soil microbial communities. ISME J. 2012;6:343–51.
PubMed
Google Scholar
Faust K, Sathirapongsasuti JF, Izard J, Segata N, Gevers D, Raes J, et al. Microbial co-occurrence relationships in the human microbiome. PLoS Comput Biol. 2012;8:e1002606.
CAS
PubMed
PubMed Central
Google Scholar
Williams RJ, Howe A, Hofmockel KS. Demonstrating microbial co-occurrence pattern analyses within and between ecosystems. Front Microbiol. 2014;5:358.
PubMed
PubMed Central
Google Scholar
Lawley TD, Walker AW. Intestinal colonization resistance. Immunology. 2013;138:1–11.
CAS
PubMed
Google Scholar
Lueders T, Kindler R, Miltner A, Friedrich MW, Kaestner M. Identification of bacterial micropredators distinctively active in a soil microbial food web. Appl Environ Microbiol. 2006;72:5342–8.
CAS
PubMed
PubMed Central
Google Scholar
Rybakova D, Mancinelli R, Wikström M, Birch-Jensen A-S, Postma J, Ehlers R-U, et al. The structure of the Brassica napus seed microbiome is cultivar-dependent and affects the interactions of symbionts and pathogens. Microbiome. 2017;5:104.
PubMed
PubMed Central
Google Scholar
Cardinale M, Grube M, Erlacher A, Quehenberger J, Berg G. Bacterial networks and co-occurrence relationships in the lettuce root microbiota. Environ Microbiol. 2015;17:239–52.
CAS
PubMed
Google Scholar
Palatinszky M, Herbold C, Jehmlich N, Pogoda M, Han P, von Bergen M, et al. Cyanate as an energy source for nitrifiers. Nature. 2015;524:105–8.
CAS
PubMed
PubMed Central
Google Scholar
Durán P, Thiergart T, Garrido-Oter R, Agler M, Kemen E, Schulze-Lefert P, et al. Microbial interkingdom interactions in roots promote Arabidopsis survival. Cell. 2018;175:973–83.
PubMed
PubMed Central
Google Scholar
Gould AL, Zhang V, Lamberti L, Jones EW, Obadia B, Korasidis N, et al. Microbiome interactions shape host fitness. Proc Natl Acad Sci. 2018;115:e11951–60.
CAS
PubMed
Google Scholar
Cavaliere M, Feng S, Soyer OS, Jiménez JI. Cooperation in microbial communities and their biotechnological applications. Environ Microbiol. 2017;19:2949–63.
PubMed
PubMed Central
Google Scholar
Brader G, Compant S, Vescio K, Mitter B, Trognitz F, Ma L-J, et al. Ecology and genomic insights into plant-pathogenic and plant-nonpathogenic endophytes. Annu Rev Phytopathol. 2017;55:61–83.
CAS
PubMed
Google Scholar
Berry D, Widder S. Deciphering microbial interactions and detecting keystone species with co-occurrence networks. Front Microbiol. 2014;5:219.
PubMed
PubMed Central
Google Scholar
Freilich MA, Wieters E, Broitman BR, Marquet PA, Navarrete SA. Species co-occurrence networks: Can they reveal trophic and non-trophic interactions in ecological communities? Ecology. 2018;99:690–9.
PubMed
Google Scholar
Röttjers L, Faust K. From hairballs to hypotheses-biological insights from microbial networks. FEMS Microbiol Rev. 2018;42:761–80.
PubMed
PubMed Central
Google Scholar
Mascarenhas R, Ruziska FM, Moreira EF, Campos AB, Loiola M, Reis K, et al. Integrating computational methods to investigate the macroecology of microbiomes. Front Genet. 2020;10:1344.
PubMed
PubMed Central
Google Scholar
De Cáceres M, Legendre P, Moretti M. Improving indicator species analysis by combining groups of sites. Oikos. 2010;119:1674–84.
Google Scholar
Hartmann M, Frey B, Mayer J, Mäder P, Widmer F. Distinct soil microbial diversity under long-term organic and conventional farming. ISME J. 2015;9:1177–94.
PubMed
Google Scholar
Chen Z, Xie Y, Zhou F, Zhang B, Wu J, Yang L, et al. Featured gut microbiomes associated with the progression of chronic hepatitis B disease. Front Microbiol. 2020;11:383.
PubMed
PubMed Central
Google Scholar
Giraffa G. Studying the dynamics of microbial populations during food fermentation. FEMS Microbiol Rev. 2004;28:251–60.
CAS
PubMed
Google Scholar
Godon J-J, Arulazhagan P, Steyer J-P, Hamelin J. Vertebrate bacterial gut diversity: size also matters. BMC Ecol. 2016;16(1):12.
PubMed
PubMed Central
Google Scholar
Locey K, Lennon J. From the Cover: Scaling laws predict global microbial diversity. Proc Natl Acad Sci U S A. 2016;113(21):5970–5.
CAS
PubMed
PubMed Central
Google Scholar
Uhr GT, Dohnalová L, Thaiss CA. The dimension of time in host-Microbiome interactions. mSystems. 2019;4:e00216–8.
PubMed
PubMed Central
Google Scholar
Peterson JR, Thor S, Kohler L, Kohler PR, Metcalf WW, Luthey-Schulten Z. Genome-wide gene expression and RNA half-life measurements allow predictions of regulation and metabolic behavior in Methanosarcina acetivorans. BMC Genomics. 2016;16(17):924.
Google Scholar
Blazewicz SJ, Barnard RL, Daly RA, Firestone MK. Evaluating rRNA as an indicator of microbial activity in environmental communities: limitations and uses. ISME J. 2013:2061–8.
Soliveres S, van der Plas F, Manning P, Prati D, Gossner MM, Renner SC, et al. Biodiversity at multiple trophic levels is needed for ecosystem multifunctionality. Nature. 2016;536:456–9.
CAS
PubMed
Google Scholar
Wilpiszeski RL, Aufrecht JA, Retterer ST, Sullivan MB, Graham DE, Pierce EM, et al. Soil aggregate microbial communities: towards understanding microbiome interactions at biologically relevant scales. Appl Environ Microbiol. 2019;85:e00324–19.
CAS
PubMed
PubMed Central
Google Scholar
Wang Z, Liu L, Chen Q, Wen X, Liu Y, Han J, et al. Conservation tillage enhances the stability of the rhizosphere bacterial community responding to plant growth. Agron Sustain Dev. 2017;37(5):44.
Google Scholar
Wang G, Schultz P, Tipton A, Zhang J, Zhang F, Bever JD. Soil microbiome mediates positive plant diversity-productivity relationships in late successional grassland species. Ecol Lett. 2019;22:1221–32.
PubMed
Google Scholar
Estendorfer J, Stempfhuber B, Haury P, Vestergaard G, Rillig MC, Joshi J, et al. The influence of land use intensity on the plant-associated microbiome of Dactylis glomerata L. Front Plant Sci. 2017;8:930.
PubMed
PubMed Central
Google Scholar
Berg G, Raaijmakers JM. Saving seed microbiomes. ISME J. 2018;12:1167–70.
CAS
PubMed
PubMed Central
Google Scholar
Proctor DM, Relman DA. The landscape ecology and microbiota of the human nose, mouth, and throat. Cell Host Microbe. 2017;21:421–32.
CAS
PubMed
PubMed Central
Google Scholar
Perez GI, Gao Z, Jourdain R, Ramirez J, Gany F, Clavaud C, et al. Body site is a more determinant factor than human population diversity in the healthy skin microbiome. PloS One. 2016;11:e0151990.
Google Scholar
Kuzyakov Y, Blagodatskaya E. Microbial hotspots and hot moments in soil: Concept & review. Soil Biol Biochem. 2015;83:184–99.
CAS
Google Scholar
Shade A, Handelsman J. Beyond the Venn diagram: the hunt for a core microbiome. Environ Microbiol. 2012;14:4–12.
CAS
PubMed
Google Scholar
Lemanceau P, Blouin M, Muller D, Moënne-Loccoz Y. Let the core microbiota be functional. Trends Plant Sci. 2017;22:583–95.
CAS
PubMed
Google Scholar
Toju H, Peay KG, Yamamichi M, Narisawa K, Hiruma K, Naito K, et al. Core microbiomes for sustainable agroecosystems. Nat Plants. 2018;4:247.
PubMed
Google Scholar
Astudillo-García C, Bell JJ, Webster NS, Glasl B, Jompa J, Montoya JM, et al. Evaluating the core microbiota in complex communities: a systematic investigation. Environ Microbiol. 2017;19:1450–62.
PubMed
Google Scholar
Cernava T, Aschenbrenner IA, Soh J, Sensen CW, Grube M, Berg G. Plasticity of a holobiont: desiccation induces fasting-like metabolism within the lichen microbiota. ISME J. 2019;13:547–56.
CAS
PubMed
Google Scholar
Shi Y, Li Y, Xiang X, Sun R, Yang T, He D, et al. Spatial scale affects the relative role of stochasticity versus determinism in soil bacterial communities in wheat fields across the North China Plain. Microbiome. 2018;6:27.
PubMed
PubMed Central
Google Scholar
Anantharaman K, Brown CT, Hug LA, Sharon I, Castelle CJ, Probst AJ, et al. Thousands of microbial genomes shed light on interconnected biogeochemical processes in an aquifer system. Nat Commun. 2016;7:13219.
CAS
PubMed
PubMed Central
Google Scholar
Pasolli E, Asnicar F, Manara S, Zolfo M, Karcher N, Armanini F, et al. Extensive unexplored human microbiome diversity revealed by over 150,000 genomes from metagenomes spanning age, geography, and lifestyle. Cell. 2019;176:649–62.
CAS
PubMed
PubMed Central
Google Scholar
Bloom JD, Arnold FH. In the light of directed evolution: pathways of adaptive protein evolution. Proc Natl Acad Sci. 2009;106:9995–10000.
CAS
PubMed
Google Scholar
Heintz-Buschart A, Wilmes P. Human gut microbiome: function matters. Trends Microbiol. 2018;26:563–74.
CAS
PubMed
Google Scholar
Baric RS, Crosson S, Damania B, Miller SI, Rubin EJ. Next-generation high-throughput functional annotation of microbial genomes. mBio. 2016;7:e01245–16.
CAS
PubMed
PubMed Central
Google Scholar
Berg G, Roskot N, Steidle A, Eberl L, Zock A, Smalla K. Plant-dependent genotypic and phenotypic diversity of antagonistic rhizobacteria isolated from different Verticillium host plants. Appl Environ Microbiol. 2002;68:3328–38.
CAS
PubMed
PubMed Central
Google Scholar
Costa R, Gomes NCM, Krögerrecklenfort E, Opelt K, Berg G, Smalla K. Pseudomonas community structure and antagonistic potential in the rhizosphere: insights gained by combining phylogenetic and functional gene-based analyses. Environ Microbiol. 2007;9:2260–73.
CAS
PubMed
Google Scholar
Da Rocha UN, Plugge CM, George I, van Elsas JD, van Overbeek LS. The rhizosphere selects for particular groups of Acidobacteria and Verrucomicrobia. PLOS ONE. 2013;8:e82443.
Google Scholar
Forster SC, Kumar N, Anonye BO, Almeida A, Viciani E, Stares MD, et al. A human gut bacterial genome and culture collection for improved metagenomic analyses. Nat Biotechnol. 2019;37:186–92.
CAS
PubMed
PubMed Central
Google Scholar
Zou Y, Xue W, Luo G, Deng Z, Qin P, Guo R, et al. 1,520 reference genomes from cultivated human gut bacteria enable functional microbiome analyses. Nat Biotechnol. 2019;37:179–85.
CAS
PubMed
PubMed Central
Google Scholar
Overmann J, Huang S, Nübel U, Hahnke RL, Tindall BJ. Relevance of phenotypic information for the taxonomy of not-yet-cultured microorganisms. Syst Appl Microbiol. 2019;42:22–9.
PubMed
Google Scholar
Konstantinidis KT, Rosselló-Móra R, Amann R. Uncultivated microbes in need of their own taxonomy. ISME J. 2017;11:2399–406.
PubMed
PubMed Central
Google Scholar
Chuvochina M, Rinke C, Parks DH, Rappé MS, Tyson GW, Yilmaz P, et al. The importance of designating type material for uncultured taxa. Syst Appl Microbiol. 2019;42:15–21.
PubMed
Google Scholar
Staley JT, Konopka A. Measurement of in situ activities of nonphotosynthetic microorganisms in aquatic and terrestrial habitats. Annu Rev Microbiol. 1985;39:321–46.
CAS
PubMed
Google Scholar
Lagkouvardos I, Overmann J, Clavel T. Cultured microbes represent a substantial fraction of the human and mouse gut microbiota. Gut Microbes. 2017;8:493–03.
PubMed
PubMed Central
Google Scholar
Karst SM, Dueholm MS, McIlroy SJ, Kirkegaard RH, Nielsen PH, Albertsen M. Retrieval of a million high-quality, full-length microbial 16S and 18S rRNA gene sequences without primer bias. Nat Biotechnol. 2018;36:190–5.
CAS
PubMed
Google Scholar
Murrell JC, Whiteley AS. Stable isotope probing and related technologies. American Society for Microbiology Press; 2010.
Lee N, Nielsen PH, Andreasen KH, Juretschko S, Nielsen JL, Schleifer KH, et al. Combination of fluorescent in situ hybridization and microautoradiography-a new tool for structure-function analyses in microbial ecology. Appl Environ Microbiol. 1999;65:1289–97.
CAS
PubMed
PubMed Central
Google Scholar
Wagner M. Single-cell ecophysiology of microbes as revealed by Raman microspectroscopy or secondary ion mass spectrometry imaging. Annu Rev Microbiol. 2009;63:411–29.
CAS
PubMed
Google Scholar
Lee KS, Palatinszky M, Pereira FC, Nguyen J, Fernandez VI, Mueller AJ, et al. An automated Raman-based platform for the sorting of live cells by functional properties. Nat Microbiol. 2019;4:1035–48.
CAS
PubMed
Google Scholar
Hatzenpichler R, Scheller S, Tavormina PL, Babin BM, Tirrell DA, Orphan VJ. In situ visualization of newly synthesized proteins in environmental microbes using amino acid tagging and click chemistry. Environ Microbiol. 2014;16:2568–90.
CAS
PubMed
PubMed Central
Google Scholar
Zaneveld J, Turnbaugh PJ, Lozupone C, Ley RE, Hamady M, Gordon JI, et al. Host-bacterial coevolution and the search for new drug targets. Curr Opin Chem Biol. 2008;12:109–14.
CAS
PubMed
PubMed Central
Google Scholar
Cordovez V, Dini-Andreote F, Carrión VJ, Raaijmakers JM. Ecology and evolution of plant microbiomes. Annu Rev Microbiol. 2019;73:69–88.
CAS
PubMed
Google Scholar
Moran NA. Symbiosis as an adaptive process and source of phenotypic complexity. Proc Natl Acad Sci. 2007;104:8627–33.
CAS
PubMed
Google Scholar
Gehrig H, Schüssler A, Kluge M. Geosiphon pyriforme, a fungus forming endocytobiosis with Nostoc (cyanobacteria), is an ancestral member of the Glomales: evidence by SSU rRNA analysis. J Mol Evol. 1996;43:71–81.
CAS
PubMed
Google Scholar
Münger E, Montiel-Castro AJ, Langhans W, Pacheco-López G. Reciprocal interactions between gut microbiota and host social behavior. Front Integr Neurosci. 2018;12:21.
PubMed
PubMed Central
Google Scholar
O’Brien PA, Webster NS, Miller DJ, Bourne DG. Host-microbe coevolution: applying evidence from model systems to complex marine invertebrate holobionts. mBio. 2019;10:e02241–18.
PubMed
PubMed Central
Google Scholar
Erlacher A, Cardinale M, Grosch R, Grube M, Berg G. The impact of the pathogen Rhizoctonia solani and its beneficial counterpart Bacillus amyloliquefaciens on the indigenous lettuce microbiome. Front Microbiol. 2014;5:175.
PubMed
PubMed Central
Google Scholar
Berg G, Martinez JL. Friends or foes: can we make a distinction between beneficial and harmful strains of the Stenotrophomonas maltophilia complex? Front Microbiol. 2015;6:241.
PubMed
PubMed Central
Google Scholar
Walker WA. Dysbiosis. In: Floch MH, Ringel Y, Walker WA, editors. The microbiota in gastrointestinal pathophysiology: implications for human health, prebiotics, probiotics and dysbiosis. New York, USA: Elsevier Inc; 2016. p. 227–31.
Google Scholar
Vayssier-Taussat M, Albina E, Citti C, Cosson JF, Jacques MA, Lebrun MH, et al. Shifting the paradigm from pathogens to pathobiome: new concepts in the light of meta-omics. Front Cell Infect Microbiol. 2014;4:29.
PubMed
PubMed Central
Google Scholar
Larsen OFA, Claassen E. The mechanistic link between health and gut microbiota diversity. Sci Rep. 2018;8:2183.
PubMed
PubMed Central
Google Scholar
Zaneveld JR, McMinds R, Vega TR. Stress and stability: applying the Anna Karenina principle to animal microbiomes. Nat Microbiol. 2017;2:17121.
CAS
PubMed
Google Scholar
Lloyd-Price J, Arze C, Ananthakrishnan AN, Schirmer M, Avila-Pacheco J, Poon TW, et al. Multi-omics of the gut microbial ecosystem in inflammatory bowel diseases. Nature. 2019;569(7758):655.
CAS
PubMed
PubMed Central
Google Scholar
Chen Y, Blaser MJ. Inverse associations of Helicobacter pylori with asthma and allergy. Arch Intern Med. 2007;167:821–7.
PubMed
Google Scholar
Ryan RP, Monchy S, Cardinale M, Taghavi S, Crossman L, Avison MB, et al. The versatility and adaptation of bacteria from the genus Stenotrophomonas. Nat Rev Microbiol. 2009;7:514–25.
CAS
PubMed
Google Scholar
Sieber M, Pita L, Weiland-Bräuer N, Dirksen P, Wang J, Mortzfeld B, et al. Neutrality in the Metaorganism. PLoS Biol. 2019;17:e3000298.
PubMed
PubMed Central
Google Scholar
Lewin-Epstein O, Aharonov R, Hadany L. Microbes can help explain the evolution of host altruism. Nat Commun. 2017;8:1–7.
Google Scholar
Berg G, Smalla K. Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere. FEMS Microbiol Ecol. 2009;68:1–13.
CAS
PubMed
Google Scholar
Opelt K, Berg C, Schönmann S, Eberl L, Berg G. High specificity but contrasting biodiversity of Sphagnum-associated bacterial and plant communities in bog ecosystems independent of the geographical region. ISME J. 2007;1:502–16.
CAS
PubMed
Google Scholar
Bragina A, Berg C, Cardinale M, Shcherbakov A, Chebotar V, Berg G. Sphagnum mosses harbour highly specific bacterial diversity during their whole lifecycle. ISME J. 2012;6:802–13.
CAS
PubMed
Google Scholar
Pérez-Jaramillo JE, Mendes R, Raaijmakers JM. Impact of plant domestication on rhizosphere microbiome assembly and functions. Plant Mol Biol. 2016;90:635–44.
PubMed
Google Scholar
Albertsen M, Karst SM, Ziegler AS, Kirkegaard RH, Nielsen PH. Back to basics – the influence of DNA extraction and primer choice on phylogenetic analysis of activated sludge communities. PLOS ONE. 2015;10:e0132783.
PubMed
PubMed Central
Google Scholar
Nocker A, Cheung C-Y, Camper AK. Comparison of propidium monoazide with ethidium monoazide for differentiation of live vs. dead bacteria by selective removal of DNA from dead cells. J Microbiol Methods. 2006;67:310–20.
CAS
PubMed
Google Scholar
Vaishampayan P, Probst AJ, La Duc MT, Bargoma E, Benardini JN, Andersen GL, et al. New perspectives on viable microbial communities in low-biomass cleanroom environments. ISME J. 2013;7:312–24.
CAS
PubMed
Google Scholar
Mahnert A, Moissl-Eichinger C, Zojer M, Bogumil D, Mizrahi I, Rattei T, et al. Man-made microbial resistances in built environments. Nat Commun. 2019;10:968.
PubMed
PubMed Central
Google Scholar
Aird D, Ross MG, Chen W-S, Danielsson M, Fennell T, Russ C, et al. Analyzing and minimizing PCR amplification bias in Illumina sequencing libraries. Genome Biol. 2011;12:R18.
CAS
PubMed
PubMed Central
Google Scholar
Eisenstein M. Microbiology: making the best of PCR bias. Nat Methods. 2018;15:317–20.
CAS
PubMed
Google Scholar
Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet C, Al-Ghalith GA, et al. QIIME 2: Reproducible, interactive, scalable, and extensible microbiome data. Peer J Preprints. 2018:e27295v1.
Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, et al. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol. 2009;75:7537–41.
CAS
PubMed
PubMed Central
Google Scholar
Callahan BJ, McMurdie PJ, Holmes SP. Exact sequence variants should replace operational taxonomic units in marker-gene data analysis. The ISME J. 2017;11:2639–43.
PubMed
Google Scholar
Kulkarni P, Frommolt P. challenges in the setup of large-scale next-generation sequencing analysis workflows. Comput Struct. Biotechnol J. 2017;15:471–7.
CAS
Google Scholar
Pauvert C, Buée M, Laval V, Edel-Hermann V, Fauchery L, Gautier A, et al. Bioinformatics matters: The accuracy of plant and soil fungal community data is highly dependent on the metabarcoding pipeline. Fungal Ecol. 2019;41:23–33.
Google Scholar
Sczyrba A, Hofmann P, Belmann P, Koslicki D, Janssen S, Dröge J, et al. Critical assessment of metagenome interpretation—a benchmark of metagenomics software. Nat Methods. 2017;14:1063–71.
CAS
PubMed
PubMed Central
Google Scholar
Vollmers J, Wiegand S, Kaster AK. Comparing and evaluating metagenome assembly tools from a microbiologist’s perspective - not only size matters! PLoS ONE. 2017;12(1):e0169662.
PubMed
PubMed Central
Google Scholar
Shade A, Jones SE, Caporaso JG, Handelsman J, Knight R, Fierer N, et al. Conditionally rare taxa disproportionately contribute to temporal changes in microbial diversity. mBio. 2014;5:e01371–14.
PubMed
PubMed Central
Google Scholar
Ramirez KS, Knight CG, de Hollander M, Brearley FQ, Constantinides B, Cotton A, et al. Detecting macroecological patterns in bacterial communities across independent studies of global soils. Nat Microbiol. 2018;3:189.
CAS
PubMed
Google Scholar
Allan E, Weisser W, Weigelt A, Roscher C, Fischer M, Hillebrand H. More diverse plant communities have higher functioning over time due to turnover in complementary dominant species. Proc Natl Acad Sci. 2011;108:17034–9.
CAS
PubMed
Google Scholar
Jousset A, Bienhold C, Chatzinotas A, Gallien L, Gobet A, Kurm V, et al. Where less may be more: how the rare biosphere pulls ecosystems strings. ISME J. 2017;11:853–62.
PubMed
PubMed Central
Google Scholar
Hausmann B, Pelikan C, Rattei T, Loy A, Pester M. Long-term transcriptional activity at zero growth of a cosmopolitan rare biosphere member. mBio. 2019;10(1):e02189–18.
CAS
PubMed
PubMed Central
Google Scholar
Obermeier M-M, Taffner J, Bergna A, Poehlein A, Cernava T, Müller CA, et al. Unravelling native plant resistomes – The Sphagnum microbiome harbours versatile and novel antimicrobial resistance genes. bioRxiv. 2019;695973.
Ten Hoopen P, Finn RD, Bongo LA, Corre E, Fosso B, Meyer F, et al. The metagenomic data life-cycle: standards and best practices. GigaScience. 2017;6:gix047.
Google Scholar
Earth Microbiome Project. http://www.earthmicrobiome.org. Accessed 15 Oct 2019.
National Center for Biotechnology Information (NCBI). https://www.ncbi.nlm.nih.gov. Accessed 8 Jun 2019.
European Nucleotide Archive (ENA). https://www.ebi.ac.uk/ena. Accessed 8 Jun 2019.
CNSA: CNGB Nucleotide Sequence Archive. https://db.cngb.org/cnsa. Accessed 8 Jun 2019.
Langille MGI, Ravel J, Fricke WF. “Available upon request”: not good enough for microbiome data! Microbiome. 2018;6:8.
PubMed
PubMed Central
Google Scholar
Schloss PD. Identifying and overcoming threats to reproducibility, replicability, robustness, and generalizability in microbiome research. mBio. 2018;9:e00525–18.
PubMed
PubMed Central
Google Scholar
Foo JL, Ling H, Lee YS, Chang MW. Microbiome engineering: Current applications and its future. Biotechnol J. 2017;12(3):1600099.
Google Scholar
Hadrich D. Microbiome research is becoming the key to better understanding health and nutrition. Front Genet. 2018;9:212.
PubMed
PubMed Central
Google Scholar
Berg G. Plant-microbe interactions promoting plant growth and health: perspectives for controlled use of microorganisms in agriculture. Appl Microbiol Biotechnol. 2009;84:11–8.
CAS
PubMed
Google Scholar
Zmora N, Soffer E, Elinav E. Transforming medicine with the microbiome. Sci Transl Med. 2019;11:eaaw1815.
CAS
PubMed
Google Scholar
Jobin C. Precision medicine using microbiota. Science. 2018;359:32–4.
CAS
PubMed
Google Scholar
Rose SMS-F, Contrepois K, Moneghetti KJ, Zhou W, Mishra T, Mataraso S, et al. A longitudinal big data approach for precision health. Nat Med. 2019;25:792.
PubMed Central
Google Scholar
Markowiak P, Śliżewska K. Effects of probiotics, prebiotics, and synbiotics on human health. Nutrients. 2017;9(9):1021.
PubMed Central
Google Scholar
Verhoog S, Taneri PE, Roa Díaz ZM, Marques-Vidal P, Troup JP, Bally L, et al. Dietary factors and modulation of bacteria strains of Akkermansia muciniphila and Faecalibacterium prausnitzii: a systematic review. Nutrients. 2019;11(7):1565.
CAS
PubMed Central
Google Scholar
O’Toole PW, Marchesi JR, Hill C. Next-generation probiotics: the spectrum from probiotics to live biotherapeutics. Nat Microbiol. 2017;2:17057.
PubMed
Google Scholar
Gupta A, Khanna S. Fecal microbiota transplantation. JAMA. 2017;318:102.
PubMed
Google Scholar
Wang J-W, Kuo C-H, Kuo F-C, Wang Y-K, Hsu W-H, Yu F-J, et al. Fecal microbiota transplantation: Review and update. J Formos Med Assoc. 2019;118:S23–31.
PubMed
Google Scholar
Bäckhed F, Manchester JK, Semenkovich CF, Gordon JI. From the Cover: Mechanisms underlying the resistance to diet-induced obesity in germ-free mice. Proc Natl Acad Sci. 2007;104:979–84.
PubMed
Google Scholar
Ley RE, Bäckhed F, Turnbaugh P, Lozupone CA, Knight RD, Gordon JI. Obesity alters gut microbial ecology. Proc Natl Acad Sci U S A. 2005;102:11070–5.
CAS
PubMed
PubMed Central
Google Scholar
Baktash A, Terveer EM, Zwittink RD, Hornung BVH, Corver J, Kuijper EJ, et al. Mechanistic insights in the success of fecal microbiota transplants for the treatment of Clostridium difficile infections. Front Microbiol. 2018;9:1242.
PubMed
PubMed Central
Google Scholar
Gilbert JA, Lynch SV. Community ecology as a framework for human microbiome research. Nat Med. 2019;25:884–9.
CAS
PubMed
PubMed Central
Google Scholar
Martin CR, Osadchiy V, Kalani A, Mayer EA. The brain-gut-microbiome axis. Cell Mol Gastroenterol Hepatol. 2018;6:133–48.
PubMed
PubMed Central
Google Scholar
Tripathi A, Debelius J, Brenner DA, Karin M, Loomba R, Schnabl B, et al. The gut-liver axis and the intersection with the microbiome. Nat Rev Gastroenterol Hepatol. 2018;15:397–411.
CAS
PubMed
PubMed Central
Google Scholar
Dang AT, Marsland BJ. Microbes, metabolites, and the gut-lung axis. Mucosal Immunol. 2019;12:843–50.
CAS
PubMed
Google Scholar
DELS Microsite Network. http://nas-sites.org. Accessed 8 Jun 2019.
Berg G, Grube M, Schloter M, Smalla K. Unraveling the plant microbiome: looking back and future perspectives. Front Microbiol. 2014;5:148.
PubMed
PubMed Central
Google Scholar
Phytobiomes Roadmap. http://www.phytobiomes.org/roadmap. Accessed 15 Oct 2019.
IPBES 2019 Report. https://lp.panda.org/ipbes. Accessed 5 Aug 2019.
Mitter B, Pfaffenbichler N, Flavell R, Compant S, Antonielli L, Petric A, et al. A new approach to modify plant microbiomes and traits by introducing beneficial bacteria at flowering into progeny seeds. Front Microbiol. 2017;8:11.
PubMed
PubMed Central
Google Scholar
Zachow C, Müller H, Tilcher R, Donat C, Berg G. Catch the best: novel screening strategy to select stress protecting agents for crop plants. Agronomy. 2013;3:794–815.
Google Scholar
Cocolin L, Ercolini D. Zooming into food-associated microbial consortia: a ‘cultural’ evolution. Curr Opin Food Sci. 2015;2:43–50.
Google Scholar
Van Bruggen AHC, Goss EM, Havelaar A, van Diepeningen AD, Finckh MR, Morris JG. One Health - Cycling of diverse microbial communities as a connecting force for soil, plant, animal, human and ecosystem health. Sci Total Environ. 2019;664:927–37.
PubMed
Google Scholar
Trinh P, Zaneveld JR, Safranek S, Rabinowitz PM. One health relationships between human, animal, and environmental microbiomes: A mini-review. Front Public Health. 2018;6:235.
PubMed
PubMed Central
Google Scholar
Flandroy L, Poutahidis T, Berg G, Clarke G, Dao M-C, Decaestecker E, et al. The impact of human activities and lifestyles on the interlinked microbiota and health of humans and of ecosystems. Sci Total Environ. 2018;627:1018–38.
CAS
PubMed
Google Scholar
Horton R, Beaglehole R, Bonita R, Raeburn J, McKee M. From public to planetary health: a manifesto. The Lancet. 2014;383:847.
Google Scholar
Rockström J, Steffen W, Noone K, Persson A, Chapin FS, Lambin E, et al. Planetary boundaries: exploring the safe operating space for humanity. Ecology and Society. 2009;14:32.
Google Scholar
Bosch TCG, McFall-Ngai MJ. Metaorganisms as the new frontier. Zoology. 2011;114:185–90.
PubMed
Google Scholar
Brown SP, Cornforth DM, Mideo N. Evolution of virulence in opportunistic pathogens: generalism, plasticity, and control. Trends Microbiol. 2012;20:336–42.
CAS
PubMed
PubMed Central
Google Scholar